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DIVISORIAL ZARISKI DECOMPOSITIONS
ON COMPACT COMPLEX MANIFOLDS

BY SÉBASTIEN BOUCKSOM

ABSTRACT. – Using currents with minimal singularities, we introduce pointwise minimal multiplicities
for a real pseudo-effective (1,1)-cohomology class α on a compact complex manifold X, which are the
local obstructions to the numerical effectivity of α. The negative part of α is then defined as the real
effective divisor N(α) whose multiplicity along a prime divisor D is just the generic multiplicity of α
along D, and we get in that way a divisorial Zariski decomposition of α into the sum of a class Z(α)
which is nef in codimension 1 and the class of its negative part N(α), which is an exceptional divisor in
the sense that it is very rigidly embedded in X. The positive parts Z(α) generate a modified nef cone,
and the pseudo-effective cone is shown to be locally polyhedral away from the modified nef cone, with
extremal rays generated by exceptional divisors. We then treat the case of a surface and a hyper-Kähler
manifold in some detail. Using the intersection form (respectively the Beauville–Bogomolov form), we
characterize the modified nef cone and the exceptional divisors. The divisorial Zariski decomposition is
orthogonal, and is thus a rational decomposition, which fact accounts for the usual existence statement
of a Zariski decomposition on a projective surface, which is thus extended to the hyper-Kähler case.
Finally, we explain how the divisorial Zariski decomposition of (the first Chern class of) a big line bundle
on a projective manifold can be characterized in terms of the asymptotics of the linear series |kL| as
k →∞.
 2004 Elsevier SAS

RÉSUMÉ. – En utilisant des courants à singularités minimales, nous introduisons les multiplicités
minimales ponctuelles d’une (1,1)-classe de cohomologie pseudoeffective α sur une variété complexe
compacte X, qui sont les obstructions locales à l’effectivité numérique de α. La partie négative de α est
alors définie comme le diviseur effectif réel dont la multiplicité le long d’un diviseur premier D n’est
autre que la multiplicité minimale générique de α le long de D, et nous obtenons de cette manière une
décomposition de Zariski divisorielle de α en la somme d’une classe Z(α) qui est nef en codimension 1 et
de la classe de sa partie négativeN(α), qui est un diviseur exceptionnel au sens où il est plongé de manière
très rigide dansX. Les parties positives Z(α) engendrent un cône nef modifé, et nous montrons que le cône
pseudoeffectif est localement polyhédral en dehors du cône nef modifié, de rayons extrémaux engendrés par
les diviseurs exceptionnels. Nous traitons ensuite le cas d’une surface et d’une variété hyperkählerienne
en détail. À l’aide de la forme d’intersection (respectively la forme de Beauville–Bogomolov), nous
caractérisons le cône nef modifié et les diviseurs exceptionnels. La décomposition de Zariski divisorielle est
orthogonale, et donc rationnelle, ce qui explique le résultat d’existence connu pour les surfaces projectives,
que nous étendons ainsi au cas hyperkählérien. Finalement, nous expliquons comment la décomposition de
Zariski divisorielle (de la première classe de Chern) d’un fibré en droites gros sur une variété projective
peut être caractérisée en terme du comportement asymptotique des systèmes linéaires |kL| lorsque k →∞.
 2004 Elsevier SAS

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/01/ 2004 Elsevier SAS. All rights reserved



46 S. BOUCKSOM

1. Introduction

It is known since the pioneering work of O. Zariski [19] that the study of the ring

R(X,D) :=
⊕

k!0

H0
(
X,O(kD)

)
,

where D is an effective divisor on a projective surface X , can be reduced to the case where
D is numerically effective (nef). The more precise result obtained by Zariski is that any
effective Q-divisor D on a projective surface X can be uniquely decomposed into a sum
D = P + N where P is a nef Q-divisor (the positive part), N =

∑
ajDj is an effective

Q-divisor (the negative part) such that the Gram matrix (Di · Dj) is negative definite, and P
is orthogonal to N with respect to the intersection form. Zariski shows that the natural inclusion
H0(kP ) →H0(kD) is necessarily an isomorphism in that case, relating the decomposition to
the original problem.
The proof of the uniqueness in this decomposition shows that the negative partN only depends

on the class {D} ofD in the Néron–Severi groupNS (X), so that {D} "→ {P} yields a map from
part of the pseudo-effective cone to the nef cone, which we want to study geometrically.
Building upon the construction by J.-P. Demailly of metrics with minimal singularities on a

pseudo-effective line bundle L over a compact complex manifold, we introduce the minimal
multiplicity ν(α, x) of an arbitrary real pseudo-effective (1,1)-class α on a compact complex
manifold X at some point x ∈ X . This multiplicity ν(α, x) is the local obstruction at x to the
numerical effectivity of α. The set of points x ∈ X at which ν(α, x) is positive is a countable
union of closed analytic subsets which we call the non-nef locus of α. It turns out that this non-
nef locus contains only finitely many prime divisors (Theorem 3.14), and the divisorial Zariski
decomposition of α is then obtained by subtracting from α the divisorial part of its non-nef locus,
counting multiplicities. More precisely, we define the negative part of such a class α by setting
N(α) =

∑
ν(α,D)D, where D ranges over the prime divisors of X and ν(α,D) is the generic

multiplicity of α along D (cf. Section 3). This negative part N(α) is an effective R-divisor
which is exceptional in the sense that it is very rigidly imbedded in X . For instance, when X is
a surface, the divisors we obtain in that way are exactly the effective R-divisors whose support
D1, . . . ,Dr has negative definite Gram matrix (Di ·Dj).
The difference Z(α) := α − {N(α)} is a real pseudo-effective (1,1)-class on X which we

call the Zariski projection of α. It is not a nef class, but is somehow nef in codimension 1, in the
sense that its non-nef locus does not contain any prime divisor. The set of such classes is a closed
convex cone which we call the modified nef cone. The decomposition α= Z(α) + {N(α)} we
call the divisorial Zariski decomposition of α, and it is just induced by the Siu decomposition of
a closed positive current with minimal singularities in α when the latter is big. For such a big
class, we give a criterion to recognize a decomposition α = p + {N} into a modified nef and
big class and the class of an effective real divisor as the divisorial Zariski decomposition of α, in
terms of the non-Kähler locus of p (cf. Section 3.5).
The geometric picture is now as follows: the pseudo-effective cone of a compact complex

manifold X is locally polyhedral away from the modified nef cone, with extremal rays that
writeR+{D} for some exceptional primeD of X . The Zariski projection Z yields a projection
from the pseudo-effective cone to the modified nef cone parallel to these exceptional rays, which
map is concave (in some sense) and homogeneous, but not continuous up to the boundary of
the pseudo-effective cone in general. The fibre Z−1(p) of Z above a modified nef class p is a
countable union of simplicial cones generated by exceptional families of primes.
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WhenX is a surface, a modified nef class is just a nef class; when α is the class of an effective
Q-divisorD on a projective surface, the divisorial Zariski decomposition of α is just the original
Zariski decomposition of D. More generally, we show that the divisorial decomposition of a
pseudo-effective class α on a Kähler surface is the unique orthogonal decomposition of α into the
sum of a modified nef class and the class of an exceptional (in some sense) effectiveR-divisor.
This fact accounts for the rationality of the Zariski decomposition on a surface, meaning that the
negative partN(α) is rational when α is.
An interesting fact is that much of the well-known case of a surface carries on to the case

where X is a compact hyper-Kähler manifold. Using the quadratic Beauville–Bogomolov form
on H1,1(X,R) and deep results due to D. Huybrechts, we can prove the following facts:
a family of primes is exceptional in our sense iff the corresponding Gram matrix is negative
definite. In particular, a prime is exceptional iff it has negative square, and this forces it to
be uniruled (Proposition 4.7). The modified nef cone of a hyper-Kähler manifold is just the
dual cone to the pseudoeffective cone, which is also the closure of the so-called birational
(or bimeromorphic) Kähler cone. Finally, the divisorial Zariski decomposition is the unique
orthogonal decomposition into the sum of a modified nef class and an exceptional divisor. In
particular, the divisorial Zariski decomposition is also rational in that case.
In a last part, we explain how to tackle the above constructions in a more algebraic fashion.

When L is a big R-divisor on a projective manifold, we prove that the divisorial Zariski
projection of L is the only decomposition L = P + N into real divisors with P modified nef
andH0(%kP &) = H0(%kL&) for every k. Theminimal multiplicities of {L} (and thus its negative
part) can be recovered from the asymptotic behaviour of the sections of kL. The case of a general
pseudo-effective line bundleL is then handled by approximating it by L+εA, whereA is ample.
Shortly after this paper was completed, we have been informed by R. Lazarsfeld of an

unpublished work of N. Nakayama [16] in which (among other things) the algebraic version of
our constructions is studied in detail, in the case of a pseudo-effectiveR-divisor on a projective
manifold. Following the advice of the referee, we have included as an appendix a brief summary
of some aspects of [16] which may prove interesting in the perspective of the present work.

2. Technical preliminaries

2.1. ∂∂-cohomology

When X is an arbitrary complex manifold, the ∂∂-lemma of Kähler geometry does not hold,
and it is thus better to work with ∂∂-cohomology. We will just need the (1,1)-cohomology
spaceH1,1

∂∂
(X,C), which is defined as the quotient of the space of d-closed smooth (1,1)-forms

modulo the ∂∂-exact ones. The real structure on the space of forms induces a real structure on
H1,1

∂∂
(X,C), and we denote byH1,1

∂∂
(X,R) the space of real points.

The canonical map from H1,1

∂∂
(X,C) to the quotient of the space of d-closed (1,1)-currents

modulo the ∂∂-exact ones is injective (because, for any degree 0 current f , ∂∂f is smooth iff
f is), and is also surjective: given a closed (1,1)-current T , one can find a locally finite open
covering Uj of X such that T = ∂∂fj is ∂∂-exact on Uj . If ρj is a partition of unity associated
to Uj and f :=

∑
ρjfj , then T − ∂∂f is smooth. Indeed, on Ui, it is just ∂∂

∑
j ρj(fi − fj), and

each fi−fj is smooth since it is even pluri-harmonic. As a consequence, a class α ∈ H1,1

∂∂
(X,C)

can be seen as an affine space of closed (1,1)-currents. We denote by {T } ∈ H1,1

∂∂
(X,C) the

class of the current T . Remark that i∂∂ is a real operator (on forms or currents), so that if T
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48 S. BOUCKSOM

is a real closed (1,1)-current, its class {T } lies in H1,1

∂∂
(X,R) and consists of all the closed

currents T + i∂∂ϕ where ϕ is a real current of degree 0.
When X is furthermore compact, it can be shown that H1,1

∂∂
(X,C) is finite dimensional. The

operator ∂∂ from smooth functions to smooth closed (1,1)-forms is thus an operator between
Fréchet spaces with finite codimensional range; it therefore has closed range, and the quotient
map θ "→ {θ} from smooth closed (1,1)-forms to H1,1

∂∂
(X,C) endowed with its unique finite-

dimensional complex vector space Hausdorff topology is thus continuous and open.

2.2. General facts about currents

2.2.1. Siu decomposition
Let T be a closed positive current of bidegree (p, p) on a complex n-fold X . We denote

by ν(T,x) its Lelong number at a point x ∈ X . The Lelong super-level sets are defined by
Ec(T ) := {x ∈ X,ν(T,x) ! c} for c > 0, and a well known result of Y.T. Siu [18] asserts that
Ec(T ) is an analytic subset of X , of codimension at least p. As a consequence, for any analytic
subset Y of X , the generic Lelong number of T along Y , defined by

ν(T,Y ) := inf
{
ν(T,x), x ∈ Y

}
,

is also equal to ν(T,x) for a very general x ∈ Y . It is also true that, for any irreducible analytic
subset Y of codimension p inX , the current T −ν(T,Y )[Y ] is positive. The symbol [Y ] denotes
the integration current on Y , which is defined by integrating test forms on the smooth locus
of Y . Since E+(T ) :=

⋃
c>0 Ec(T ) is a countable union of p-codimensional analytic subsets,

it contains an at most countable family Yk of p-codimensional irreducible analytic subsets. By
what we have said, T − ν(T,Y1)[Y1]− · · ·− ν(T,Yk)[Yk] is a positive current for all k, thus the
series

∑
k!0 ν(T,Yk)[Yk] converges, and we have

T = R +
∑

k

ν(T,Yk)[Yk]

for some closed positive (p, p)-current R such that each Ec(R) has codimension > p. The
decomposition above is called the Siu decomposition of the closed positive (p, p)-current T .
Since ν(T,Y ) = 0 if Y is a p-codimensional subvariety not contained in E+(T ), it makes
sense to write

∑
k ν(T,Yk)[Yk] =

∑
ν(T,Y )[Y ], where the sum is implicitely extended over

all p-codimensional irreducible analytic subsets Y ⊂ X .

2.2.2. Almost positive currents
A real (1,1)-current T on a complex manifold X is said to be almost positive if T ! γ holds

for some smooth real (1,1)-form γ. Let T ! γ be a closed almost positive (1,1)-current. On
a small enough open set U with coordinates z = (z1, . . . , zn), we write T = ∂∂ϕ where ϕ is a
degree 0 current. Since γ + Ci∂∂|z|2 is a positive (1,1)-form on U for C > 0 big enough, we
get that i∂∂(ϕ+ C|z|2) is positive, which means that ϕ+ C|z|2 is (the current associated to) a
(unique) pluri-subharmonic function on U . A locally integrable function ϕ onX such that i∂∂ϕ
is almost positive is called an almost pluri-subharmonic function, and is thus locally equal to a
pluri-subharmonic function modulo a smooth function.
The Lelong number ν(T,x) of a closed almost positive (1,1)-current T can be defined

as ν(T + Ci∂∂|z|2, x) as above, since this does not depend on the smooth function C|z|2.
Consequently, the Siu decomposition of T can also be constructed, and writes

T = R +
∑

ν(T,D)[D],
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where D ranges over the prime divisors of X , and R is a closed almost positive (1,1)-current.
In fact, we have R ! γ as soon as T ! γ for a smooth form γ.

2.2.3. Pull-back of a current
When f :Y → X is a surjective holomorphic map between compact complex manifolds

and T is a closed almost positive (1,1)-current on X , it is possible to define its pull back
f"T by f using the analogue of local equations for divisors: write T = θ + i∂∂ϕ for some
smooth form θ ∈ {T }. ϕ is then an almost pluri-subharmonic function, thus locally a pluri-
subharmonic function modulo C∞. One defines f"T to be f"θ+ i∂∂f"ϕ, as this is easily seen
to be independent of the choices made. Of course, we then have {f"T }= f"{T }.

2.2.4. Gauduchon metrics and compactness
On any compact complex n-fold X , there exists a Hermitian metric ω such that ωn−1 is

∂∂-closed. Such a metric is called a Gauduchon metric. As a consequence, for every smooth
real (1,1)-form γ, the quotient map T "→ {T } from the set of closed (1,1)-currents T with
T ! γ to H1,1

∂∂
(X,R) is proper. Indeed, the mass of the positive current T − γ is controled by∫

(T − γ) ∧ ωn−1, and
∫

T ∧ ωn−1 = {T } · {ω} only depends on the class of T . The result
follows by the weak compactness of positive currents with bounded mass. Another consequence
is that the kernel of T "→ {T } meets the cone of closed positive (1,1)-currents at the origin only.

2.3. Cones in the ∂∂-cohomology

We now assume that X is compact, and fix some reference Hermitian form ω (i.e. a smooth
positive definite (1,1)-form).A cohomology class α ∈ H1,1

∂∂
(X,R) is said to be pseudo-effective

iff it contains a positive current; α is nef (numerically effective) iff, for each ε> 0, α contains a
smooth form θε with θε !−εω;α is big iff it contains a Kähler current, i.e. a closed (1,1)-current
T such that T ! εω for ε> 0 small enough. Finally, α is a Kähler class iff it contains a Kähler
form (note that a smooth Kähler current is the same thing as a Kähler form). Since any two
Hermitian forms ω1, ω2 are commensurable (i.e. C−1ω2 " ω1 " Cω2 for some C > 0), these
definitions do not depend on the choice of ω.
The set of pseudo-effective classes is a closed convex cone E ⊂ H1,1

∂∂
(X,R), called the

pseudo-effective cone. It has compact base, because so is the case of the cone of closed positive
(1,1)-currents. Similarly, one defines the nef cone N (a closed convex cone), the big cone B
(an open convex cone), and the Kähler cone K (an open convex cone). We obviously have the
inclusions

K⊂ B ⊂ E and K⊂N ⊂ E .

By definition,X is a Kähler manifold iff its Kähler cone K is non-empty. Similarly (but this is a
theorem, cf. [7])X is a Fujiki manifold (i.e. bimeromorphic to a Kähler manifold) iff its big cone
B is non-empty (see also the proof of Proposition 2.3 below). If X is Kähler, K is trivially the
interior of the nef cone. Similarly, ifX is Fujiki, B is trivially the interior of the pseudo-effective
cone.
We will now and then denote by ! the partial order relation on H1,1

∂∂
(X,R) induced by the

convex cone E .

2.4. The Néron–Severi space

Given a line bundle L on X , each smooth Hermitian metric h on L locally writes as
h(x, v) = |v|2e−2ϕ(x) for some smooth local weight ϕ; the curvature form Θh(L) := i

π∂∂ϕ is a
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globally defined real (1,1)-form, whose class inH1,1

∂∂
(X,R) we denote by c1(L), the first Chern

class of L. We write ddc = i
π∂∂ for short. A singular Hermitian metric h on L is by definition

a metric h = h∞e−2ϕ, where h∞ is a smooth Hermitian metric on L and the weight ϕ is a
locally integrable function. The curvature current of h is defined as Θh(L) := Θh∞(L) + ddcϕ;
it also lies in c1(L). Conversely, given a smooth Hermitian metric h∞ on L, any closed real
(1,1)-current T in c1(L) can be written (by definition) as T = Θh∞(L) + ddcϕ. But ϕ is just
a degree 0 current a priori. However, ϕ is automatically L1

loc in case T is almost positive (cf.
Section 2.2.2), thus each almost positive current T in c1(L) is the curvature form of a singular
Hermitian metric on L.
The image of the homomorphism Pic(X) → H1,1

∂∂
(X,R) L "→ c1(L) is called the Néron–

Severi group, denoted by NS (X). Its rank is denoted by ρ(X), and called the Picard number
of X . The real Néron–Severi space NS (X)R is just the real subspace of dimension ρ(X) in
H1,1

∂∂
(X,R) generated by NS(X). Kodaira’s embedding theorem can be formulated as follows:

X is a projective manifold iff the intersection of the Kähler cone K with NS(X)R is non-
empty. Similarly, X is a Moishezon manifold (i.e. bimeromorphic to a projective manifold) iff
the intersection of the big cone B with NS(X)R is non-empty (cf. [7]).

2.5. Currents with analytic singularities

2.5.1. Definition
A closed almost positive (1,1)-current T on a compact complex n-fold X is said to have

analytic singularities (along a subscheme V (I) defined by a coherent ideal sheaf I) if there
exists some c > 0 such that T is locally congruent to c

2ddc log(|f1|2+ · · ·+ |fk|2)modulo smooth
forms, where f1, . . . , fk are local generators of I . T is thus smooth outside the support of V (I),
and it is an immediate consequence of the Lelong–Poincaré formula that

∑
ν(T,D)D is just c

times the divisor part of the scheme V (I). If we first blow-up X along V (I) and then resolve
the singularities, we get a modification µ : X̃ → X , where X̃ is a compact complex manifold,
such that µ−1I is just O(−D) for some effective divisorD upstairs. The pull-back µ"T clearly
has analytic singularities along V (µ−1I) = D, thus its Siu decomposition writes

µ"T = θ+ cD

where θ is a smooth (1,1)-form. If T ! γ for some smooth form γ, then µ"T ! µ"γ, and thus
θ! µ"γ. This operation we call a resolution of the singularities of T .

2.5.2. Regularization(s) of currents
We will need two basic types of regularizations (inside a fixed cohomology class) for closed

(1,1)-currents, both due to J.-P. Demailly.

THEOREM 2.1 [4,5]. – Let T be a closed almost positive (1,1)-current on a compact complex
manifold X , and fix a Hermitian form ω. Suppose that T ! γ for some smooth real (1,1)-form
γ on X . Then:
(i) There exists a sequence of smooth forms θk in {T } which converges weakly to T , and such

that θk ! γ−Cλkω where C > 0 is a constant depending on the curvature of (TX ,ω) only, and
λk is a decreasing sequence of continuous functions such that λk(x) → ν(T,x) for every x ∈ X .
(ii) There exists a sequence Tk of currents with analytic singularities in {T } which converges

weakly to T , such that Tk ! γ − εkω for some sequence εk > 0 decreasing to 0, and such that
ν(Tk, x) increases to ν(T,x) uniformly with respect to x ∈X .
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Point (ii) enables us in particular to approximate a Kähler current T inside its cohomology
class by Kähler currents Tk with analytic singularities, with a very good control of the
singularities. A big class therefore contains plenty of Kähler currents with analytic singularities.

2.6. Intersection of currents

Just as cycles, currents can be intersected provided their singular sets are in an acceptable
mutual position. Specifically, let T be a closed positive (1,1)-current on a complex manifoldX .
Locally, we have T = ddcϕ with ϕ a pluri-subharmonic function, which is well defined modulo
a pluri-harmonic (hence smooth) function. We therefore get a globally well-defined unbounded
locus L(T ), which is the complement of the open set of points near which ϕ is locally bounded.
Assume now that T1, T2 are two closed positive (1,1)-currents such that L(Tj) is contained in
an analytic set Aj (which may beX); locally, we write Tj = ddcϕj with ϕj a pluri-subharmonic
function. If A1 ∩A2 has codimension at least 2, then it is shown in [5] that ϕ1ddcϕ2 has locally
finite mass, and that ddcϕ1 ∧ ddcϕ2 := ddc(ϕ1ddcϕ2) yields a globally defined closed positive
(2,2)-current, denoted by T1 ∧ T2. It is also true that T1 ∧ T2 lies in the product cohomology
class {T1} · {T2} ∈H2,2

∂∂
(X,R).

We will only need the following two special cases: if T1 is a closed positive (1,1)-current with
analytic singularities along a subscheme of codimension at least 2, then T1 ∧ T2 exists for every
closed positive (1,1)-current T2.
IfD1 andD2 are two distinct prime divisors, then [D1]∧ [D2] is a well defined closed positive

(2,2)-current. Since its support is clearly contained in the set-theoretic intersection D1 ∩ D2

(whose codimension is at least 2), we have [D1] ∧ [D2] =
∑

aj [Yj ], where the Yj ’s are the
components ofD1 ∩D2. In fact, it can be shown that

∑
ajYj is just the 2-cycle associated to the

scheme-theoretic intersectionD1∩D2, thus [D1]∧ [D2] is just the integration current associated
to the cycle D1 ·D2.

2.7. The modified nef cone

For our purposes, we need to introduce a new cone in H1,1

∂∂
(X,R), which is somehow the

cone of classes that are nef in codimension 1. Let X be a compact complex n-fold, and ω be
some reference Hermitian form.

DEFINITION 2.2 (Modified nef and Kähler classes). – Let α be a class in H1,1

∂∂
(X,R).

(i) α is said to be a modified Kähler class iff it contains a Kähler current T with ν(T,D) = 0
for all prime divisorsD in X .
(ii) α is said to be a modified nef class iff, for every ε> 0, there exists a closed (1,1)-current

Tε in α with Tε ! −εω and ν(Tε,D) = 0 for every primeD.

This is again independent of the choice of ω by commensurability of the Hermitian forms.
The set of modified Kähler classes is an open convex cone called the modified Kähler cone and
denoted byMK. Similarly, we get a closed convex coneMN , the modified nef cone. Using the
Siu decomposition, we immediately see thatMK is non-empty iff the big cone B is non-empty,
in which caseMK is just the interior ofMN .

Remark 1. – Upon regularizing the currents using (ii) of Theorem 2.1, we can always assume
that the currents involved in the definition have analytic singularities along a subscheme of
codimension at least 2.

Remark 2. – The modified nef cone of a compact complex surface is just its nef cone (cf.
Section 4.2.1).
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Remark 3. – Just as for nef classes, one cannot simply take ε = 0 in the definition of a
modified nef class. We recall the example given in [8]: there exists a ruled surface X over an
elliptic curve such that X contains an irreducible curve C with the following property: the
class {C} ∈ H1,1

∂∂
(X,R) is nef, but contains only one positive current, which is of course the

integration current [C].

The following proposition gives a more “algebraic” characterization of MK, which also
explains the (seemingly dumb) terminology.

PROPOSITION 2.3. – A class α lies in MK iff there exist a modification µ : X̃ → X and a
Kähler class α̃ on X̃ such that α= µ"α̃.

Proof. – The argument is adapted from [7], Theorem 3.4. If ω̃ is a Kähler form on X̃ and ω
is our reference Hermitian form on X , then µ"ω " Cω̃ for some C > 0, since X̃ is compact.
Since µ is a modification, we have µ"µ"ω = ω, so we get T := µ"ω̃ ! C−1ω, and T is thus a
Kähler current. Since the singular values of µ are in codimension at least 2, we immediately see
that ν(T,D) = 0 for every prime divisor D in X , and {T } = µ"{ω} lies in MK as desired.
Conversely, if α ∈ MK is represented by a Kähler current T with ν(T,D) = 0 for all D,
there exists by (ii) of Theorem 2.1 a Kähler current Tk in α with analytic singularities along
a subscheme Vk with ν(Tk,D) " ν(T,D), so that Vk has no divisor component. We select a
resolution of the singularities of Tk µ : X̃ → X , and write µ"Tk = θ + F , where θ is a smooth
form and F is an effective R-divisor. Since Tk ! εω for ε > 0 small enough, we get that
θ ! µ"εω. Denoting by E1, . . . ,Er the µ-exceptional prime divisors on X̃ , it is shown in [7],
Lemma 3.5, that one can find δ1, . . . , δr > 0 small enough and a closed smooth (1,1)-form τ in
{δ1E1 + · · ·+ δrEr} such that µ"εω− τ is positive definite everywhere. It follows that θ− τ is
a Kähler form upstairs. Now, we have

α= µ"{Tk} = µ"

{
θ− (δ1E1 + · · ·+ δrEr)

}
= µ"{θ− τ},

sinceEj is µ-exceptional and so is F because µ"F is an effective divisor contained in the scheme
Vk; this concludes the proof of Proposition 2.3. !
That a modified nef class is somehow nef in codimension 1 is reflected in the following

PROPOSITION 2.4. – If α is a modified Kähler (respectively nef ) class, then α|D is big
(respectively pseudo-effective) for every prime divisor D ⊂ X .

Proof. – If α is a modified nef class and ε> 0 is given, choose a current Tε ! −εω in α with
analytic singularities in codimension at least 2. Locally, we have ω " Cddc|z|2 for some C > 0,
thus Tε + εCddc|z|2 writes as ddcϕε, where ϕε is pluri-subharmonic and is not identically−∞
onD. Thus the restriction (ϕε)|D is pluri-subharmonic, and (Tε +εCddc|z|2)|D is a well defined
closed positive current. It follows that (Tε)|D is a well defined almost positive current on D,
with (Tε)|D ! −εCω|D. This certainly implies that α|D is pseudo-effective. The case α ∈MK
is treated similarly. !

2.8. Currents with minimal singularities

Let ϕ1, ϕ2 be two almost pluri-subharmonic functions on a compact complex manifold X .
Then, following [10], we say that ϕ1 is less singular than ϕ2 (and write ϕ1 + ϕ2) if we have
ϕ2 " ϕ1 + C for some constant C . We denote by ϕ1 ≈ ϕ2 the equivalence relation generated by
the pre-order relation +. Note that ϕ1 ≈ ϕ2 exactly means that ϕ1 = ϕ2 mod L∞.
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When T1 and T2 are two closed almost positive (1,1)-currents on X , we can also compare
their singularities in the following fashion: write Ti = θi + ddcϕi for θi ∈ {Tj} a smooth form
and ϕi an almost pluri-subharmonic function. Since any L1

loc function f with ddcf smooth is
itself smooth, it is easy to check that ϕi does not depend on the choices made up to equivalence
of singularities, and we compare the singularities of the Ti’s by comparing those of the ϕi’s.
Let now α be a class inH1,1

∂∂
(X,R) and γ be a smooth real (1,1)-form, and denote by α[γ] the

set of closed almost positive (1,1)-currents T lying in αwith T ! γ. It is a (weakly) compact and
convex subset of the space of (1,1)-currents. We endow it with the pre-order relation + defined
above. For any family Tj , j ∈ J of elements of α[γ], we claim that there exists an infimum
T = infj∈J Tj in (α[γ],+), which is therefore unique up to equivalence of singularities. The
proof is pretty straightforward: fix a smooth form θ in α, and write Tj = θ+ddcϕj for some quasi
pluri-subharmonic functions ϕj . SinceX is compact, ϕj is bounded from above; therefore, upon
changing ϕj into ϕj − Cj , we may assume that ϕj " 0 for all j ∈ J . We then take ϕ to be the
upper semi-continuous upper envelope of the ϕj ’s, j ∈ J , and set T := θ+ddcϕ. It is immediate
to check that T + Tj for all j, and that for every S ∈ α[γ], S + Tj for all j implies that S + T .
We should maybe explain why T ! γ: locally, we can choose coordinates z = (z1, . . . , zn) and a
form q(z) =

∑
λj |zj |2 such that ddcq " γ and ddcq is arbitrarily close to γ. Writing θ = ddcψ

for some smooth local potential ψ, the condition θ+ ddcϕj ! γ implies that ψ+ϕj − q is pluri-
subharmonic. The upper envelope ψ + ϕ− q is thus also pluri-subharmonic, which means that
T = θ+ ddcϕ! ddcq; letting ddcq tend to γ, we get T ! γ, as desired.
Since any two closed almost positive currents with equivalent singularities have the same

Lelong numbers, the Lelong numbers of inf Tj do not depend on the specific choice of the
current. In fact, it is immediate to check from the definitions that

ν(inf
j∈J

Tj, x) = inf
j∈J
ν(Tj , x).

As a particular case of the above construction, there exists a closed almost positive
(1,1)-current Tmin,γ ∈ α[γ] which is a least element in (α[γ],+). Tmin,γ is well defined modulo
ddcL∞, and we call it a current with minimal singularities in α, for the given lower bound γ.
When γ = 0 and α is pseudo-effective, we just write Tmin = Tmin,0, and call it a positive current
with minimal singularities in α. It must be noticed that, even for a big class α, Tmin will be a
Kähler current only in the trivial case:

PROPOSITION 2.5. – A pseudo-effective class α contains a positive current with minimal
singularities Tmin which is a Kähler current iff α is a Kähler class.

Proof. –We can write Tmin = θ + ddcϕ with θ a smooth form. If Tmin is Kähler, then so is
εθ+ (1− ε)Tmin = θ+ ddc(1− ε)ϕ for ε> 0 small enough. We therefore get ϕ+ (1− ε)ϕ by
minimality, that is: (1−ε)ϕ" ϕ+C for some constantC . But this shows that ϕ is bounded, and
thus Tmin is a Kähler current with identically zero Lelong numbers. Using (i) of Theorem 2.1,
we can therefore regularize it into a Kähler form inside its cohomology class. !
Finally, we remark that a positive current with minimal singularities in a pseudo-effective class

is generally non-unique (as a current), as the example of a Kähler class already shows.

3. The divisorial Zariski decomposition

In this section X denotes a compact complex n-fold, and ω is a reference Hermitian form,
unless otherwise specified.
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3.1. Minimal multiplicities and non-nef locus

When α ∈ H1,1

∂∂
(X,R) is a pseudo-effective class, we want to introduceminimal multiplicities

ν(α, x), which measure the obstruction to the numerical effectivity of α. For each ε > 0, let
Tmin,ε = Tmin,ε(α) be a current with minimal singularities in α[−εω] (cf. Section 2.8 for the
notation). We then introduce the following

DEFINITION 3.1 (Minimal multiplicities). – The minimal multiplicity at x∈ X of the pseudo-
effective class α ∈ H1,1

∂∂
(X,R) is defined as

ν(α, x) := sup
ε>0

ν(Tmin,ε, x).

The commensurability of any two Hermitian forms shows that the definition does not depend
on ω. Furthermore, we do have ν(α, x) < +∞, since trivially ν(α, x) " ν(T,x) if T is any
closed positive current in α. When D is a prime divisor, we define the generic minimal
multiplicity of α alongD as

ν(α,D) := inf
{
ν(α, x), x ∈D

}
.

We then have ν(α,D) = supε>0 ν(Tmin,ε,D), and ν(α,D) = ν(α, x) for the very general
x∈ D.

PROPOSITION 3.2. – Let α ∈H1,1

∂∂
(X,R) be a pseudo-effective class.

(i) α is nef iff ν(α, x) = 0 for every x∈ X .
(ii) α is modified nef iff ν(α,D) = 0 for every prime D.

Proof. – If α is nef (respectively modified nef), α[−εω] contains by definition a smooth form
(respectively a current Tε with ν(Tε,D) = 0 for every primeD). We thus have ν(Tmin,ε, x) = 0
(respectively ν(Tmin,ε,D) = 0) for every ε> 0, and thus ν(α, x) = 0 (respectively ν(α,D) = 0).
Conversely, if ν(α, x) = 0 for every x ∈ X , applying (i) of Theorem 2.1 to Tmin,ε, we see that
ν(Tmin,ε, x) = 0 for every x ∈ X implies that α[−ε′ω] contains a smooth form for every ε′ > ε,
and α is thus nef. Finally, if ν(α,D) = 0 for every primeD, we have ν(Tmin,ε,D) = 0 for every
primeD. Since Tmin,ε lies in α[−εω], α is modified nef by the very definition. !
In view of Proposition 3.2, we propose the

DEFINITION 3.3 (Non-nef locus). – The non-nef locus of a pseudo-effective class
α ∈ H1,1

∂∂
(X,R) is defined by

Enn(α) :=
{
x ∈ X,ν(α, x) > 0

}
.

Recall that the set E+(T ) := {x ∈ X,ν(T,x) > 0} is a countable union of closed analytic
subsets for every closed almost positive (1,1)-current T . Since Enn(α) =

⋃
ε>0 E+(Tmin,ε),

the non-nef locus is also a countable union of closed analytic subsets. We do not claim however
that each super-level set {x ∈X,ν(α, x) ! c} (c > 0) is an analytic subset (this is most certainly
not true in general). Using results of M. Paun, Proposition 3.2 generalizes as follows:

PROPOSITION 3.4. – A pseudo-effective class α is nef iff α|Y is pseudo-effective for every
irreducible analytic subset Y ⊂Enn(α).

Proof. – Paun’s result [17] states that a pseudo-effective class is nef iff its restriction to every
irreducible analytic subset is nef. It is thus enough to notice the following fact: if Y ⊂ X is an
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analytic subset not entirely contained in the non-nef locus of α, then α|Y is pseudo-effective.
This is proved exactly as Proposition 2.4, replacing D by Y there. !
We now investigate the continuity of α "→ ν(α, x) and ν(α,D):

PROPOSITION 3.5. – For every x ∈ X and every prime D, the maps E → R α "→ ν(α, x)
and ν(α,D) are convex, homogeneous. They are continuous on the interior E0, and lower semi-
continuous on the whole of E .

Proof. – Let α, β be two pseudo-effective classes. If Tmin,ε(α) and Tmin,ε(β) are currents with
minimal singularities in α[−εω] and β[−εω] respectively, then Tmin,ε(α) + Tmin,ε(α) belongs
to (α+ β)[−2εω], thus

ν
(
Tmin,2ε(α+ β), x

)
" ν

(
Tmin,ε(α), x

)
+ ν

(
Tmin,ε(β), x

)
" ν(α, x) + ν(β, x).

We infer from this ν(α + β, x) " ν(α, x) + ν(β, x), and a similar sub-additivity property for
ν(·,D) is obtained along the same lines. Since the homogeneity of our two maps is obvious, the
convexity also follows.
The quotient map θ "→ {θ} from the Fréchet space of closed smooth real (1,1)-forms to

H1,1

∂∂
(X,R) is surjective, thus open. If αk ∈ H1,1

∂∂
(X,R) is a sequence of pseudo-effective

classes converging to α and ε > 0 is given, we can thus find a smooth form θk ∈ α − αk for
each k big enough such that −εω " θk " εω. The current Tmin,ε(αk)+ θk then lies in α[−2εω],
and thus ν(Tmin,2ε(α), x) " ν(Tmin,ε(αk), x) " ν(αk, x), for each k big enough. We infer from
this that ν(Tmin,2ε(α), x) " lim infk→∞ ν(αk, x) for each ε> 0, hence

ν(α, x) " lim inf
k→∞

ν(αk, x),

by taking the supremum of the left hand side for ε> 0. This means that α "→ ν(α, x) is lower
semi-continuous, and similarly for ν(α,D), just replacing x by D in the above proof.
Finally, the restrictions of our maps to E0 are continuous as any convexmap on an open convex

subset of a finite dimensional vector space is. !
PROPOSITION 3.6. – Let α ∈ H1,1

∂∂
(X,R) be a pseudo-effective class, and Tmin be a positive

current with minimal singularities in α.
(i)We always have ν(α, x) " ν(Tmin, x) and ν(α,D) " ν(Tmin,D).
(ii)When α is furthermore big, we have ν(α, x) = ν(Tmin, x) and ν(α,D) = ν(Tmin,D).

Proof. – Since Tmin belongs to α[−εω] for every ε > 0, ν(α, x) " ν(Tmin, x) follows for
every x ∈ X , for any pseudo-effective class α. If α is furthermore big, we can choose a
Kähler current T in α with T ! ω for some Hermitian form ω. If Tmin,ε is a current with
minimal singularities in α[−εω], then (1 − ε)Tmin,ε + εT is a positive current in α, and thus
ν((1− ε)Tmin,ε + εT,x) ! ν(Tmin, x) by minimality of Tmin, from which we infer

(1− ε)ν(α, x) + εν(T,x) ! ν(Tmin, x).

We thus get the converse inequality ν(α, x) ! ν(Tmin, x) by letting ε→ 0. The case of ν(α,D)
is similar. !

3.2. Definition of the divisorial Zariski decomposition

Let α ∈ H1,1

∂∂
(X,R) be again a pseudo-effective class, and choose a positive current

with minimal singularities Tmin in α. Since ν(α,D) " ν(Tmin,D) for every prime D by
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Proposition 3.8, the series of currents
∑
ν(α,D)[D] is convergent, since it is dominated by∑

ν(Tmin,D)[D].

DEFINITION 3.7 (Divisorial Zariski decomposition). – The negative part of a pseudo-effective
class α ∈ H1,1

∂∂
(X,R) is defined as N(α) :=

∑
ν(α,D)[D]. The Zariski projection of α is

Z(α) := α − {N(α)}. We call the decomposition α = Z(α) + {N(α)} the divisorial Zariski
decomposition of α.

It is certainly highly desirable that the negative part N(α) of a pseudo-effective class be a
divisor, i.e. that ν(α,D) = 0 for almost every prime D. We will see in Section 3.3 that it is
indeed the case. For the time being, we concentrate on the Zariski projection, which we see as a
map Z :E → E .

PROPOSITION 3.8. – Let α ∈H1,1

∂∂
(X,R) be a pseudo-effective class. Then:

(i) Its Zariski projection Z(α) is a modified nef class.
(ii)We have Z(α) = α iff α is modified nef.
(iii) Z(α) is big iff α is.
(iv) If α is not modified nef, then Z(α) belongs to the boundary ∂MN of the modified nef

cone.

Proof. – (i) Let Tmin,ε be as before a current with minimal singularities in α[−εω],
and consider its Siu decomposition Tmin,ε = Rε +

∑
ν(Tmin,ε,D)[D]. First, we claim that

Nε :=
∑
ν(Tmin,ε,D)[D] converges weakly to N(α) as ε goes to 0. For any smooth form θ of

bidimension (1,1), θ+ Cωn−1 is a positive form for C > 0 big enough. Every such θ is thus the
difference of two positive forms, and it is enough to show that

∫
Nε ∧ θ→

∫
N(α)∧ θ for every

smooth positive form θ. But
∫

Nε ∧ θ =
∑
ν(Tmin,ε,D)

∫
[D] ∧ θ is a convergent series whose

general term ν(Tmin,ε,D)
∫
[D]∧θ converges to ν(α,D)

∫
[D]∧θ as ε→ 0 and is dominated by

ν(Tmin,D)
∫
[D] ∧ θ; since

∑
ν(Tmin,D)

∫
[D] ∧ θ "

∫
Tmin ∧ θ converges, our claim follows

by dominated convergence.
In particular, the class {Nε − N(α)} converges to zero. Since the map θ "→ {θ} is open on

the space of smooth closed (1,1)-form, we can find a sequence θk ! −δkω of smooth forms
with θk ∈ {Nεk − N(α)} for some sequences εk - δk going to zero. It remains to notice that
Tk := Rεk + θk is a current in Z(α) with Tk ! −(εk + δk)ω and ν(Tk,D) = 0 for every prime
D. Since εk + δk converges to zero, Z(α) is modified nef by definition.
(ii) Since N(α) =

∑
ν(α,D)[D] is a closed positive (1,1)-current, it is zero iff its class

{N(α)} ∈H1,1

∂∂
(X,R) is. The assertion is thus just a reformulation of (ii) in Proposition 3.2.

(iii) If Z(α) is big, then of course α = Z(α) + {N(α)} is also big, as the sum of a
big class and a pseudo-effective one. If conversely α is big, it contains a Kähler current T ,
whose Siu decomposition we write T = R +

∑
ν(T,D)[D]. Note that R is a Kähler current

since T is; since T belongs to α[−εω] for every ε > 0, we have ν(T,D) ! ν(α,D), and
R +

∑
(ν(T,D)− ν(α,D))[D] is thus a Kähler current in Z(α) as desired.

(iv) Assume that Z(α) belongs to the interior MN 0 of the modified nef cone. By
Proposition 3.2, we have to see that ν(α,D) = 0 for every prime D. Suppose therefore that
ν(α,D0) > 0 for some prime D0. The class Z(α) + ε{D0} has to lie in the open coneMN 0

for ε small enough, thus we can write for 0 < ε< ν(α,D0):

α=
(
Z(α) + ε{D0}

)
+

(
ν(α,D0)− ε

)
{D0}+

{ ∑

D &=D0

ν(α,D)D
}

.
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We deduce that

ν(α,D0) " ν
(
Z(α) + ε{D0},D0

)
+

(
ν(α,D0)− ε

)
.

Indeed, the class {D0} (respectively {
∑

D &=D0
ν(α,D)D}) has minimal multiplicity " 1 (re-

spectively 0) along D0, because so is the generic Lelong numbers of the positive current [D0]
(respectively

∑
D &=D0

ν(α,D)[D]) along D0. Now, we also have ν(Z(α) + ε{D0},D0) = 0
since Z(α) + ε{D0} is modified nef by assumption, hence the contradiction
ν(α,D0) " ν(α,D0)− ε. !
PROPOSITION 3.9. – (i) The map α "→ N(α) is convex and homogeneous on E . It is

continuous on the interior of the pseudo-effective cone.
(ii) The Zariski projection Z :E →MN is concave and homogeneous. It is continuous on the

interior of E .

Proof. –We have already noticed that ν(α + β,D) " ν(α,D) + ν(β,D) for every prime D
and every two pseudo-effective classes α, β. This implies that N(α + β) " N(α) + N(β).
Homogeneity is obvious, and the first assertion follows. To show continuity, it is enough as
above to show that α "→

∫
N(α)∧ θ is continuous on E0 for every positive form θ. But the latter

map is convex, and thus continuous on E0 as any convex map on an open convex subset of a
finite dimensional vector space is. (ii) is now an obvious consequence of (i) and the relation
Z(α) = α− {N(α)}. !

3.3. Negative part and exceptional divisors

IfA = D1, . . . ,Dr is a finite family of prime divisors, we denote by V+(A) ⊂ H1,1

∂∂
(X,R) the

closed convex cone generated by the classes {D1}, . . . ,{Dr}. Every element of V+(A) writes
α= {E} for some effective R-divisor supported by the Dj’s. Since [E] is a positive current in
α, we have N(α) " E, and thus Z(α) can be represented by the effectiveR-divisor E −N(α),
which is also supported by the Dj ’s. We conclude: V+(A) is stable under the Zariski projection
Z . In particular, we have Z(V+(A)) = 0 iff V+(A) meetsMN at 0 only.

DEFINITION 3.10 (Exceptional divisors). – (i) A family D1, . . . ,Dq of prime divisors is said
to be an exceptional family iff the convex cone generated by their cohomology classes meets the
modified nef coneMN at 0 only.
(ii) An effective R-divisor E is said to be exceptional iff its prime components constitute an

exceptional family.

We have the following

PROPOSITION 3.11. – (i) An effectiveR-divisor E is exceptional iff Z({E}) = 0.
(ii) If E is an exceptional effectiveR-divisor, we have E = N({E}).
(iii) If D1, . . . ,Dq is an exceptional family of primes, then their classes {D1}, . . . ,{Dq} are

linearly independent in NS(X)R ⊂ H1,1

∂∂
(X,R). In particular, the length of the exceptional

families of primes is uniformly bounded by the Picard number ρ(X).

Proof. – (i) Let A = D1, . . . ,Dr denote the family of primes supporting E, and choose a
Gauduchon metric ω (cf. Section 2.2.4). Since ωn−1 is ∂∂-closed,

∫
Z(α) ∧ ωn−1 is well

defined, and defines a map E → R α "→
∫

Z(α) ∧ ωn−1, which is concave and homogeneous
(by Proposition 3.11), and everywhere non-negative. The restriction of this map to V+(A) shares
the same properties, and the class α := {E} is a point in the relative interior of the convex cone
V+(A) at which

∫
Z(α) ∧ ωn−1 = 0. By concavity, we thus get

∫
Z(α) ∧ ωn−1 = 0 for every

α ∈ V+(A), and thus Z(α) = 0 for every such α ∈ V+(A).
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(ii) When E is exceptional, we have both E ! N({E}) (because the positive current [E] lies
in the class {E}) and {E}= {N({E})} (because Z({E}) = 0). Since a closed positive current
which yields zero in H1,1

∂∂
(X,R) is itself zero, we get the result.

(iii) Since D1, . . . ,Dq are linearly independent in Div(X)⊗R, the assertion is equivalent to
the fact that the quotient map D "→ {D} is injective on theR-vector space of divisors generated
by theDj ’s. But this is easy: if E =

∑
ajDj lies in the kernel, we can write E = E+ −E− with

E+ and E− effective such that {E+} = {E−}. By (iii), we get E+ = E−, whence E = 0. !
We state as a theorem the following important consequences of (iii):

THEOREM 3.12. – (i) For every pseudo-effective class α ∈ E , the negative part N(α) is an
exceptional effective R-divisor supported by at most ρ(X) primes.
(ii) X carries at most countably many exceptional primes.
(iii) The exceptional fiber Z−1(0) is contained in NS (X)R, and is a union of at most

countably many simplicial cones over exceptional families of primes.

Proof. – (i) We have Z(α) ! Z(Z(α)) + Z({N(α)}), and Z(Z(α)) = Z(α) by Proposi-
tion 3.10, thus Z({N(α)}) = 0. We immediately deduce from this that any family of primes
D1, . . . ,Dr such that ν(α,Dj) > 0 for every j is an exceptional family, and the assertion fol-
lows from (iii) of Proposition 3.13.
(ii) We just have to notice that D "→ {D} is injective on the set of exceptional primes, and

maps into the lattice NS (X)⊂NS(X)R.
(iii) Since {A} is a linearly independent set for every exceptional family of primes A, we

see that V+(A) =
∑

D∈A R+{D} is a simplicial cone. It remains to observe that α lies in
the exceptional fiber Z−1(0) iff α = {N(α)}, thus Z−1(0) is covered by the simplicial cones
V+(A). !
We will see in Section 4.3 that a familyD1, . . . ,Dq of primes on a surface is exceptional iff the

Gram matrix (Di ·Dj) is negative definite, i.e. iffD1, . . . ,Dq can all be blown down to points by
a modification towards an analytic surface (singular in general). On a general compact complex
n-foldX , an exceptional divisor is still very rigidly embedded inX :

PROPOSITION 3.13. – If E is an exceptional effective R-divisor, then its class {E} contains
but one positive current, which is [E]. In particular, when E is rational, its Kodaira–Iitaka
dimension κ(X,E) is zero.

Proof. – If T is a positive current in {E}, we have ν(T,D) ! ν({E},D) for every prime D.
Using the Siu decomposition of T , we thus see that T ! ∑

ν({E},D)D = N({E}) = E, since
E is exceptional. But we also have {T } = {E}, hence T = E, as was to be shown. To get the
last point, let D be an element of the linear system |kE| for some integer k > 0 such that kE is
Cartier. The positive current 1

k [D] then lies in {E}, thus we have [D] = k[E] as currents, hence
D = kE as divisors. This shows that h0(kE) = 1 for each k > 0. !

3.4. Discontinuities of the Zariski projection

It is remarkable that the Zariski projection Z is not continuous in general up to the boundary
∂E .

PROPOSITION 3.14. – If X carries infinitely many exceptional primes, then the Zariski
projection Z :E →MN is not continuous.

Proof. –We use the following
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LEMMA 3.15. – If Dk is an infinite sequence of divisors, the rays R+{Dk} ⊂E can
accumulate onMN only.

Proof. – Suppose that tk{Dk} converges to some non-zero α ∈ E (for tk > 0). For each prime
D, we then have Dk /= D and thus ν(tk{Dk},D) = tkν({Dk},D) = 0 for infinitely many
k, because the family Dk is infinite. By lower semi-continuity (Proposition 3.7) we deduce
ν(α,D) = 0 for every primeD, i.e. α is modified nef (by Proposition 3.2).
Assume now that an infinite sequence of exceptional prime divisors Dk exists. Since E has
a compact base, upon extracting a subsequence, we can assume that tk{Dk} converges to
some non-zero α ∈ E (with tk > 0 an appropriate sequence). Since Dk is exceptional, we
have Z(tk{Dk}) = 0 for every k, but Z(α) = α since α is modified nef by the above lemma.
Consequently, Z−1(0) is not closed, and Z is not continuous. !
To get an example of discontinuous Zariski projection, just takeX to be the blow-up of P2 in

at least 9 general points. Such a rational surface is known to carry countably many exceptional
curves of the first kind (cf. [13, p. 409]). Since a prime divisor C on a surface is exceptional iff
C2 < 0 (cf. Section 4.3), the set of exceptional primes onX is infinite, and we have our example.

3.5. When is a decomposition the Zariski decomposition?

Suppose that we have a decomposition α = p + {N} of a pseudo-effective class α into the
sum of a modified nef class p and the class of an effectiveR-divisorN . We want a criterion that
tells us when it is the Zariski decomposition of α. We have N(α) " N(p) + N , and N(p) = 0
since p is modified nef, thus N(α) = N happens iff Z(α) = p, and our question is equivalent to
the study of the fibers Z−1(p), with p ∈MN .
We will need the following

DEFINITION 3.16 (Non-Kähler locus). – If α ∈ H1,1

∂∂
(X,R) is a big class, we define its non-

Kähler locus as EnK(α) :=
⋂

T E+(T ) for T ranging among the Kähler currents in α.

Let us explain the terminology:

THEOREM 3.17. – Let α ∈ H1,1

∂∂
(X,R) be a big class. Then:

(i) The non-nef locus Enn(α) is contained in the non-Kähler locus EnK(α).
(ii) There exists a Kähler current with analytic singularities T in α such that

E+(T ) = EnK(α).

In particular, the non-Kähler locus EnK(α) is an analytic subset of X .
(iii) α is a Kähler class iff EnK(α) is empty. More generally, α is a Kähler class iff α|Y is a

Kähler class for every irreducible component Y of the analytic set EnK(α).

Proof. – (i) Since α is big, its non-nef locus Enn(α) is just the set {x ∈ X,ν(Tmin, x) > 0},
since we have ν(α, x) = ν(Tmin, x) in that case (cf. Proposition 3.8). For every Kähler current T
in α, we have ν(T,x) ! ν(Tmin, x) by minimality, and the inclusionEnn(α) ⊂ EnK(α) ensues.
(ii) First, we claim that given two Kähler currents T1, T2 in α, there exists a Kähler current

with analytic singularities T such that E+(T ) ⊂ E+(T1) ∩ E+(T2). Indeed, we can find ε> 0
small enough such that Tj ! εω. Our currents T1 and T2 thus belong to α[εω], and admit an
infimum T3 in that set with respect to + (cf. Section 2.8). In particular, T3 is a current in α with
T3 ! εω and ν(T3, x) = min{ν(T1, x),ν(T2, x)} for every x∈ X . By (ii) of Theorem 2.1, there
exists a Kähler current with analytic singularities T in α such that ν(T,x) " ν(T3, x) for every
x∈ X , hence E+(T )⊂ E+(T1) ∩E+(T2), and this proves the claim.
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Using the claim and (ii) of Theorem 2.1, it is easy to construct a sequenceTk of Kähler currents
with analytic singularities such that E+(Tk) is a decreasing sequence with

EnK(α) =
⋂

k

E+(Tk).

Since Tk has analytic singularities, E+(Tk) is an analytic subset, thus the decreasing sequence
E+(Tk) has to be stationary (by the strong Nötherian property), and we eventually get
EnK(α) = E+(Tk) for some k, as desired.
(iii) If α is a Kähler class, E+(ω) is empty for every Kähler form ω in α, and thus so is

EnK(α). Conversely, assume that α|Y is a Kähler class for every component Y of E+(α), and
let T be a Kähler current with analytic singularities such that E+(T ) = EnK(α). α is then a
Kähler class by Proposition 3.3 of [7]. !
We can now state the following

THEOREM 3.18. – Let p be a big and modified nef class. Then the primes D1, . . . ,Dr

contained in the non-Kähler locus EnK(p) form an exceptional family A, and the fiber of Z
above p is the simplicial cone Z−1(p) = p + V+(A). When p is an arbitrary modified nef class,
Z−1(p) is an at most countable union of simplicial cones p + V+(A), where A is an exceptional
family of primes.

Proof. – Note that, by the very definitions, for every pseudo-effective class α, the prime
components of its negative part N(α) are exactly the set A of primes D contained in the non-
nef locus Enn(α). Furthermore, Z(α) + V+(A) is entirely contained in the fiber Z−1Z(α).
Indeed, the restriction of Z to this simplicial cone is a concave map above the affine constant
map Z(α), and both coincide at the relative interior point α, thus they are equal on the whole of
Z(α) + V+(A). This already proves the last assertion.
Assume now that p is modified nef and big, and suppose first that α lies in Z−1(p). To see

that α lies in p + V+(A), we have to prove that every prime D0 with ν(α,D0) > 0 lies in
EnK(p), that is: ν(T,D0) > 0 for every Kähler current T in p. If not, choose a smooth form θ
in {D0}. Since T is a Kähler current, so is T + εθ for ε small enough. For 0 < ε < ν(α,D0)
small enough, Tε := T + εθ + (ν(α,D0) − ε)[D0] +

∑
D &=D0

ν(α,D)[D] is then a positive
current in α with ν(Tε,D0) = ν(α,D0) − ε <ν (α,D) = ν(Tmin,D0) (the last equality holds
by Proposition 3.8 because α is big since p is); this is a contradiction which proves the inclusion
Z−1(p) ⊂ p + V+(A).
In the other direction, let T be a Kähler current in p, and let T = R +

∑
ν(T,D)D be its

Siu decomposition. R is then a Kähler current with ν(R,D) = 0 for every prime D, thus its
class β := {R} is a modified Kähler class. We first claim that we have Dj ⊂ Enn(p − εβ) for
every ε> 0 small enough and every prime componentDj of the non-Kähler locus EnK(p) of p.
Indeed, since p− εβ is big for ε> 0 small enough, we have ν(p− εβ,Dj) = ν(T,Dj) if T is a
positive current with minimal singularities in p− εβ, and we have to see that ν(T,Dj) > 0. But
T + εR is a Kähler current in p, thusDj ⊂ EnK(p) ⊂ E+(T + εR) by definition, which exactly
means that ν(T + εR,Dj) > 0. The claim follows since ν(R,Dj) = 0 by construction of R.
As a consequence of this claim, each primeD1, . . . ,Dr of our family A occurs in the negative

part N(p− εβ) for ε> 0 small enough. Consequently, by the first part of the proof, the Zariski
projection of Z(p− εβ) + {E} is just Z(p− εβ) for every effectiveR-divisor E supported by
the Dj’s and every ε > 0 small enough. Since p is big, Z is continuous at p, thus Z(p − εβ)
converges to Z(p), which is just p because the latter is also modified nef. Finally, Z is also
continuous at the big class p + {E}, thus the Zariski projection of Z(p− εβ) + {E} converges
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to that of p + {E}, and thus Z(p + {E}) = p holds. This means that p + V+(A) ⊂ Z−1(p), and
concludes the proof of Theorem 3.20. !

3.6. Structure of the pseudo-effective cone

Using our constructions, we will prove the

THEOREM 3.19. – The boundary of the pseudo-effective cone is locally polyhedral away
from the modified nef cone, with extremal rays generated by (the classes of ) exceptional prime
divisors.

Proof. – This is in fact rather straightforward by now: for each primeD, the set

ED :=
{
α ∈ E ,ν(α,D) = 0

}

is a closed convex subcone of E . This follows from the fact that α "→ ν(α,D) is convex,
homogeneous, lower semi-continuous and everywhere non-negative. If α ∈ ∂E does not belong
to MN , it does not belong to ED for some prime D by Proposition 3.2. For every β ∈ E ,
we have either β ∈ ED , or D occurs in the negative part N(β). Therefore, E is generated by
R+{D} and ED , and the latter does not contain α. This means that ∂E is locally polyhedral
near α. Since ν(α,D) > 0, we also see thatD is exceptional. Finally, the extremal rays of E not
contained in MN =

⋂
D ED have to lie outside ED for some exceptional prime D, and since

E = ED + R+{D}, each such extremal ray is generated by {D} for some D. !

3.7. Volumes

Recall that the volume of a pseudo-effective class α on a compact Kähler n-fold is defined
to be the supremum v(α) of

∫
X T n

ac for T a closed positive (1,1)-current in α (cf. [2]). A class
α is big iff v(α) > 0, and the volume is a quantitative measure of its bigness. We have already
noticed that Z(α) is big iff α is; we have the following quantitative version:

PROPOSITION 3.20. – Let α be a pseudo-effective class on X compact Kähler. Then
v(Z(α)) = v(α).

The proof is in fact immediate: if T is a positive current in α, then we have T ! N(α) since
T belongs to α[−εω] for each ε> 0, and we deduce that T → T −N(α) is a bijection between
the positive currents in α and those in Z(α). It remains to notice that (T − N(α))ac = Tac to
conclude the proof.

4. Zariski decomposition on a surface and a hyper-Kähler manifold

It is known since the pioneering work of Zariski [19] that any effective divisor D on a
projective surface admits a unique Zariski decomposition D = P + N , i.e. a decomposition
into a sum ofQ-divisors P and N with the following properties:
(i) P is nef, N =

∑
ajNj is effective,

(ii) P ·N = 0,
(iii) the Gram matrix (Ni ·Nj) is negative definite.
We want to show that our divisorial Zariski decomposition indeed is a generalization of such

a Zariski decomposition on a surface.
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4.1. Notations

X will stand for a compact Kähler surface, or a compact hyper-Kähler manifold. For such an
X , we denote by q the quadratic form onH1,1(X,R) defined as follows: whenX is a surface, we
set q(α) :=

∫
α2, and whenX is hyper-Kähler, we choose a symplectic holomorphic form σ, and

let q(α) :=
∫
α2(σσ)m−1 be the usual Beauville–Bogomolov quadratic form, with σ normalized

so as to achieve q(α)m =
∫

X α
2m (with dimX = n = 2m). In both cases (H1,1(X,R), q) is

Lorentzian, i.e. it has signature (1, h1,1(X) − 1); the open cone {α ∈ H1,1(X,R), q(α) > 0}
has thus two connected components which are convex cones, and we denote by P the component
containing the Kähler cone K. We call P the positive cone (attached to the quadratic form q). In
general, given a linear form λ on H1,1(X,R), we will denote its kernel by λ⊥ and the two open
half-spaces it defines by λ>0 and λ<0. The dual C" of a convex cone C in H1,1(X,R) is seen as
a cone in H1,1(X,R), using the duality induced by q.

4.2. The dual pseudo-effective cone

In both cases, we shall prove that the modified nef cone is the dual cone to the pseudo-effective
cone.

4.2.1. The case of a surface
We suppose that X is a surface. We prove the following essentially well-known

THEOREM 4.1. – When X is a surface, the Kähler cone and the modified Kähler cone
coincide. The dual pseudo-effective cone is just the nef cone.

Proof. – If α ∈MK, it can be represented by a Kähler current with analytic singularities in
codimension 2, that is at some points x1, . . . , xr . Therefore we see that the non-Kähler locus
EnK(α) is a discrete set. Since the restriction of any class to a point is (by convention) a Kähler
class, Theorem 3.19 shows that α lies in fact in K.
Since

∫
X ω∧T is positive for every Kähler form ω and every positive current T , we of course

have K ⊂E ", and thus also N = K ⊂ E". The other inclusion is much deeper, since it is a
consequence of the Nakai–Moishezon criterion for Kähler classes on a surface, as given in [15].
Indeed, this criterion implies that a real (1,1)-class α on a Kähler surface is a nef class iff
α ·ω ! 0 for every ω ∈K and α ·C ! 0 for every irreducible curveC . Since a class in E" clearly
satisfies these conditions, we get E" ⊂N , and the proof of Theorem 4.1 is over. !
As a consequence, since K is contained in P and since P is self dual (just because q is

Lorentzian), we get dually that P ⊂ E and thus that P ⊂ E0 = B, which means the following: if
α is a real (1,1)-class with α2 > 0, then α or −α is big. This generalizes the well known case
where α is (the first Chern class of) a line bundle (whose proof is based on Riemann–Roch).

4.2.2. The hyper-Kähler case
In that case, the dual pseudo-effective cone is also equal to the modified nef cone, but the

proof uses another description, due to D. Huybrechts, of the dual pseudo-effective cone. In the
easy direction, we have:

PROPOSITION 4.2. – (i) The modified nef cone MN is contained in both the dual pseudo-
effective cone E" and the closure of the positive cone P .
(ii)We have q(D,D′) ! 0 for any two distinct prime divisors D /= D′.

Proof. – To prove (i), we only have to prove thatMK ⊂ E". Indeed,MK ∩ E" ⊂ E ∩ E" is
trivially contained in P . We pick a modified Kähler class α and a pseudo-effective class β ∈ E ,
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and choose a Kähler current T in α with analytic singularities in codimension at least 2, and a
positive current S in β. By Section 2.6, the wedge product T ∧ S is well defined as a closed
positive (2,2)-current, and lies in the class α · β. Since (σσ)m−1 is a smooth positive form of
bidimension (2,2), the integral

∫
X T ∧ S ∧ (σσ)m−1 is positive. But (σσ)m−1 is also closed,

thus we have
∫

X

T ∧ S ∧ (σσ)m−1 = α · β ·
{
(σσ)m−1

}
= q(α,β),

so we have proven that q(α,β) ! 0 as desired.
The second contention is obtained similarly, noting that {D} · {D′} contains a closed positive

(2,2)-current, which is [D ·D′], whereD ·D′ is the effective intersection cycle. !
The other direction E" ⊂ MN is much deeper. The effective 1-dimensional cycles C and

the effective divisors D define linear forms on H1,1(X,R) via the intersection form and the
Beauville–Bogomolov form q respectively, and we define a rational (respectively uniruled)
chamber of the positive cone P to be a connected component of P −

⋃
C⊥ (respectively

P −
⋃

D⊥), where C (respectively D) runs over the rational curves (respectively the uniruled
divisors). By a rational curve (respectively a uniruled divisor) we mean an effective 1-dimen-
sional cycle all of whose components are irreducible rational curves (respectively an effective
divisor all of whose components are uniruled prime divisors). The rational chamber of P cut
out by all the C>0’s (respectively D>0’s) will be called the fundamental rational chamber
(respectively the fundamental uniruled chamber). When X is a K3 surface, the rational and
uniruled chambers are the same thing and coincide with the traditional chambers in that situation.
We can now state the following fundamental result:

THEOREM 4.3 [14]. – (i) The positive cone P is contained in E .
(ii) If α ∈ P belongs to one of the rational chambers, then there exists a bimeromorphic map

f :X−→ X ′ to a hyper-Kähler X ′ such that

f"α= ω′ + {D′},

where ω′ ∈KX′ is a Kähler class and D′ is a uniruledR-divisor.
(iii) When α ∈ P lies in both the fundamental uniruled chamber and one of the rational

chambers, then no uniruled divisor D′ occurs in (ii).
(iv) The fundamental rational chamber coincides with the Kähler cone ofX .

In fact, [14] states this only for a very general element α ∈ P , but we have noticed in [1] that
the elements of the rational chambers are already very general in that respect.
In the situation (iii), α lies in f"KX′ for some bimeromorphic f :X−→ X ′ towards a hyper-

Kähler X ′. The union of such open convex cones Kf := f"KX′ is called the bimeromorphic
Kähler cone, and is denoted by BK. The union in question yields in fact a partition of BK into
open convex cones Kf (since a bimeromorphic map between minimal manifolds which sends
one Kähler class to a Kähler class is an isomorphism by a result of A. Fujiki); BK is an open
cone, but definitely not convex in general. (iii) tells us that each intersection of a rational chamber
with the fundamental uniruled chamber is contained in BK, and thus in one of the Kf ’s.
We can now describe the dual pseudo-effective cone:

PROPOSITION 4.4. – The dual pseudo-effective E" of a hyper-Kähler manifold coincides with
the modified nef coneMN .

Proof. – By Proposition 4.2, it remains to see that E" is contained in the modified nef cone
MN . By (i) of Theorem 4.3, we have E" ⊂ P , and it will thus be enough to show that an
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element of the interior of E" which belongs to one of the rational chambers lies in MN . But
an element α of the interior of E" has q(α,D) > 0 for every prime D, thus it certainly lies
in the fundamental uniruled chamber. If α lies in both the interior of E" and one of the rational
chambers, it therefore lies inKf = f"KX′ for some bimeromorphic f :X−→X ′, and it remains
to see that Kf ⊂MN . But if ω is a Kähler form on X ′, its pull-back T := f"ω can be defined
using a resolution of f , and it is easy to check that T is a Kähler current with ν(T,D) = 0 for
every primeD, since f induces an isomorphismX −A →X ′−A′ for A, A′ analytic subsets of
codimension at least 2 (this is becauseX andX ′ are minimal). Therefore, {T }= f"{ω} belongs
toMK⊂MN . !

4.3. Exceptional divisors

When X is a surface or a hyper-Kähler manifold, the fact that a family D1, . . . ,Dr of prime
divisors is exceptional can be read off its Gram matrix.

THEOREM 4.5. – A family D1, . . . ,Dr of prime divisors is exceptional iff its Gram matrix
(q(Di,Dj)) is negative definite.

Proof. – Let V (respectively V+) be the real vector space ofR-divisors (respectively effective
R-divisors) supported by theDj’s. We begin with a lemma of quadratic algebra:

LEMMA 4.6. – Assume that (V, q) is negative definite. Then every E ∈ V such that
q(E,Dj) " 0 for all j belongs to V+.

Proof. – If E ∈ V is non-positive against each Dj , we write E = E+ − E− where E+ and
E− are effective with disjoint supports. We have to prove that E− = 0, and this is equivalent
by assumption to q(E−) ! 0. But q(E−) = q(E−,E+) − q(E−,E). The first term is positive
because E+ and E− have disjoint supports, using (ii) of Proposition 4.2, whereas the second is
positive by assumption on E. !
LetD1, . . . ,Dr be primes with negative definite Gram matrix. In particular, we then have that

{V+}⊂ H1,1(X,R) meets P at 0 only. Since the modified nef coneMN is contained in P by
Proposition 4.2, {V+} a fortiorimeets the modified nef cone at 0 only, which means by definition
that D1, . . . ,Dr is an exceptional family, and this proves necessity in Theorem 4.5. In the other
direction, assume that D1, . . . ,Dr is an exceptional family of primes. We first prove that the
matrix (q(Di,Dj)) is semi-negative. If not, we find anR-divisorE in V with q(E) > 0. Writing
again E = E+ − E−, with E+ and E− two effective divisors in V+ with disjoint supports, we
have again q(E+,E−) ! 0 by (ii) of Proposition 4.2, and thus q(E+) + q(E−) ! q(E) > 0. We
may therefore assume thatE lies in V+, with q(E) > 0. But thenE or−E is big, and it has to be
E because it is already effective. Its Zariski projection Z({E}) is then non-zero since it is also
big (by Proposition 3.10), and it lies in both {V+} andMN , a contradiction.
To conclude the proof of Theorem 4.5, we may assume (by induction) that the Gram matrix

of D1, . . . ,Dr−1 is negative definite. If (V, q) is degenerate, the span V ′ of D1, . . . ,Dr−1 is
such that its orthogonal space V ′⊥ in V is equal to the null-space of V . We then decompose
Dr = E + F in the direct sum V = V ′ ⊕ V ′⊥. Since q(E,Dj) = q(Dr,Dj) ! 0 for j < r,
Lemma 4.6 yields that E " 0. Therefore, F = Dr −E lies in V+, and is certainly non-zero. We
claim that {F} is also modified nef, which will yield the expected contradiction. But F lies in the
null-space of V , and is therefore non-negative against every prime divisor D. If α is a pseudo-
effective class, we have q({F},α) = q({F},Z(α))+q(F,N(α)). The first term is positive since
Z(α) ∈MN = E", and the second one is positive because F is positive against every effective
divisor. We infer from all this that {F} lies in E" = MN , and the claim follows. !
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The theorem says in particular that a prime divisor D is negative iff q(D) < 0. On a K3
surface, an easy and well-known argument using the adjunction formula shows that the prime
divisors with negative square are necessarily smooth rational curves with square −2. In higher
dimension, we have:

PROPOSITION 4.7. – On a hyper-Kähler manifold X , the exceptional prime divisors are
uniruled.

Proof. – Since D is exceptional, it lies outside P = P", and we thus find a class α ∈P
lying in one of the rational chambers such that q(α,D) < 0. By (ii) of Theorem 4.3,
there exists a bimeromorphic map between hyper-Kähler manifolds f :X− → X ′ such that
f"α = ω′ +

∑
ajD′

j with ω′ a Kähler class, aj ! 0 and D′
j a uniruled prime divisor. Since

the quadratic form is preserved by f , we have 0 > q(α,D) = q(ω′, f"D) +
∑

ajq(D′
j , f"D),

and q(D′
j , f"D) has to be negative for some j. But this implies that the two primesD′

j and f"D
coincide, and thusD = f"D′

j is uniruled since D′
j is. !

4.4. Rationality of the Zariski decomposition

We want to prove that the divisorial Zariski decomposition is rational (whenX is a surface or
a hyper-Kähler manifold) in the sense that N(α) is a rational divisor when α is a rational class.
We first show the following characterization of the divisorial Zariski decomposition:

THEOREM 4.8. – If α ∈ H1,1(X,R) is a pseudo-effective class, its divisorial Zariski
decomposition α = Z(α) + {N(α)} is the unique orthogonal decomposition of α into the sum
of a modified nef class and the class of an exceptional effectiveR-divisor.

Proof. –We first prove uniqueness: assume that α= p + {N} is an orthogonal decomposition
with p a modified nef class andN an effective exceptionalR-divisor. We claim thatN(α) = N .
To see this, letD1, . . . ,Dr be the support ofN ; the Gram matrix (q(Di,Dj)) is negative definite
by Theorem 4.5, and p is orthogonal to each Dj because q(p,N) = 0 and q(p,Dj) ! 0 for all j
since p is a modified nef class. We have N(α) " N(p) + N and N(p) = 0 since p is modified
nef, thus N(α) " N . But N(α) − N is supported by primes D1, . . . ,Dr whose Gram matrix
is negative definite, and q(N(α) − N,Dj) = q(p,Dj)− q(Z(α),Dj) is non-positive since p is
orthogonal to Dj and Z(α) belongs toMN = E". Lemma 4.6 thus yields N(α) ! N , and the
claim follows. To prove Theorem 4.8, we will show the existence of an orthogonal decomposition
α = p + {N} with p a modified nef class and N an exceptional R-divisor. When this is done,
we must have N = N(α) by the claim, so that α = Z(α) + {N(α)} is itself an orthogonal
decomposition.

LEMMA 4.9. – A pseudo-effective class α lies in E" iff q(α,D) ! 0 for every prime D.

Proof. – If β is a pseudo-effective class, we write q(α,β) = q(α,Z(β)) + q(α,N(β)). The
first term is positive because Z(β) lies in E", and the second one is positive if q(α,D) ! 0 for
each prime D. !
LEMMA 4.10. – Let α be a pseudo-effective class and let D1, . . . ,Dr, E1, . . . ,Ep be two

families of primes such that:
(i) q(α,Dj) < 0 and q(α,Ei) " 0 for every j and i.
(ii) E1, . . . ,Er is an exceptional family.
Then the union of these two families is exceptional.

Proof. – Let F be an effective divisor supported by Dj’s and Ei’s, and assume that {F} is a
modified nef class. We have to see that F = 0. But q(α, F ) is positive since F is modified nef,
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thus we see using (i) that F is in fact supported by Ei’s, and then (ii) enables us to conclude that
F = 0 as desired. !
At this point, the argument is similar to [11]. If the pseudo-effective class α is already in E",

we trivially have our decomposition. Otherwise, consider the family A of primes D such that
q(α,D) < 0. That family is exceptional by Lemma 4.10 with E1, . . . ,Ep an empty family, thus
A is finite with negative definite Gram matrix, and is non-empty by Lemma 4.9. Let

α= α1 + {N1}

be the decomposition in the direct sum V ⊥ ⊕ V , where V ⊂ H1,1(X,R) is spanned by A.
We claim that N1 is effective and that α1 is pseudo-effective. Since q(N1,D) = q(α,D) < 0
for every D ∈ A, Lemma 4.6 yields that N1 is effective. We can also write N(α) = E + F
where E and F are effective with disjoint supports and F is supported by elements of A.
Then for every D ∈ A we have q(F − N1,D) " q(N(α) − N1,D) since E and D are
disjoint, and q(N(α) − N1,D) = q(α1,D) − q(Z(α),D) is non-positive because α1 and D
are orthogonal and Z(α) lies in E". We infer from this that N(α) ! N1 using Lemma 4.6, and
α1 = Z(α) + {N(α)−N1} is thus pseudo-effective, and this proves our claim.
If α1 lies in E", we have our decomposition by construction; otherwise, we iterate the

construction: let B be the non-empty exceptional family of primes D such that q(α1,D) < 0.
Since A is already exceptional and q(α1,D) = 0 for D ∈ A, we infer from Lemma 4.10 that the
union A1 of A and B is again an exceptional family. We decompose

α1 = α2 + {N2}

in the direct sum V ⊥
1 ⊕ V1, where V1 ⊂ H1,1(X,R) is spanned by A1. The same arguments

as above show in that case also that α2 is pseudo-effective, and also that N2 is effective (since
q(N2,D) = q(α1,D) " 0 for each D ∈ A1). But since B is non-empty, A1 is an exceptional
family strictly bigger than A. Since the length of the exceptional families is uniformly bounded
by the Picard number ρ(X) by Theorem 3.14, the iteration of the construction has to stop after
l steps, for which we get a class αl which is modified nef. The desired decomposition is then
obtained by setting p := αl andN := N1 + · · ·+Nl, which is exceptional since it is supported by
elements of A∪A1 ∪ · · ·∪Al = Al (since A ⊂A1 ⊂ · · ·⊂A1 by construction). This concludes
the proof of Theorem 4.8. !
COROLLARY 4.11 (Rationality of the Zariski decomposition). – The divisorial Zariski de-

composition is rational in case X is a surface or a hyper-Kähler manifold. In particular, when
D is a pseudo-effective divisor on X , the modified nef R-divisor P := D − N({D}) is ratio-
nal and such that the canonical inclusion of H0(X,O(kP )) in H0(X,O(kD)) is surjective for
every k such that kP is Cartier.

Proof. – If α ∈ NS(X) ⊗ Q is a rational class, N(α) is necessarily the image of α by the
orthogonal projection NS(X)⊗Q→ VQ(α), where VQ(α) is the Q-vector space generated by
the cohomology classes of the components of N(α). The latter is therefore rational. As to the
second part, let E be an element of the linear system |kD|. Since the integration current 1

k [E]
is positive and lies in {D}, we have E ! kN({D}). But this exactly means that kN({D}) is
contained in the base scheme of |kD|, as was to be shown. !
PROPOSITION 4.12 (Rationality of the volume). – If p ∈ H1,1(X,R) is a modified nef class

on X , its volume is equal to

v(p) = q(p)m =
∫

pdimX .
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In general, we have v(α) =
∫

Z(α)dimX ; in particular, the volume of a rational class is rational.

Proof. –We have already proven in Proposition 3.22 that v(α) = v(Z(α)), so only the first
assertion needs a proof. We have shown in [2] that the equality v(p) =

∫
pdimX is always true

when p is a nef class, so the contended equality holds on a surface. In the hyper-Kähler case, since
we have chosen the symplectic form σ so that q(α)m = α2m for any class α, we just have to prove
v(p) = q(p)m for p ∈ MN . The latter cone is also the closure of the bimeromorphic Kähler
cone BK, so we may assume that p lies in f"KX′ for some bimeromorphic map f :X−→ X ′

between hyper-Kähler manifolds (because both q and the volume are continuous). But since f is
an isomorphism in codimension 1, the volume is invariant under f , and so is the quadratic form
q, so we are reduced to the case where p is a Kähler class, for which the equality is always true
as we have said above. !

5. The algebraic approach

In this section, we would like to show what the constructions we have made become when
α = c1(L) is the first Chern class of a line bundle on a projective complex manifold X . The
general philosophy is that the divisorial Zariski decomposition of a big line bundle can be defined
algebraically in terms of the asymptotic linear series |kL|. When L is just pseudo-effective,
sections are of course not sufficient, but we are led back to the big case by approximating. For
those who are reluctant to assume projectivity too quickly, we remark that a compact Kähler
manifold carrying a big line bundle is automatically projective.

5.1. From sections to currents and back

Let L → X be a line bundle over the projective manifold X . Each time L has sections
σ1, . . . ,σl ∈ H0(X,L), there is a canonical way to construct a closed positive current T ∈ c1(L)
with analytic singularities as follows: choose some smooth Hermitian metric h on L, and
consider

ϕ(x) :=
1
2

log
∑

j

h
(
σj(x)

)
.

Then we define T = Θh(L)+ ddcϕ, whereΘh(L) is the first Chern form of h. One immediately
checks that T is positive and independent of the choice of h, and thus depends on the sections σj

only. T has analytic singularities exactly along the common zero-scheme A of the σj ’s, and its
Siu decomposition therefore writes T = R+D, whereD is the divisor part ofA. When (σj) is a
basis of H0(X,L), we set T|L| := T . Another way to see T|L| is as the pull-back of the Fubiny–
Study form on PH0(X,L)" = PN (the identification is determined by the choice of the basis of
H0(L)) by the rational map φ|L| :X−→PH0(X,L)". T|L| is independent of the choice of the
basis up to equivalence of singularities, and carries a great deal of information about the linear
system |L|: the singular scheme A of T|L| is the base scheme B|L| of the linear system |L|, the
Lelong number ν(T|L|, x) at x is just the so-called multiplicity of the linear system at x, which
is defined by

ν
(
|L|, x

)
:= min

{
ν(E,x),E ∈ |L|

}
.

If a modification µ : X̃ → X is chosen such that µ"|L| = |M |+ F , where M has no base-point
and F is an effective divisor, then µ"T|L| = Tµ!|L| = T|M| + F where T|M| is smooth since
|M | is generated by global sections. The so-called moving self-intersection of L, which is by
definition L[n] := Mn, is thus also equal to

∫
X(T|L|)n

ac.
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WhenL is a big line bundle, we get, for each k > 0 big enough, a positive currentTk := 1
kT|kL|

in c1(L). A result of Fujita (cf. [9]) claims that the volume v(L) is the limit of 1
kn (kL)[n], thus

we have v(L) = limk→+∞
∫

X T n
k,ac.

Finally, if Tmin is a positive current with minimal singularities in c1(L), we can choose a
singular Hermitian metric hmin on L whose curvature current is Tmin (by Section 2.4). If L is
still big and if for each k we choose the basis of H0(kL) to be orthonormal with respect to
h⊗k

min, then it can be shown that Tk → Tmin, and we will see in 5.2 that ν(Tk, x) = 1
kν(|kL|, x)

converges to ν(Tmin, x) = ν(c1(L), x). In some sense, the family Tk deriving from |kL| is
cofinite (c1(L)+,+).
It should however be stressed that T|kL| will in general not be a Kähler current, even if L is

big. Indeed, consider the pull-back L = µ"A of some ample line bundleA by a blow-up µ. Then
kL will be generated by global sections for k big enough, and T|kL| is thus smooth for such a k,
but not a Kähler current, since L is not ample and a smooth Kähler current is just a Kähler form.
Conversely, to go from currents to sections is the job of theL2 estimates for the ∂ operator, e.g.

in the form of Nadel’s vanishing theorem. Recall that the multiplier ideal sheaf I(T ) of a closed
almost positive (1,1)-current T is defined locally as follows: write T = ddcϕ locally at some
x. Then the stalk I(T )x is the set of germs of holomorphic functions at x such that |f |2e−2ϕ

is locally integrable at x. Then Nadel’s vanishing states that if T is a Kähler current in the first
Chern class c1(L) of a line bundle L, then Hq(X,O(KX + L)⊗ I(T )) = 0 for every q > 0. In
particular, if V (T ) denotes the scheme V (I(T )), then the restriction map

H0
(
X,OX(KX + L)

)
→ H0

(
V (T ),OV (T )(KX + L)

)

is surjective. This gives a tool to prove the generation of jets at some points, using the following
lemma (cf. [9]):

LEMMA 5.1 (Skoda’s lemma). – If ν(T,x) < 1, then I(T )x = Ox. If ν(T,x) ! n + s, we
have I(T )x ⊂Ms+1

x .

To illustrate how this works, let us prove the following algebraic characterization of the non-
Kähler locus:

PROPOSITION 5.2. – If L is a big line bundle, then the non-Kähler locus EnK(c1(L)) is
the intersection of the non-finite loci Σk of the rational maps φ|kL|, defined as the union of
the reduced base locus B|kL| and the set of x ∈ X − B|kL| such that the fiber through x

φ−1
|kL|(φ|kL|(x)) is positive-dimensional somewhere.

Proof. – If x1, . . . , xr ∈ X lie outside EnK(c1(L)), then we can find a Kähler current
T ∈ c1(L) with analytic singularities such that each xj lies outside the singular locus of T . The
latter being closed, there exists a neighbourhoodUj of xj such that ν(T, z) = 0 for every z ∈Uj .
We artificially force an isolated pole at each xj by setting

T̃ = T +
∑

1"j"r

ddc
(
εθj(z) log |z − xj |

)
,

where θj is a smooth cut-off function near xj , and ε > 0 is so small that T̃ is still Kähler. We
have ν(T̃ , xj) = ε, whereas ν(T̃ , z) is still zero for every z /= xj in Uj . We now choose some
smooth form τ in c1(KX), and consider the current Tk := kT̃ − τ . It lies in the first Chern class
of Lk := kL−KX , and is certainly still Kähler for k big enough. We also have ν(Tk, z) = 0 for
every z /= xj close to xj , and ν(Tk, xj) = kε. Given s1, . . . , sr, we see that, for k big enough,
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each xj will be isolated in E1(Tk), whereas I(Tk)xj ⊂Msj+1
xj , using Skoda’s lemma. Nadel’s

vanishing then implies that the global sections of kL generate sj -jets at xj for every j. This
implies that the non-finite locus Σk is contained in EnK(c1(L)).
To prove the converse inclusion, we have to find for eachm a Kähler current Tm in c1(L) with

E+(Tm)⊂ Σm. To do this, we copy the proof of Proposition 7.2 in [6]. !

LEMMA 5.3. – If L is any line bundle such that the non-finite locusΣm ofmL is distinct from
X for some m, then, for every line bundle G, the base locus of |kL−G| is contained in Σm for
k big enough.

We then take G to be ample, and set Tm := 1
k (T|kL−G| + ω) with k big enough so that

B|kL−G| ⊂ Σm and ω a Kähler form in c1(G).
To prove Lemma 5.3, note that |mL| is not empty, so we can select a modification µ : X̃ →X

such that µ"|mL| = |L̃| + F , where |L̃| is base-point free. It is immediate to check that it is
enough to prove the lemma for L̃, so we can assume from the beginning that L is base-point
free, with m = 1. We set φ := φ|L| :X → PN and Σ := Σ1. Upon adding a sufficiently ample
line bundle to G, it is also clear that we may assume G to be very ample. If x ∈ X lies outside
Σ, the fiber φ−1(φ(x)) is a finite set, so we can find a divisor D ∈ |G| which does not meet it.
Therefore we have φ(x) ∈PN −φ(D), so that for k big enough there existsH ∈ |OPN (k)| with
H ! φ"D which does not pass through φ(x). The effective divisor φ"H −D is then an element
of |kL− G| which does not pass through x. The upshot is: for every x ∈ X outside Σ, we have
x ∈ X − B|kL−G| for k big enough. By Nötherian induction, we therefore find k big enough
such that B|kL−G| is contained in Σ, as was to be shown.

5.2. Minimal Lelong numbers

When L is a big R-divisor, we denote by Lk := %kL& the round-down of kL, and by
Rk := kL−Lk the fractional part of kL. We then consider the sequence 1

kν(|Lk|, x). It is easily
seen to be subadditive, and therefore ν(||L||, x) := limk→+∞

1
kν(|kL|, x) exists. We then prove

the following

THEOREM 5.4. – If L is a big R-divisor on X and α := {L}∈NS (X)R, then

ν(α, x) = ν
(
‖L‖, x

)

for every x ∈ X .

Proof. – Let L =
∑

ajDj be the decomposition of L into its prime components. We choose
arbitrary smooth forms ηj in {Dj}, and denote by τk :=

∑
(kaj − %kaj&)ηj the corresponding

smooth form in {Rk}. Since τk has bounded coefficients, we can choose a fixed Kähler form ω
such that −ω " τk " ω for every k. If E is an effective divisor in |Lk|, then 1/k([E] + τk) is
a current in α[−1/kω], therefore 1

kν(E,x) ! ν(Tmin,1/k, x), where Tmin,1/k is a current with
minimal singularities in α[−1/kω], and this yields

lim
k→∞

1
k
ν
(
|Lk|, x

)
! lim

k→∞
ν(Tmin,1/k, x) = ν(α, x).

In the other direction, we use a related argument in [9], Theorem 1.11. The Ohsawa–Takegoshi–
Manivel L2 extension theorem says in particular that if we are given a Hermitian line bundle
(A,hA) with sufficiently positive curvature form, then for every pseudo-effective line bundleG
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and every singular Hermitian metric h onG with positive curvature current T ∈ c1(G) and every
x∈ X , the evaluation map

H0
(
X,O(G + A)⊗ I(T )

)
→Ox(G + A)⊗ I(T )x

is surjective, with an L2 estimate independent of (G,h) and x ∈ X .
We now fix a Hermitian line bundle (A,hA) with a sufficiently positive curvature form ωA to

satisfy the Ohsawa–Takegoshi theorem. We select a positive current with minimal singularities
Tmin in α, and also a Kähler current T in α, which is big by assumption; we can then
find almost pluri-subharmonic functions ϕmin and ϕ on X such that Tmin − ddcϕmin and
T − ddcϕ are smooth. We set Gk := Lk −A = kL−Rk − A = (k − k0)L + (k0L−Rk − A),
and fix k0 big enough so that k0T − ω − ωA is a Kähler current. For k ! k0, the current
Tk := (k − k0)Tmin + (k0T − τk −ωA) is then a positive current in c1(Gk), thus we can choose
for each k a smooth Hermitian metric hk on Gk such that Tk is the curvature current of the
singular Hermitian metric exp(−2(k − k0)ϕmin − 2k0ϕ)hk . Applying the Ohsawa–Takegoshi
to Gk equipped with this singular Hermitian metric, we thus get a section σ ∈ H0(X,Lk) such
that

hk

(
σ(x)

)
exp

(
−2(k − k0)ϕmin(x)− 2ϕ(x)

)
= 1

and
∫

X

hk(σ) exp
(
−2(k − k0)ϕmin − 2ϕ

)
dV " C1,

where C1 does not depend on k and x. If we choose a basis σ1, . . . ,σl of H0(X,Lk), we infer
from this that

ϕmin(x) +
1

k − k0
ϕ(x) =

1
2(k − k0)

loghk

(
σ(x)

)

" 1
2(k − k0)

log
∑

hk

(
σj(x)

)
+ C2,

where C2 does not depend on x. The latter inequality comes from the bound on the L2 norm of
σ, since the L2 norm dominates the L∞ norm. Therefore

1
k − k0

ν
(
|Lk|, x

)
" ν(ϕmin, x) +

C3

k − k0
,

where C3 is a bound on the Lelong numbers of T . If we let k →∞ in the last inequality, we get
ν(||L||, x) " ν(α, x) as desired. !

5.3. Zariski decompositions of a divisor

The usual setting for the problem of Zariski decompositions is the following: let X be a
projective manifold, and L a divisor on it. One asks when it is possible to find twoR-divisors P
and N such that:
(i) L = P + N ,
(ii) P is nef,
(iii) N is effective,
(iv)H0(X,kL) = H0(X, %kP &) for all k > 0, where the round-down %F & of anR-divisor F

is defined coefficient-wise.
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This can of course happen only if L is already pseudo-effective. When this is possible, one
says that L admits a Zariski decomposition (over R or Q, depending whether the divisors are
real or rational). We want to show that, for a big divisor L, this can be read off the negative part
N({L}).
THEOREM 5.5. – Let L be a big divisor on X , and let

N(L) := N
(
{L}

)
and P (L) := L−N(L).

Then L = P (L) + N(L) is the unique decomposition L = P + N into a modified nef R-divisor
P and an effective R-divisor N such that the canonical inclusion H0(%kP &) → H0(kL) is an
isomorphism for each k > 0.

Proof. – First, we have to check that H0(X,kL) = H0(X, %kP (L)&). If E is an effective
divisor in the linear system |kL|, we have to see that E ! 3kN(L)4. But 1

k [E] is a positive
current in {L}, thus E ! kN(L), and so E ! 3kN(L)4 since E has integer coefficients.
Conversely, assume that L = P + N is a decomposition as in Theorem 5.5. We have to show

thatN = N(L), i.e. ν({L},D) = ν(N,D) for every primeD. In view of Theorem 5.4, this will
be a consequence of the following

LEMMA 5.6. – Suppose that a big divisor L writes L = P + N , where P is an R-divisor
andN is an effective R-divisor such that H0(X,kL) = H0(X, %kP &) for every k > 0. Then we
have:
(i) If P is nef, then ν(||L||, x) = ν(N,x) for every x ∈ X .
(ii) If P is modified nef, then ν(||L||,D) = ν(N,D) for every prime D.

Proof. – The assumptionH0(X,kL) = H0(X, %kP &)means precisely that for everyE ∈ |kL|
we have E ! 3kN4, thus ν(|kL|, x) ! ∑ )kaj*

k ν(Dj , x) if we write N =
∑

ajDj . We deduce
from this the inequality limk→∞

1
kν(|kL|, x) ! ∑

ajν(Dj , x) = ν(N,x). To get the converse
inequalities, notice that

ν
(
|kL|, x

)
" ν

(
|Pk|, x

)
+ ν(kN,x)

with Pk := %kP & as before; dividing this out by k and letting k →+∞, we deduce

lim
k→∞

1
k
ν
(
|kL|, x

)
" lim

k→∞

1
k
ν(kN,x) = ν(N,x)

when P is nef, since ν({P}, x) = limk→∞
1
kν(Pk, x) is then always zero, and similarly with D

in place of x when P is modified nef (remark that P is big because L is). This concludes the
proof of Theorem 5.5. !
COROLLARY 5.7 (Cutkosky’s criterion). – Let L be a big divisor on X , and assume that

ν({L},D) is irrational for some irreducible divisor D. Then there cannot exist a modification
µ : X̃ → X such that µ"L admits a Zariski decomposition overQ.

Proof. – If a modification µ as stated exists, then the negative part N(µ"L) has to be rational
by Theorem 5.5, and we get a contradiction using the following easy

LEMMA 5.8. – Let α be a pseudo-effective class on X , and let µ : X̃ → X be a modification.
Then we have

N(α) = µ"N(µ"α).

Proof. – Very easily checked using that a modification is an isomorphism in codimen-
sion 1. !
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5.3.1. An example of Cutkosky
We propose to analyze in our setting an example due to S.D. Cutkosky [3] of a big line

bundleL on a 3-foldX whose divisorial Zariski decomposition is not rational, but whose Zariski
projection Z({L}) is nef. We start from any projective manifold Y for which NY = EY . Thus
Y might be a smooth curve or any manifold with nef tangent bundle (cf. [8]). We pick two
very ample divisorsD andH on Y , and considerX := P(O(D)⊕O(−H)), with its canonical
projection π :X → Y . If we denote by L := O(1) the canonical relatively ample line bundle on
X , then it is well known that

H1,1(X,R) = π"H1,1(Y,R)⊕RL.

Since D is ample, L is big, but it will not be nef since −H is not. We are first interested in the
divisorial Zariski decomposition of L. We have a hypersurfaceE := P(O(−H)) ⊂ X , and since
D has a section, we see that E + π"D ∈ |L|. Therefore we get N(L) " N(π"D) + E; but π"D
is nef, so has N(π"D) = 0, and we deduce N(L) " E. Consequently, N(L) = µLE for some
0 " µL " 1, and L = Z(L) + µLE. We claim that

µL = min
{
t > 0, (L− tE)|E ∈NE

}
.

First, we have L − tE = π"D + (1 − t)E, and since π"D is nef, we get that the non-nef locus
Enn(L − tE) is contained in E for 0 < t < 1. Therefore L − tE ∈NX iff (L − tE)|E ∈NE .
If this is the case, we have N(L) " N(L− tE) + tE = tE, and thus t ! µL. Conversely, since
L − µLE = Z(L) lies inMN , we get that Z(L)|E ∈ EE = NE by Proposition 2.4 (since E is
isomorphic to Y via π), and we deduce the equality. Now, notice that the projection π induces an
isomorphism E → Y such that L becomes −H and thus E|E becomes −D −H . The condition
(L− tE)|E ∈NE is turned into −H + t(D + H) ∈NY , and we get in the end

µL = min
{
t > 0,−H + t(D + H) ∈NY

}
.

The picture can be made more precise:

PROPOSITION 5.9. – (i) The nef coneNX is generated by π"NY and L + π"H .
(ii) The pseudo-effective cone EX is generated by π"NY and by E.
(iii) The only exceptional divisor on X is E, and the modified Kähler cone coincides with the

Kähler cone. The Zariski projection Z(α) of a pseudo-effective class α is thus the projection of
α on NX parallel to R+E.

Proof. – Given line bundles L1, . . . , Lr on a compact Kähler manifold Y , a class α = π"β
over

X := P(L1 ⊕ · · ·⊕Lr)

is nef (respectively pseudo-effective) iff β is. A class α = O(1) + π"β is nef iff β + Lj is nef
for all j, and α is big iff the convex cone generated by β + L1, . . . ,β + Lr meets the big cone
of Y , which condition is equivalent (by homogeneity) to: β + conv(L1, . . . , Lr) meets the big
cone; finally α is pseudo-effective iff β+ conv(L1, . . . , Lr) meets EY . In our case α= π"β+ L
is thus nef iff β − H is nef, and α is pseudo-effective iff α + [−H,D] meets NY . The latter
condition is clearly equivalent to α− D ∈NY . Now an arbitrary class α on X uniquely writes
α = tL + π"β. If α is pseudo-effective, then t ! 0 (since L is relatively ample); if t = 0, then
α ∈ π"NY . Otherwise, we may assume by homogeneity that t = 1, and thus (i) and (ii) follow
from the above discussion.
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By (ii), a pseudo-effective class α writes π"β + tE with β nef. Therefore we get N(α) " tE,
andE is thus the only exceptional divisor onX . In fact, we even haveEnn(α) ⊂ E, and thus α is
nef iff α|E is nef. In particular, we see thatMK = K as desired (use Proposition 2.4 again). !
We now assume that Y is a surface. The assumption NY = EY implies that NY = PY = EY ,

and µL is none but the least of the two roots of the quadratic polynomial in t (−H + t(D+H))2;
it will thus be irrational for most choices ofH and D (on, say, an abelian surface). This already
yields that the divisorial Zariski decomposition of the rational class c1(L) will not be rational in
general, that is, the analogue of Corollary 4.11 is not true in general on a 3-fold.
Since Z(L) is nef, the volume of L is just v(Z(L)) = Z(L)3, with

Z(L) = (1− µL)L + µLπ
"D.

The cubic intersection form is explicit onH1,1(X,R) from the relations

L3 − π"(D −H) ·L2 −D ·H ·L = 0

and π"L = 1, π"L2 = D−H , thus we can check that v(L) is an explicit polynomial of degree 3
in µL which is also irrational for most choices of D and H . We conclude: there exists a big line
bundle on a projective 3-fold with an irrational volume, by contrast with Proposition 4.12.

Appendix A. Nakayama’s algebraic approach

A.1. Algebraic minimal multiplicities

In this appendix, we will briefly survey Nakayama’s algebraic approach to the divisorial
Zariski decomposition. Consider a projective manifold X , and a big R-divisor B on it.
Denote by |B| the set of effective R-divisors which are linearly equivalent to B, in the
sense that their round-downs are linearly equivalent and their fractional part coincide, and by
|B|Q :=

⋃
k>0

1
k |kB| the set of effective R-divisors which are Q-linearly equivalent to B.

Nakayama then sets for every x∈ X :

σx(B) := inf
{
ν(D,x),D ∈ |B|Q

}
.

This is clearly homogeneous and convexwith respect toB, and is zero for every x∈ X as soon as
B is ample. Note that it is none but what we denoted by ν(||B||, x) in 5.2. Now takeB as before,
and fix an ample R-divisor A such that B − A =: C is effective. If D is numerically equivalent
to B and ε> 0 is given, we have (1 + ε)B = (B − D + εA) + D + εC , where B −D + εA is
ample, and thus (1+ε)σx(B) " σx(D)+εσx(C) by homogeneity and convexity. Letting ε go to
zero, we get σx(B) " σx(D), which shows by symmetry that σx(B) = inf{ν(D,x),D ∈ |B|R},
where |B|R is the set of effectiveR-divisors numerically equivalent toB. This argument, due to
Nakayama, shows that the minimal multiplicity σx(B) of the big R-divisor B only depends on
its numerical class, and is computed as a limit limk→+∞ ν(Bk, x) for some sequenceBk ∈ |B|R.
But the latter set is non-compact, and admits as a natural compactification the set of all closed
positive currents cohomologous to B. The limit object which computes σx(B) is then a closed
positive current with minimal singularities, and σx(B) is just the minimal multiplicity ν(α, x) we
have defined, if α := {B} is the cohomology class of B – this is the content of our Theorem 5.4.
Going back to the algebraic setting, Nakayama defines σx(D) for an arbitrary pseudo-effective

R-divisorD as the limit of σx(D + εA), where A is ample. Each of the formal properties of the
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minimal multiplicities (continuity, finiteness of the divisorial part of the non-nef locus, . . . ) are
established by Nakayama using divisors only, and then going to the limit. The crucial point, as
in the argument above, is that ampleness is a numerical property.
We will now present an algebraic characterization of the non-nef locus given in [16]. Just as a

pseudo-effective class is the numerical analogue of an effective divisor, a nef class is the analogue
of a base-point free divisor. The non-nef locus is thus a “numerical base locus”, and Nakayama
relates it to the usual base loci by proving the

THEOREM A.1. – There exists a sufficiently ample divisorA onX such that: ifD is a pseudo-
effective divisor, then its non-nef locus is the union of all the base loci of |kD + A| for k ! 0.

Nakayama’s proof uses the Kawamata–Viehweg vanishing theorem, but is most easily
explained using Nadel’s formulation: take A to be any ample divisor such that A−KX −nH is
still ample, where H is very ample. Then one can find, for every x ∈ X , a Kähler current T in
the class of A − KX with an isolated singularity at x such that ν(T,x) = n. Suppose now that
x is a nef point of D. Then one can find currents in its class which are smooth near x and with
an arbitrarily small negative part; using the current T above, we can thus find for every k > 0
a Kähler current in kD + A − KX with an isolated singularity at x of multiplicity n. Skoda’s
lemma and Nadel’s vanishing then imply that kD + A is free at x.

A.2. Two counter-examples

We now present two constructions from [16], based on the same ideas as Cutkosky’s
Example 5.3.1, which provide counter-examples to natural questions concerning Zariski
decompositions.
The first case is a discontinuous minimal multiplicity (cf. Proposition 3.5): let L be a nef line

bundle squaring to zero over a surface Y whose nef cone coincides with its positive cone (such
as an abelian surface), and set π :X = P(O ⊕O(−L)) → Y , and D0 := P(O(−L)) ⊂ X . As
in 5.3.1, one checks that if α= π"β + H is a pseudo-effective class on X , then ν(α,D0) is the
least real number t ! 0 such that β − (1 − t)L is nef. If we choose β ∈ ∂P and ε > 0, then
(β − εL)2 = −2εβ ·L " 0, and this is zero iff β is proportional to L, since L⊥ meets ∂P along
RL by the non-degeneracyof the intersection form. It follows that ν(π"L+H,D0) = 0, whereas
ν(π"β + H,D0) = 1 as soon as β ∈ ∂P is not proportional to L. In particular, α "→ ν(α,D0) is
not continuous at π"L + H .
The second example is much more important but also much more involved, and we will only

describe it. It yields a nef and big line bundle L on a 4-fold X for which no modification
µ : X̃ → X can be found so that Z(µ"L) be nef. In other words, it shows the non-existence of a
Zariski decomposition in general, even in its most optimistic form. To get this, one starts again
from a surface Y whose nef cone is the closure of P , and which also admits two ample line
bundles A1 and A2 whose cohomology classes are not proportional (for instance an abelian sur-
face with Picard number at least 2). Then one considers π :X = P(O⊕O(A1)⊕O(A2)) → Y ,
H := O(1) and a big class α= π"β + H which satisfies the following conditions:
(i) β is not nef.
(ii) β + A1 and β + A2 are nef.
As in 5.3.1, one then checks that α is nef in codimension 1 but not nef. Its non-nef locus is

V = D1 ∩ D2, with D1 = P(O ⊕O(A2)) ⊂ X and D2 = P(O ⊕O(A1)) ⊂ X . The minimal
multiplicity ν(α, x) = ν is furthermore constant for x ∈ V , equal to the least real number t ! 0
such that β + t[a1, a2] meets P . Let us add the following third requirement:
(iii) β + ν[a1, a2] is tangent to P at β + νx for some x ∈ ]a1, a2[.
In order to get a Zariski decomposition of α, the idea is to successively blow up the non-nef

loci and subtract the divisorial part at each step. Thus we set X0 := X , E0 := D1, G0 := D2
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and V0 := V . Consider the blow-up π1 :X1 → X0 along V0 with exceptional divisor E1.
Denote by G1 the strict transform of G0, which is a smooth hypersurface of X1 meeting E1

transversally along a surface V1 isomorphic to V under the projection map. Define inductively
πn :Xn → Xn−1 as the blow-up along Vn−1, with exceptional divisor En, and let Gn be
the strict transform of Gn−1, which cuts En transversally along a surface Vn isomorphic
to V by projection. At each step, set αn := Z(µ"

nαn−1), which is also equal to π"
nαn−1 −

ν(αn−1, Vn−1){En} thanks to the relation

ν(π"
nαn−1,En) = ν(αn−1, Vn−1)

(this is easy to obtain in the algebraic setting, but can also be proved in the more general analytic
setting). In other words, αn is the residual part of π"

nαn−1 once its negative divisorial part has
been subtracted. Then the main fact proved in [16] is that Vn is contained in the non-nef locus of
αn for every n, i.e. that νn := ν(αn, Vn) is positive.
We will not reproduce the proof of this fact, which is long and technical, but we will give

the proof of the following criterion from [16] which enables to conclude that there exists NO
modification µ : X̃ →X such that Z(µ"α) is nef.

LEMMA A.2. – Let πn :Xn →Xn−1 be a sequence of blow-ups with smooth 2-codimensional
centre Vn−1 ⊂ Xn−1 and exceptional divisor En ⊂ Xn, and let α0 be a big class on X0 which
is nef in codimension 1, and such that:
(i) Vn ⊂ En for each n.
(ii) Vn is contained in the non-nef locus of the strict transform αn ∈ H1,1(Xn,R) of α0 under

πn.
Then there exists no modification µ0 : X̃0 → X0 such that Z(µ"

0α0) is nef.

Proof. – Argue by contradiction. Then one can build two sequences of modifications
µn : X̃n → Xn and π̃n : X̃n → X̃n−1 such that µn−1 ◦ π̃n = πn ◦ µn. Let α̃0 := µ"

0α0 and α̃n

be the pull-back of α̃0 under the composed map X̃n → X̃0. Then the nefness of Z(α̃0) implies
that the Zariski decomposition of α̃n is just the pull-back of that of α̃0 for each n. In particular,
the number of prime divisors in the negative part of α̃n is independent of n. On the other hand,
we claim that the strict transform of En ⊂ Xn under µn is contained in the non-nef locus of α̃n,
which will imply that the number of components of its negative part is strictly increasing with n,
and will thus yield a contradiction. Actually, the claim is an immediate consequence of the fact
that En is contained in the non-nef locus of π"

nαn−1, which in turn follows from the formula

ν(π"
nαn−1,En) = ν(αn−1, Vn−1)

(cf. above). !
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