
Chapter 7
Monge–Ampère Equations
on Complex Manifolds
with Boundary

Sébastien Boucksom

Abstract We survey the proofs of two fundamental results on the resolution
of Monge–Ampère equations on complex manifolds with boundary. The first
result guarantees the existence of smooth solutions to non-degenerate com-
plex Monge–Ampère equations admitting subsolutions, it is a continuation
of results due to Caffarelli–Kohn–Nirenberg–Spruck, Guan and B�locki. The
second result shows the existence of almost C2 solutions to degenerate
complex Monge–Ampère equations admitting subsolutions, and yields as a
special case X.X.Chen’s result on the existence of almost C2 geodesics in the
space of Kähler metrics.

7.1 Introduction

Let (X,ω) be a compact Kähler manifold of complex dimension dimX =: n.
Let ω0, ω1 be two Kähler forms in the cohomology class of ω, which can be
written as ωj = ω+ ddcuj for some uj ∈ C∞(X), j = 0, 1 by the ddc-lemma.
If we let A ⊂ C be a closed annulus then the functions u0, u1 induce a
radially symmetric smooth function u on the boundary of M := X ×A such
that ω + ddcu > 0 on each X-slice. As we saw in Kolev’s lectures (cf. [Kol,
Proposition 6]) it has been observed by Semmes and Donaldson that there
exists a (smooth) geodesic

ωt = ω + ddcut, 0 ≤ t ≤ 1
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joining ω0 to ω1 in the space of Kähler metrics cohomologous to ω iff the
equations

(ω + ddcv)n+1 = 0, v|∂M = u, (7.1)

i.e. the Dirichlet problem for a degenerate complex Monge–Ampère equation
on the complex manifold with boundary M , admits a solution v ∈ C∞(M)
such that ω + ddcv is furthermore positive on X-slices in the sense that

(ω + ddcv)|X×z > 0 for each z ∈ A. (7.2)

Here ω is identified with its pull back to M , a semipositive (1, 1)-form on
which is however not a Kähler form (since it vanishes in the A-directions).

The existence of v ∈ C∞(M) satisfying both (7.1) and (7.2) is a very
difficult analytic problem. Indeed Donaldson showed in [Don02, Theorem 2]
that even for the simpler case where M = X ×D with D ⊂ C a closed disc
there always exist boundary data u ∈ C∞(∂M) with ω+ddcu > 0 on X-slices
such that no smooth solution v to both (7.1) and (7.2) exists. Note however
that the boundary data u ∈ C∞(∂M) is a priori not radially symmetric in
Donaldson’s construction.

It is easily seen that (7.1) and (7.2) imply that ω+ddcv ≥ 0 on M , i.e. v is
ω-plurisubharmonic (ω-psh for short) on the product space M = X×A. The
maximum principle for the Monge–Ampère operator shows that there exists
at most one continuous ω-psh function v on M satisfying (7.1) (in the weak
sense of Bedford–Taylor, cf. Corollary 7.7). The problem at hand therefore
splits in two parts:

1. Show that (7.1) admits a smooth ω-psh solution v ∈ C∞(M).
2. Show that this solution must satisfy ω + ddcv > 0 on X-slices.

More generally let M = X × S with S a compact Riemann surface with
boundary. Then M is a complex manifold with boundary such that ∂M is
Levi flat, and M has the property that any smooth function ϕ on ∂M such
that ω + ddcϕ > 0 on X-slices admits a smooth extension ϕ̃ to M such that
η := ω+ddcϕ̃ > 0 on M (cf. Proposition 7.10 below). Since an ω-psh function
v satisfies (7.1) iff ψ := v − ϕ̃ satisfies

(η + ddcψ)m = 0 and ψ|∂M = 0 (7.3)

we can trade the semipositive form ω for an actual Kähler form η.
We are going to present essentially self-contained proofs of the following

general results, which contain as special cases [CKNS85] and [Che00]:

Theorem A. Let (M, η) be an m-dimensional compact Kähler manifold with
boundary. Given ϕ ∈ C∞(∂M) and a smooth positive volume form μ there
exists a smooth η-psh solution ψ to the Dirichlet problem. In that case, the
solution ψ is furthermore unique.
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{

(η + ddcψ)m = μ

ψ|∂M = ϕ

iff there exists a subsolution, i.e. a smooth η-psh function ϕ̃ such that

{

(η + ddcϕ̃)m ≥ μ

ϕ̃|∂M = ϕ

Theorem B. Let (M, η) be an m-dimensional compact Kähler manifold with
boundary. Let ϕ ∈ C∞(∂M) and assume that ϕ admits a smooth η-psh
extension ϕ̃ ∈ C∞(M). Then we have:

(i) There exists a unique Lipschitz continuous η-psh function ψ such that

{

(η + ddcψ)m = 0

ψ|∂M = ϕ

(ii) If we assume furthermore that ∂M is weakly pseudoconcave then ddcψ
has L∞

loc coefficients.

See Definition 7.4 for the definition of weakly pseudoconcave in this setting.
Note that ddcψ ∈ L∞

loc is equivalent to ψ having bounded Laplacian on M
(since ψ is quasi-psh). It implies that ψ ∈ C1,α(M) for each α < 1 by usual
elliptic regularity but it is however a priori weaker than ψ ∈ C1,1(M), which
means that the full real Hessian of ψ is bounded (cf. Sect. 7.2.3).

History of the results. We claim no originality in the proofs of Theorems A
and B, which as we shall see are a combination of techniques and ideas from
[Yau78,CKNS85,Gua98,Che00,Bl09a,Bl09b,PS09]. But since the history of
these two results happens to be somewhat complicated we find it worthwhile
to discuss it here in some detail.

Let us first consider the case where M ⊂ Cm is a smooth bounded domain
(and η = ddc|z|2 for instance).

If ∂M is furthermore assumed to be strictly pseudoconvex then a
subsolution always exists (cf. Proposition 7.10) and Theorem A was proved
in that case in [CKNS85, Theorem 1.1]. A special case of [BT76] Theorem D
proves (i) of Theorem B. The solution ψ was furthermore shown in [BT76,
Theorem D] to be locally C1,1 in the interior when M is a ball (cf. [GZ09]
in this volume), and [Kry89] shows that ψ ∈ C1,1 up to the boundary
in the general case. We refer to Delarue’s lecture in this volume [Del09]
for a presentation of Krylov’s results, which rely on completely different
probabilistic tools in the setting of optimal control. It is interesting to note
that ψ ∈ C1,1(M) up to boundary is not even known for a ball in C2 using
barrier arguments.
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For a general smooth bounded domain Theorem A was obtained in [Gua98]
by improving the barrier arguments of [CKNS85], and Theorem B might
follow as well from [Kry89].

Let us now consider the case where (M, η) is an arbitrary compact Kähler
manifold with boundary. The first general results were obtained in [Che00] by
combining techniques from [Yau78] (which settled the analogue of Theorem
A when M has no boundary) and [Gua98] with a blow-up argument.

In fact [Che00] proved (ii) of Theorem B when M = X×S is a product of a
compact Kähler manifold X with a compact Riemann surface with boundary
S, but the product structure only turns out to matter near the boundary, so
that [Che00] basically contains the proof of Theorem B when ∂M is Levi flat
as was observed in [PS07, Lemma 1]. However there appears to be a small
difficulty in X.X. Chen’s argument which will be discussed in Sect. 7.3.2. This
difficulty was subsequently settled in [Bl09b], which also provided a proof of
Theorem A in the general case. We add here the minor observation that the
proof goes through in the weakly pseudoconcave case as well.

Finally part (i) of Theorem B is a direct consequence of Theorem A
combined with B�locki’s gradient estimate [Bl09a]. It is a special case of [PS09,
Theorem 2].

Nota Bene. What follows is an expanded set of notes written by Sébastien
Boucksom, after the lecture he delivered in Marseille, March 2009. A first
draft of these notes had originally been written by Benôıt Claudon and
Philippe Eyssidieux.

7.2 Preliminaries

7.2.1 Complex Manifolds with Boundary

We recall the following definitions.

Definition 7.1 A complex manifold with boundary M is a C∞-manifold
with boundary endowed with a system of coordinate patches

Ψj : Uj � {z ∈ B, rj(z) ≤ 0}

where B denotes the open unit ball in Cm, rj is a local defining function,
i.e. a smooth function on B with drj �= 0 along {rj = 0} and Ψj ◦ Ψ−1

i is
holomorphic on Ψi(Ui ∩ Uj) ∩ {ri < 0}.
The holomorphic tangent bundle of ∂M is the largest complex subbundle of
TM contained in T∂M , i.e.

T h∂M = T∂M ∩ JT∂M

where J : TM → TM denotes the complex structure of M .
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We will use the following elementary calculus lemma.

Lemma 7.2 Let r be a smooth function defined near 0 in Rd with coordinates
t1, ..., td. Assume that rtd(0) = −1 and rti(0) = 0 for all i < d. Then the
restrictions of t1, ..., td−1 to N := {r = 0} yield local coordinates on N and
for each smooth function v near 0 in Rd we have

(v|N )ti|N (0) = vti(0) + vtp(0)rti(0)

and
(v|N)ti|N tj |N (0) = vtitj (0) + vtp(0)rtitj (0)

for all i, j < d

Lemma 7.3 Let M be a complex manifold with boundary and let r be a local
defining function of ∂M . If v is a smooth function on M such that v|∂M ≡ 0
and ν is a local vector field that is normal to ∂M then we have

ddcv|Th
∂M

=
ν · v
ν · r dd

cr|Th
∂M
.

Proof. We can choose the local coordinates z1, ..., zm at a given point 0 ∈ ∂M
such that

T h∂M,0 = Vect

(

∂

∂z1
, ...,

∂

∂zm−1

)

and ν = ∂/∂xm at 0. Then the result directly follows from Lemma 7.2. �
Given an outward pointing normal ν to ∂M (i.e. ν · r > 0 along ∂M)

the Hermitian form L∂M,ν on T h∂M defined by (ν · r)−1ddcr|Th
∂M

is thus

independent of the choice of r and is called the Levi form of ∂M (with
respect to ν).

Definition 7.4 If M is a complex manifold with boundary then ∂M is said
to be weakly (resp. strictly) pseudoconcave (resp. pseudoconvex) if the Levi
form L∂M,ν of ∂M (with respect to an outward pointing normal) satisfies
L∂M,ν ≤ 0 (resp. < 0, ≥ 0, > 0).

7.2.2 Maximum Principles

We first state a simple version of the maximum principle for complex Monge–
Ampère equations.

Proposition 7.5 Let (M, η) be a compact Kähler manifold with boundary
and let ψ1, ψ2 ∈ C∞(M) be two strictly η-psh functions such that
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(i) ψ1 ≤ ψ2 on ∂M .
(ii) (η + ddcψ1)m ≥ (η + ddcψ2)m.

Then we have ψ1 ≤ ψ2 on M .

Proof. The following argument is basically due to Calabi [Cal55] (compare
also [CKNS85] Lemma 1.1, [Bl09b] Proposition 2.1). We write

0 ≤ (η + ddcψ1)m − (η + ddcψ2)m = ddc(ψ1 − ψ2) ∧ T (7.4)

with

T :=
m−1
∑

j=0

(η + ddcψ1)j ∧ (η + ddcψ2)m−1−j ,

which is a (strictly) positive form of bidegree (1, 1). We thus see that u :=
ψ2 − ψ1 satisfies Lu ≥ 0 where Lu := ddcu ∧ T is a second order elliptic
operator, and the result follows from the usual (linear) maximum principle.

In order to get uniqueness in Theorem B we prove the following version of
the comparison principle.

Proposition 7.6 Let ϕ, ψ ∈ C0(M) be two η-psh functions such that ϕ ≤ ψ
on ∂M . Then we have

∫

{ψ<ϕ}
(η + ddcϕ)m ≤

∫

{ψ<ϕ}
(η + ddcψ)m.

Here the Monge–Ampère measures are defined in the sense of Bedford–
Taylor.

Proof. Let δ > 0 and set Ω := {ψ < ϕ− δ}. For each ε > 0 set

ϕε := max(ϕ− δ, ψ + ε).

We then have ϕε = ψ + ε in a neighbourhood of ∂Ω, thus

∫

Ω

(η + ddcϕε)
m =

∫

Ω

(η + ddcψ)m.

Indeed we have ∂Ω ∩ ∂M = ∅ since ϕ ≤ ψ on ∂M so the result follows from
Stokes’ theorem since

(η + ddcϕε)
m − (η + ddcψ)m

is exact by (7.4).
On the other hand ϕε decreases to ϕ − δ as ε → 0 thus Bedford–Taylor’s

monotone continuity theorem for the Monge–Ampère operator implies that
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(η + ddcϕε)
m → (η + ddcϕ)m

in the weak topology and we get

∫

Ω

(η + ddcϕ)m ≤ lim inf
ε→0

∫

Ω

(η + ddcϕε)
m.

We have thus proved

∫

{ψ<ϕ−δ}
(η + ddcϕ)m ≤

∫

{ψ<ϕ−δ}
(η + ddcψ)m

for each δ > 0 and the result follows by monotone convergence. �
Corollary 7.7 Let ψ ∈ C0(M) be an η-psh function such that (η+ddcψ)m =
0. Then for every continuous η-psh function ϕ on M we have

sup
M

(ϕ− ψ) = sup
∂M

(ϕ− ψ).

Proof. Upon adding a constant we may assume that sup∂M (ϕ− ψ) = 0 and
we have to show that ϕ ≤ ψ. For each 0 < δ � 1 we have

∫

{ψ<(1−δ)ϕ}
(δη)m ≤

∫

{ψ<(1−δ)ϕ}
(η + (1 − δ)ddcϕ)m

≤
∫

{ψ<(1−δ)ϕ}
(η + ddcψ)m = 0

by the comparison principle, thus ψ ≥ (1 − δ)ϕ holds for each δ > 0 and the
result follows.

7.2.3 Elliptic Regularity

In this section we quickly recall some facts about second order linear elliptic
PDE’s. Let Δ be the Laplacian (with respect to a Riemannian metric g)
locally near 0 ∈ Rd and let u be a distribution near 0. By [GT83] we have

Δu ∈ Lp =⇒ u ∈ Lp2 (7.5)

for each 1 ≤ p < +∞. Here Lpk denotes the Sobolev space of functions whose
derivatives of order at most k belongs to Lp (locally). We thus have

L∞
2 = C1,1.
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Note however that (7.5) fails in general when p = ∞. Indeed the following
example can be found in [GT83]:

u(x, y) := |x||y| log(|x| + |y|)

has bounded Laplacian near 0 ∈ R2 but ∂2u
∂x∂y is not locally bounded near 0.

On the other hand we have

Lemma 7.8 Suppose that Δu ∈ L∞ locally. Then we have u ∈ C1,α for each
α < 1.

Proof. By (7.5) we have u ∈ Lp2 for each finite p ≥ 1. But

Lp2 ⊂ C1,α

for each α < 1− d/p by Sobolev’s embedding theorem and the result follows.

7.2.4 Miscellanea

Recall that the trace trβ(α) of a (1, 1)-form α with respect to a positive
(1, 1)-form β is defined as the sum of the eigenvalues of α with respect to β.
It satisfies

trβ(α) = m
α ∧ βm−1

βm

We will use the following reformulation of the arithmetico-geometric
inequality.

Proposition 7.9 Let α, β be two positive (1, 1)-forms on M . Then we have

1

m
trβ(α) ≥

(

αm

βm

)1/m

.

Finally we state a general extension result.

Proposition 7.10 Let (X,ω) be a compact Kähler manifold (without bound-
ary) and let Y be a compact complex manifold with boundary such that there
exists a smooth strictly psh function χ on Y with χ|∂Y = 0.

Then every ϕ ∈ C∞(X× ∂Y ) which is a strictly ω-psh on X-slices admits
a strictly ω-psh extension in ϕ̃ ∈ C∞(X × Y ).

Note that the condition on Y is also necessary (apply the extension property
to ϕ = 0 and X a point) and implies that ∂Y is strictly pseudoconvex.

Proof. Let U be an open neighbourhood of ∂Y in Y with a smooth retraction
ρ : U → ∂Y and let 0 ≤ ϑ ≤ 1 be a smooth function with compact support in
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U such that ϑ ≡ 1 on a neighbourhood of ∂Y . Then ψ(x, y) := ϑ(y)ϕ(x, ρ(y))
is smooth and strictly ω-psh on X-slices. Thus setting ϕ̃ := ψ + Cχ with
C � 1 yields the desired extension of ϕ.

7.3 A Priori Estimates

Let (M, η) be a compact Kähler manifold with boundary of complex
dimension m and denote by Δ the analyst’s Laplacian with respect to η
so that

Δu = trη(ddcu)

for every function u.
The following a priori estimate is the key to the proof of Theorem A.

Theorem 7.11 Let (M, η) be a compact Kähler manifold with boundary of
complex dimension m. Then for every A > 0 there exists C,α > 0 such that
the following holds: given a non-positive function F ∈ C∞(M) with

‖F‖C2(M) ≤ A

and a smooth η-psh function ψ on M with

(η + ddcψ)m = eF ηm, ψ|∂M ≡ 0

the a priori estimate ‖ψ‖C2+α(M) ≤ C holds.

7.3.1 A Series of Lemma

Let (M, η) be a compact Kähler manifold with boundary. In this whole section
we let ψ be a smooth η-psh function such that

(η + ddcψ)m = eF ηm and ψ|∂M = 0

with F ∈ C∞(M) such that

(i) −A0 ≤ F ≤ 0
(ii) supM |∇F | ≤ A1

(iii) ΔF ≥ −A2

for some given A0, A1, A2 > 0.
In this section we are going to show in a series of lemma following

[CKNS85, Gua98, Che00, Bl09b] that there exists C > 0 only depending on
A0, A1, A2 (and even only on A1, A2 when ∂M is pseudoconcave) such that
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sup
M

(|ψ| + |Δψ|) ≤ C. (7.6)

We will explain in the next section how to deduce Theorem 7.11 as a
consequence of a general result on fully non-linear second order elliptic PDE’s
([CKNS85, Theorem 1]) by adding a result of [Bl09b].

Remark 7.12 Let us fix some notation and terminology. We fix once and
for all a vector field ν on M which is outward pointing, of unit length and
orthogonal to T∂M (with respect to η) at every point of ∂M . We also fix a
finite cover of ∂M by coordinate half-balls B(α) with complex coordinates z(α)

and defining function rα for ∂M ∩ Bα such that the half-balls B′
α of radius

half that of Bα still cover ∂M . We will write as usual

ηψ := η + ddcψ

and denote by trψ and Δψ the trace and Laplacian with respect to ηψ, so that
Δψu = trψ(ddcu).

When we say for instance that a constant depends only on A0 we mean
that it only depends on A0 together with the background data η, ν and
(B(α), z(α), rα).

Remark 7.13 The following situation occurs several times below. Given
point 0 ∈ ∂M we will want to choose an adapted data B, r, z where B is a
coordinate half-ball B, r is a defining function for ∂M∩B and the coordinates
z on B are centered at 0 and satisfy

r = −xm + �
⎛

⎝

∑

1≤j,k≤m
ajkzjzk

⎞

⎠ +O
∣

∣z|3) (7.7)

near 0. We will then estimate the value at 0 of certain partial derivatives of
ψ in the z-coordinates in a way that only depends on, say, A0. In order to
ensure the uniformity with respect to the choice of the data B, r, z the latter
will implicitely have been constructed as follows. We choose α such that 0
belongs to B′

α, we let B be the translate of B′
α centered at 0 and let w be

the translate of z(α). The Taylor series expansion of r in the w-coordinates
writes

r = �
⎛

⎝

∑

1≤j≤m
cjwj +

∑

1≤j,k≤m
bjkwjwk +

∑

1≤j,k≤m
ajkwjwk

⎞

⎠ +O
(|w|3)

and we first perform a linear change of coordinates w �→ w′ to arrange that
cm = −1 and cj = 0 for j < m in the w′-coordinates, and next set
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zm := w′
m −

∑

1≤j,k≤m
bjkw

′
jw

′
k

in order to kill the bjk’s. It is now clear that any quantity which is uniform
with respect to certain derivatives in the z-coordinates of a given background
function independent of ψ will also be uniform with respect to certain
derivatives of the same function in the original coordinates z(α).

Lemma 7.14 There exists C > 0 independent of ψ such that

sup
M

|ψ| + sup
∂M

|∇ψ| ≤ C.

Proof. The inequality ψ ≥ 0 follows from the maximum principle for complex
Monge–Ampère equations (Proposition 7.5) since we have (η+ddcψ)m ≤ ηm

and ψ = 0 on ∂M (recall that we have assumed F ≤ 0).
On the other hand let h ∈ C∞(M) be the unique function on M such that

Δh = −m and h|∂M = 0.

Then
Δ(ψ − h) = Δψ +m = trη(η + ddcψ)

is non-negative and ψ − h = 0 on ∂M thus ψ ≤ h as a consequence of the
maximum principle, this time for subharmonic functions. Now 0 ≤ ψ ≤ h
and h = 0 on ∂M shows that

sup
∂M

|∇ψ| ≤ sup
∂M

|∇h|

and the result follows. �
Lemma 7.15 There exists a constant C > 0 only depending on A2 such that

sup
M

|Δψ| ≤ C(1 + sup
∂M

|Δψ|).

This result is a rather direct consequence of Yau’s estimates (compare [Che00,
Corollary 1]).

Proof. Yau’s famous pointwise inequality ([Yau78] p. 350 (2.18) and (2.20))
states that (η + ddcψ)m = eF ηm implies

eBψΔψ

(

e−Bψ(m+ Δψ)
)

≥ −Bm(m+ Δψ) +Be−F/m−1(m+ Δψ)1+1/m−1 + ΔF −B
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where B > 0 is a lower bound for the holomorphic bisectional curvature of η
and Δψ denotes the Laplacian with respect to the Kähler form η+ddcψ. Let
x0 ∈M be a point where e−Bψ(m+ Δψ) achieves its maximum. If x0 lies on
∂M then we get

sup
M

(m+ Δψ) ≤ eB(supM ψ−infM ψ) sup
∂M

(m+ Δψ),

where the oscillation supM ψ − infM ψ is bounded in terms of η by Lemma
7.14. If x0 lies in the interior of M then Yau’s inequality implies that

Bm(m+ Δψ) +B(m+ Δψ)1+1/m−1 −A2 −B ≤ 0

at x0, using that F ≤ 0. It follows that 0 < (m+ Δψ)(x0) is bounded above
in terms of B and A2 and the result follows using Lemma 7.14 again to bound
the oscillation of ψ.

Lemma 7.16 There exists ε > 0 only depending on A0 such that

(η + ddcψ)|Th
∂M

≥ εη|Th
∂M
.

When ∂M is weakly pseudoconcave we can even take ε = 1.

The first assertion was proved in [CKNS85, pp. 221–223] in the strictly
pseudoconvex case, and their argument was extended to the general case in
[Gua98, pp.694–696]. In the product case of [Che00] the trivial independence
of ε on A0 was implicit and was made explicit in the Levi flat case in [Bl09b,
Theorem 3.2’]. Here we add the easy observation that the result holds in the
weakly pseudoconcave case as well.

Proof. Let 0 ∈ ∂M and choose an adapted data B, r, z as in Remark 7.13.
We have ψ ≥ 0 by Lemma 7.14 and ψ|∂M = 0 thus ddcψ is equal to a

non-positive multiple of ddcr by Lemma 7.3 and we see that

ηψ |Th
∂M

≥ η|Th
∂M

if ddcr|Th
∂M

≤ 0, which settles the second assertion.
We now consider the first assertion and we first claim that it is enough to

show the existence of ε > 0 only depending on A0 such that

ηψ |Th
∂M

≥ εddcr|Th
∂M
. (7.8)

Indeed, Lemma 7.3 implies on the one hand that

(ηψ − η)|Th
∂M

= ddcψ|Th
∂M

=
ν · ψ
ν · r dd

cr|Th
∂M
.
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On the other hand, there exists C > 0 independent of A,A0 such that

−C ≤ ν · ψ
ν · r ≤ 0 on ∂M

by Lemma 7.14. We thus see that (7.8) implies

ηψ|Th
∂M

≥ −C−1ε(ηψ − η)|Th
∂M

and the desired result follows easily.
In order to show (7.8) it is enough to concentrate on vectors

v =
∑

j<m

vj
∂

∂zj
∈ T h∂M,0

such that
∑ |vj |2 = 1 and ddcr(v) > 0. After possibly performing a unitary

change of coordinates we may thus assume that v = ∂/∂z1, since the unitary
change of coordinates will preserve uniformity with respect to the background
data (cf. Remark 7.13).

We now follow the local barrier argument of [CKNS85, pp. 221–223] and
[Gua98, pp. 694–696].

Step 1: Choice of a Kähler potential. There exists a locally defined
smooth function τ such ddcτ = η and τ(0) = 0. As a first step we claim that
τ may be chosen so as to satisfy

τ |∂M = �
⎛

⎝

m
∑

j=2

cjz1zj

⎞

⎠ +O
(|z2|2 + ...+ |zm|2) (7.9)

for some cj ∈ C. Indeed note that we can use the restriction of
(z1, ..., zm−1, ym) to ∂M as local coordinates for the boundary. By Lemma 7.2
we have

(v|∂M )z1|∂Mzj |∂M
(0) = vz1zj (0) + δ1ja11vxm(0) (7.10)

for every j < m and every smooth function v on M , with a11 as in (7.7).
Applying (7.10) to v := xm shows that there exists b ∈ C such that

xm|∂M = a11|z1|2 + ym�(bz1) + O
(

ym|z1|2 + |z2|2 + ...+ |zm−1|2 + y2m
)

.

Since we assume a11 = (ddcr)(v) > 0 it follows that the following holds near
0 on ∂M :

(i) |z1|2 writes as the real part of a complex linear combination of zm, z1zm
and z1zm modulo O

(|z2|2 + ...+ |zm|2)
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(ii) z1|z1|2 writes as the real part of a complex linear combination of z1zm
and z1zm modulo O

(|z2|2 + ...+ |zm|2)
(iii) |z1|4, ym|z1|2 and zj |z1|2 are O

(|z2|2 + ...+ |zm|2) for j = 2, ...,m− 1.

As a consequence, Taylor series considerations show that any smooth real-
valued function v on ∂M near 0 writes as the real part of a complex linear
combination of

z1, z2, ..., zm, z
2
1 , z1z2, ..., z1zm, z1z2, ..., z1zm and z31

modulo O
(|z2|2 + ...+ |zm|2). Since we can add to τ the real part of a

holomorphic polynomial in z1, ..., zm without changing the condition ddcτ =
η, the above fact applied to v := τ |∂M shows that τ may indeed be chosen
so as to satisfy (7.9).

Step 2: Choice of a barrier function. Let us now consider the barrier
function

b(z1, ..., zm) := −ε1xm + ε2|z|2 +
1

2μ

m
∑

j=2

|cjz1 + μzj|2 (7.11)

with ε1, ε2, μ > 0 and let B ⊂ M be a coordinate half-ball centered at 0.
We are going to show that we may choose the radius α of B, ε1, ε2 and μ in
terms of A0 only such that

b ≥ τ + ψ on B. (7.12)

By (7.7) there exists C > 0 such that

|zm| ≥ xm ≥ �
⎛

⎝

∑

1≤j,k≤m
ajkzjzk

⎞

⎠ − C|z|3 on B.

Since we have |z| = α on ∂B −B ∩ ∂M and a11 > 0 we may thus shrink the
radius α of B so that there exists β > 0 with

m
∑

j=2

|zj|2 ≥ β on ∂B −B ∩ ∂M. (7.13)

On the other hand r = 0 on ∂M so there exists C > 0 such that

− ε1xm + ε2|z|2 ≥ 0 on ∂M ∩B (7.14)

as soon as ε2 ≥ Cε1.
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Having fixed such a choice of B we next claim that there exists μ > 0
independent of ψ such that for any ε1, ε2 with ε2 ≥ Cε1 we have

τ + ψ ≤ b on ∂B. (7.15)

Indeed this holds on B∩∂M by (7.9) and (7.11) since ψ|∂M = 0 and −ε1xm+
ε2|z|2 ≥ 0. On the other hand since supψ is under control by Lemma 7.14
the claim also holds on ∂B −B ∩ ∂M by (7.13).

Next we pick ε2 > 0 only depending on μ and A0 such that

(ddcb)m ≤ e−A0ηm ≤ eF ηm = (ddc(τ + ψ))m on B, (7.16)

which is possible since

⎛

⎝ddc
m
∑

j=2

|cjz1 + μzj|2
⎞

⎠

m

= 0

thus (ddcb)m = O(ε2). Finally we choose ε1 such that ε2 ≥ Cε1. By (7.15)
and (7.16) we finally get τ+ψ ≤ b on B as desired by the maximum principle
(Proposition 7.5).

Step 3: Conclusion. Since we have τ+ψ ≤ b on B and b(0) = (τ+ψ)(0) = 0
it follows that

(τ + ψ)xm(0) ≤ bxm(0) = −ε1.
On the other hand (7.9) and (7.10) yield

τz1z1(0) + τxm(0)a1 = 0,

and ψ|∂M = 0 and (7.10) similarly imply

ψz1z1(0) + ψxm(0)a1 = 0.

Putting all this together we thus obtain

ηψ(v) = (τ + ψ)z1z1(0) ≥ ε1a1 = ε1(ddcr)(v)

which shows that (7.8) holds and concludes the proof. �
Lemma 7.17 There exists C = C(A0, A1) (resp. C = C(A1) when ∂M is
weakly pseudoconcave) such that

sup
∂M

|∇2ψ| ≤ C(1 + sup
M

|∇ψ|2).

This result was proved in [CKNS85,Gua98,Che00] (see also [PS09] Lemma 1).
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Proof. Let 0 ∈ ∂M and choose adapted data B, r, z as in Remark 7.13. We
set for convenience

t1 = y1, t2 = x2, ..., t2m−1 = ym, t2m = xm.

Let D1, ..., D2m be the dual basis of

dt1, ..., dt2m−1,−dr,

so that

Dj =
∂

∂tj
− rtj
rxm

∂

∂xm
(7.17)

for j < 2m and

D2m = − 1

rxm

∂

∂xm
. (7.18)

Note that the Dj’s commute and are tangent to ∂M for j < 2m, so that we
have a trivial control on the tangent-tangent derivatives

DiDjψ(0) = 0 for i, j < 2m.

We set
K := sup

M
|∇ψ|

and note that there exists C0 > 0 only depending on r such that

|Djψ| ≤ C0K, j = 1, ..., 2m. (7.19)

In the next two steps we are going to show the existence of C = C(A1)
such that the normal-tangent derivatives of ψ satisfy

|DjD2mψ(0)| ≤ C(1 +K)

for j < 2m.
In the third step we will show how this combines with Lemma 7.16 to get

C = C(A1, A0) (resp. C = C(A1) in the weakly pseudoconcave case) such
that

|D2
2mψ(0)| ≤ C(1 +K2).

Step 1: Construction of a barrier function. As in Lemma 7.14 we let
h be the unique function on M such that h|∂M = 0 and Δh = −m and we
introduce the barrier function

b := ψ + εh− μr2
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on a coordinate half-ball B ⊂M centered at 0. We claim that we may choose
B, ε and μ independently of ψ such that

b ≥ 0 on B (7.20)

and

Δψb ≤ −1

2
trψ(η) on B. (7.21)

Since
ddc(r2) = 2rddcr + 2dr ∧ dcr

there exists C1 only depending on h and r such that

Δψb ≤ m− trψ(η) + C1(ε− 2μr) trψ(η) − 2μ trψ(dr ∧ dcr). (7.22)

Using dr �= 0 at 0 and η > 0 we may choose B small enough so that

dr ∧ dcr ∧ ηm−1 ≥ γηm

on B for some γ > 0, hence

dr ∧ dcr ∧ ηm−1 ≥ γηmψ

since
ηmψ = fηm ≤ ηm

by assumption. If we choose μ > 0 such that mγμ ≥ 2 we then get

(
1

4
η + 2μdr ∧ dcr)m ≥ γ−1dr ∧ dcr ∧ ηm−1 ≥ ηmψ

and it follows from the arithmetico-geometric inequality (Proposition 7.9)
that

trψ(
1

4
η + 2μdr ∧ dcr) ≥ m.

By (7.22) we obtain

Δψb ≤ (C1(ε− 2μr) − 3/4) trψ(η).

Since r(0) = 0 we may assume upon shrinking B and choosing ε > 0 small
enough with respect to μ and C1 that C1(ε − 2μr) ≤ 1/4 on B and we get
(7.21).

Let us now show how to obtain (7.20). Since ψ ≥ 0 it is enough to guarantee

εh ≥ μr2. (7.23)
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But we have Δh = −m thus we get Δ(h+ cr) ≤ 0 on the whole of M if c > 0
is small enough and the maximum principle implies h + cr ≥ 0 on M since
(h+cr)|∂M = 0. We thus see that (7.23) holds if −cεr ≥ μr2, i.e. r ≥ −cεμ−1,
which will hold on B upon possibly shrinking it further in terms of ε, μ only.

Step 2: Bounding the normal-tangent derivatives. Let j < 2m and
consider the tangential vector field Dj. We claim that there exist μ1, μ2 only
depending on A1 such that

v := K(μ1b+ μ2|z|2) ±Djψ (7.24)

satisfies
v ≥ 0 on ∂B (7.25)

and
Δψv ≤ 0 on B. (7.26)

We first take care of (7.25). On the one hand we have Djψ = b = 0 on B∩∂M
thus v ≥ 0 on B∩∂M . On the other hand on ∂B−B∩∂M we have |z|2 = α2

where α > 0 denotes the radius of B. Since b ≥ 0 on B it follows that v ≥ 0
on ∂B as soon as Kμ2α

2 ≥ |ψuj |, which holds as soon as μ2 ≥ C0α
−2 by

(7.19).
Having fixed such a choice of μ2 we now show how to choose μ1 so that

(7.26) holds. Applying Dj to

log
(η + ddcψ)m

ηm
= F

yields
trψ(Djη +Djdd

cψ) = DjF + trη(Djη) (7.27)

where Dj acts on (1, 1)-forms componentwise (in the dzk ∧ dzl basis). Since
we have trψ(η) ≥ m by the arithmetico-geometric inequality (Proposition
7.9) we thus see that there exists C = C(A1) such that

| trψ(Djdd
cψ)| ≤ C trψ(η). (7.28)

By (7.17) we have

Dj =
∂

∂tj
+ a

∂

∂xm

with a := −rtj/rxm and an easy computation yields

ddc(Djψ) = Djdd
cψ + ψxmdd

ca+ 2da ∧ dcψxm

thus
Δψ(Djψ) = trψ(Djdd

cψ) + ψxmΔψa+ 2 trψ(da ∧ dcψxm).
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Now on the one hand one easily checks that

dcψxm = dc(i∂/∂xm
dψ) = −i∂/∂ymdcdψ = i∂/∂ymdd

cψ

where i denotes the contraction operator. On the other hand applying i∂/∂ym
to the trivial relation

da ∧ ηmψ = 0

yields
trψ

(

da ∧ (i∂/∂ymηψ)
)

= aym

so we get
trψ(da ∧ dcψxm) + trψ(da ∧ i∂/∂ymη) = aym .

Putting all this together we obtain

Δψ(Djψ) = trψ(Djdd
cψ) + ψxmΔψa+ 2aym − 2 trψ(da ∧ i∂/∂ymη)

which combines with (7.28) to yield

|Δψ(Djψ)| ≤ C(1 +K) trψ(η) (7.29)

for some C = C(A1).
By (7.21) we thus get

Δψv ≤
(

−K
2
μ1 + C(1 +K)

)

η ∧ ηm−1
ψ on B

for some C = C(A1) and we may thus choose μ1 = μ1(A1) such that (7.26)
holds.

Now (7.25) and (7.26) imply v ≥ 0 on B by the maximum principle hence
D2mv(0) ≥ 0 since v(0) = 0. In other words we have proved that

|D2mDj(0)| ≤ CK (1 +D2mb(0))

for some C = C(A1). But the gradient of b = ψ + εh− μr2 at 0 is bounded
by a constant C independent of ψ by Lemma 7.14, and we thus get

|D2mDjψ(0)| ≤ C(1 +K)

for some C = C(A1) as desired.

Step 3: Bounding the normal-normal derivatives. In this last step we
are going to show that there exists a constant C = C(A1, A0) (resp. C =
C(A1) in the weakly pseudoconcave case) such that

∣

∣D2
2mψ(0)

∣

∣ ≤ C(1 +K2).
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By the bound on DiDj(0) and D2mDjψ(0) for i, j < 2m it is equivalent to
show that

|ψzmzm(0)| ≤ C(1 + K2) (7.30)

and we already know that

∣

∣ψzjzm(0)
∣

∣ ≤ C(1 +K) (7.31)

for all j < m and C = C(A1). If we write

η = i
∑

j,k

ηjkdzj ∧ dzk

then expanding out the determinant thus yields

∣
∣det(ηjk + ψzjzk )1≤j,k≤m − (ηmm + ψzmzm) det(ηjk + ψzjzk)1≤j,k<m

∣
∣ ≤ C(1+K2)

at 0.
Now on the one hand the equation (η + ddcψ)m = fηm shows that

0 ≤ det(ηjk + ψzjzk)1≤j,k≤m ≤ det(ηjk) ≤ C.

On the other hand since T h∂M is spanned by ∂
∂zj

, j = 1, ...,m − 1 at 0

Lemma 7.16 yields ε > 0 only depending on A0 (resp. ε = 1 in the weakly
pseudoconcave case) such that

det(ηjk + ψzjzk)1≤j,k<m ≥ ε

and Lemma 7.17 follows. �
Following [Che00] Sect. 3.2 we now use a blow-up argument to show:

Lemma 7.18 There exists C > 0 only depending on A0, A1, A2 (resp.on
A1, A2 in the weakly pseudoconcave case) such that supM |∇ψ| ≤ C.

Proof. By Lemma 7.15 and Lemma 7.17 we have

sup
M

|Δψ| ≤ C(1 + sup
M

|∇ψ|2) (7.32)

for some C > 0 only depending on A0, A1, A2.
Assume by contradiction that the result fails. Then there exists sequences

xj ∈M and ψj such that

|∇ψj(xj)| = sup
M

|∇ψj | =: Cj → +∞.
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We may assume that xj → x∞ ∈ M . Pick a coordinate half-ball B centered
at x∞ and set

˜ψj(z) := ψj(xj + C−1
j z) (7.33)

which satisfies
|∇˜ψj(0)| = 1 (7.34)

and
sup
B

|Δ˜ψj | ≤ C. (7.35)

by (7.32). By (7.35) ˜ψj stays in a compact subset of C1(B), so we can assume

that ˜ψj → ρ in C1(B), and (7.34) implies |∇ρ(0)| = 1, so that ρ is non-
constant. Now there are two cases.

If x∞ ∈ ∂M then Lemma 7.14 implies ρ ≡ 0 and contradicts the fact that
ρ is non-constant.

If x∞ /∈ ∂M then (7.33) makes sense on a ball of size Cj , which shows
that ρ is actually defined on the whole of Cm. Since

ddc˜ψj ≥ C−2
j ddcψj ≥ −C−2

j η

we also see that ρ is psh on Cm. On the other hand ρ is uniformly bounded
above on Cm by Lemma 7.14, and these two properties imply that ρ is
constant (for instance because ρ extends as a psh function on the complex
projective space Pm), which contradicts again |∇ρ(0)| = 1. �

7.3.2 Proof of Theorem 7.11

By Lemma 7.15, Lemma 7.17 and Lemma 7.18 there exists C > 0 only
depending on A such that

η + ddcψ ≤ Cη.

Since we also have (η + ddcψ)m ≥ e−Aηm it follows upon possibly enlarging
C that

C−1η ≤ η + ddcψ ≤ Cη.

This means that the Monge–Ampère equation

(η + ddcψ)m = eF ηm

is elliptic with ellipticity constants that are uniform with respect A, and one
would like to conclude that the a priori bound on the complex Hessian ddcψ
should yield an a priori bound on the C2+α norm of ψ for some α > 0 by an
Evans-Krylov-type result.
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Indeed [Ev82] yields inner C2+α estimates for solutions of uniformly
elliptic fully non-linear second order PDE’s as soon as a C2 bound is available.
Similarly [CKNS85, Theorem 1] yields C2+α estimates up to the boundary in
a similar situation.

However the difficulty in our case (which seems to have been overlooked
in [Che00] Remark 1) is that we only have an a priori bound on Δψ, which
doesn’t provide a bound on the C2-norm in general.

A similar situation occurs in the proof of the Aubin–Yau theorem, i.e. for
the analogue of Theorem A when M has no boundary. The solution adopted
in [Siu87] was to reprove the Evans–Krylov theorem in the complex case,
replacing the C2-norm by a control on the complex Hessian. In principle
it should be possible to follow the same path in our situation, i.e. to try
and adapt the proof of [CKNS85, Theorem 1] to the complex case. However
another difficulty occurs since it is assumed in [CKNS85, p. 231] that M is
locally a half-plane near a given point of ∂M , which is of course trivial in the
real case but cannot hold in the complex case unless ∂M is Levi flat. We thus
see that a different strategy has to be proposed in the general case where no
assumption is made on ∂M .

The way out of this difficulty is provided by the following result ([Bl09b,
Theorem 3.4]).

Lemma 7.19 Let (M, η) be a compact Kähler manifold with boundary.
Given A > 0 there exists C > 0 such that the following holds. Let ψ be a
smooth η-psh function such that

(η + ddcψ)m = eF ηm and ψ|∂M = 0

with F ∈ C∞(M). If

(i) A−1η ≤ ηψ ≤ Aη
(ii) ‖F‖C2(M) ≤ A
(iii) ‖ψ‖C1(M) ≤ A

then
sup
M

|∇2ψ| ≤ C(1 + sup
∂M

|∇ψ|).

Proof. We only sketch the argument, referring to [Bl09b, Theorem 3.4] for
computational details.

Let first D be a local vector field on M with constant coefficients with
respect to one of the given coordinate patches and of norm (with respect to
η) at most 1. Applying D to

log
(η + ddcψ)m

ηm
= F (7.36)

yields
Δ(Dψ) ≥ −C
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with C = C(A) by (i) and (ii). Similarly, applying D2 to (7.36) implies

Δ(D2ψ) ≥ −C

with C = C(A) by (i) and (ii).
Now there exists C > 0 only depending on η such that

sup
M

|∇2ψ| ≤ C sup
M

D2ψ (7.37)

for some globally defined vector field D of length at most 1.
Somewhat tedious computations using (i) and (iii) then show that

Δ
(|∇ψ|2) ≥ C−1|∇2ψ|2 − C

and
Δ
(

D2ψ
) ≥ −C(1 + |∇2ψ|)

with C = C(A), so that

Δ
(|∇ψ|2 +D2ψ

) ≥ C−1|∇2ψ|2 − C(1 + |∇ψ|2) on M. (7.38)

Now the result follows as in Lemma 7.15: pick x0 ∈M at which |∇ψ|2 +D2ψ
achieves its maximum. If x0 belongs to ∂M then we’re done. Otherwise (7.38)
yields

|∇2ψ|(x0) ≤ C

for some C = C(A). But we have

sup
M

D2ψ ≤ D2ψ(x0) + C ≤ C(|∇2ψ(x0)| + 1)

and we infer supM |∇2ψ| ≤ C by (7.37). �

7.4 Proof of Theorem A and Theorem B

In this section we explain how to deduce Theorems A and B from the a
priori estimates obtained in the previous section. The proof relies on the
continuity method and we won’t give much details for the standard parts of
the procedure, referring for example to [Bl05b, Sect. 2] in this volume.
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7.4.1 Proof of Theorem A

Uniqueness follows from Proposition 7.5.
Upon replacing η with η + ddcϕ̃ we may assume that ϕ̃ = 0 (and in

particular ϕ = 0). If we write μ = eF ηm with F ∈ C∞(M) we thus have
F ≤ 0.

We follow the continuity method: consider the set I of all t ∈ [0, 1] such
that there exists a smooth (strictly) η-psh function ψt on M with

1. ψt|∂M = 0.
2. (η + ddcψt)

m = ((1 − t)eF + t)ηm.

Note that ψt is unique by the maximum principle (Proposition 7.5). The set
I is non-empty since it contains 1 (with ψ1 ≡ 0).

Since the linearization of the operator

ψ �→ log
(η + ddcψ)m

ηm

at a given smooth strictly η-psh function ψ is equal to Δψ , it follows
from standard elliptic regularity and the inverse function theorem applied
in appropriate Sobolev spaces that I is open.

On the other hand, the C2 norm of

log
(

(1 − t)eF + t
)

is clearly bounded independently of t thus, Theorem 7.11 yields C > 0 and
α > 0 such that ‖ψt‖C2+α(M) ≤ C for all t ∈ I. The usual compactness and
elliptic bootstrapping argument using Schauder’s estimates therefore shows
that I is closed and we conclude that I = [0, 1], so that 0 ∈ I as desired.

7.4.2 Proof of Theorem B

We use the same strategy as in [PS09] Sect. 4.2.
Uniqueness follows from Corollary 7.7. Now let ϕ̃ be the given η-psh

extension of ϕ ∈ C∞(∂M) and set ϑ := η + ddcϕ̃. Here ϑ is merely
semipositive so we cannot directly replace η with ϑ.

However we have (1 − t)ϑ+ tη > 0 for each t > 0 and

((1 − t)ϑ+ tη)m ≥ tmηm,

so by Theorem A there exists a unique smooth ((1 − t)ϑ + tη)-psh function
ψt on M such that
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((1 − t)ϑ+ tη + ddcψt)
m = tmηm and ψt|∂M = 0. (7.39)

In what follows C > 0 denotes a constant independent of t. Since (1 − t)ϑ+
tη ≤ Cη we have in particular ddcψt ≥ −Cη and we get

sup
M

|ψt| + sup
∂M

|∇ψt| ≤ C (7.40)

by replacing h with the solution of Δh = −C, h|∂M = 0 in the proof of
Lemma 7.14. Now observe that (7.39) rewrites in terms of

ρt := (1 − t)ϕ̃+ ψt

as
(η + ddcρt)

m = eFtηm and ρt|∂M = (1 − t)ϕ. (7.41)

with Ft :≡ m log t (and thus ∇Ft = ΔFt ≡ 0).
We claim that we have

sup
M

|∇ρt| ≤ C,

and
sup
M

Δρt ≤ C

when ∂M is furthermore weakly pseudoconcave.
The bound on ∇ρt follows directly from (the proof of) Blocki’s gradient

estimate ([Bl09a] Theorem 1) since ∇ρt is bounded on ∂M by (7.40).
Assume that ∂M is weakly pseudoconcave. Then (the proof of) Lemma

7.16 and Lemma 7.17 shows that

sup
∂M

Δρt ≤ C

and we infer supM Δρt ≤ C by Yau’s inequality just as in Lemma 7.15.

Let us now conclude the proof of Theorem B. Since

sup
M

(|ψt| + |∇ψt|) ≤ C

the ψt’s stay in a compact subset of C0(M). If ψ = limtj→0+ ψtj is any limit
point in C0(M) then ψ is η-psh and satisfies

(η + ddcψ)m = 0 and ψ|∂M = 0

by continuity of the Monge–Ampère operator in the topology of uniform
convergence ([BT76]). Since supM |∇ψt| ≤ C we also get that ψ is Lipschitz
continuous which proves (i) of Theorem B.
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If we assume furthermore that ∂M is weakly pseudoconcave then we have

sup
M

|Δψt| ≤ C

thus Δψ ∈ L∞.
Since ψ is η-psh, it follows that ddcψ has L∞

loc coefficients. �
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