
Chapter 4
Regularizing Properties of the Kähler–Ricci
Flow

Sébastien Boucksom and Vincent Guedj

Abstract These notes present a general existence result for degenerate parabolic
complex Monge–Ampère equations with continuous initial data, slightly general-
izing the work of Song and Tian on this topic. This result is applied to construct
a Kähler–Ricci flow on varieties with log terminal singularities, in connection
with the Minimal Model Program. The same circle of ideas is also used to
prove a regularity result for elliptic complex Monge–Ampère equations, following
Székelyhidi–Tosatti.

Introduction

As we saw in Chap. 3, each initial Kähler form !0 on a compact Kähler manifoldX
uniquely determines a solution .!t /t2Œ0;T0/ to the (unnormalized) Kähler–Ricci flow

@!t

@t
D �Ric.!t /:

Along the flow, the cohomology class Œ!t � D Œ!0� C t ŒKX� must remain in the
Kähler cone, and this is in fact the only obstruction to the existence of the flow. In
other words, the maximal existence time T0 is either infinite, in which case KX is
nef and X is thus a minimal model by definition, or T0 is finite and Œ!0� C T0ŒKX�

lies on the boundary of the Kähler cone.
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In [ST09], J. Song and G. Tian proposed to use the Minimal Model Program
(MMP for short) to continue the flow beyond time T0. At least when Œ!0� is a
rational cohomology class (and hence X is projective), the MMP allows to find a
mildly singular projective varietyX 0 birational to X such that Œ!0�C t ŒKX � induces
a Kähler class on X 0 for t > T0 sufficiently close to T0. It is therefore natural to
try and continue the flow on X 0, but new difficulties arise due to the singularities
ofX 0. After blowing-upX 0 to resolve these singularities, the problem boils down to
showing the existence of a unique solution to a certain degenerate parabolic complex
Monge–Ampère equation, whose initial data is furthermore singular.

The primary purpose of this chapter is to present a detailed account of Song and
Tian’s solution to this problem. Along the way, a regularizing property of parabolic
complex Monge–Ampère equations is exhibited, which can in turn be applied to
prove the regularity of weak solutions to certain elliptic Monge–Ampère equations,
following [SzTo11].

The chapter is organized as follows. In Sect. 4.1 we gather the main analytic
tools to be used in the proof: a Laplacian inequality, the maximum principle, and
Evans–Krylov type estimates for parabolic complex Monge–Ampère equations. In
Sect. 4.2, we first consider the simpler case of non-degenerate parabolic complex
Monge–Ampère equations involving a time-independent Kähler form. We show
that such equations smooth out continuous initial data, and give a proof of the main
result of [SzTo11]. Sections 4.3–4.5 contain the main result of the chapter, dealing
with the general case of degenerate parabolic complex Monge–Ampère equations,
basically following [ST09] (and independently of Sect. 4.2). In the final Sect. 4.6,
we apply the previous results to study the Kähler–Ricci flow on varieties with log
terminal singularities.

Nota Bene. This text is an expanded version of a series of lectures delivered by the
two authors during the second ANR-MACK meeting (8–10 June 2011, Toulouse,
France). As the audience mostly consisted of non specialists, we have tried to make
these lecture notes accessible with only few prerequisites.

4.1 An Analytic Toolbox

4.1.1 A Laplacian Inequality

If � and ! are .1; 1/-forms on a complex manifold X with ! > 0, � can be
diagonalized with respect to ! at each point ofX , with real eigenvalues �1 � : : : �
�n, and the trace of � with respect to ! is defined as tr !.�/ D P

i �i . More
invariantly, we have

tr !.�/ D n
� ^ !n�1

!n
:

The Laplacian of a function ' with respect to ! is given by
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�!' D tr !.dd
c'/:

For later use, we record an elementary eigenvalue estimate:

Lemma 4.1.1. If ! and !0 are two positive .1; 1/-forms on a complex manifold X ,
then

�
!0n

!n

� 1
n

� 1
n

tr !.!0/ �
�
!0n

!n

�

.tr !0.!//n�1 :

Proof. In terms of the eigenvalues 0 < �1 � : : : � �n of !0 with respect to ! (at a
given point of X ), the assertion writes

 
Y

i

�i

!1=n

� 1

n

X

i

�i �
 
Y

i

�i

! 
X

i

��1
i

!n�1
:

The left-hand inequality is nothing but the arithmetico-geometric inequality.
By homogeneity, we may assume that

Q
i �i D 1 in proving the right-hand

inequality. We then have

 
X

i

��1
i

!n�1
� ��1

1 : : : ��1
n�1 D �n � 1

n

X

i

�i : ut

The next result is a Laplacian inequality, which basically goes back to [Aub78,
Yau78] and is the basic tool for establishing second order a priori estimates for ellip-
tic and parabolic complex Monge–Ampère equations. In its present form, the result
is found in [Siu87, pp. 97–99]; we include a proof for the reader’s convenience.

Proposition 4.1.2. Let !;!0 be two Kähler forms on a complex manifold X . If the
holomorphic bisectional curvature of ! is bounded below by a constant B 2 R

on X , then

�!0 log tr !.!0/ � � tr !Ric.!0/
tr !.!0/

C B tr !0.!/:

Proof. Since this is a pointwise inequality, we can choose normal holomorphic
coordinates .zj / at a given point p 2 X so that ! D i

P
k;l !kld zk ^ d zl and

!0 D i
P

k;l !
0
kld zk ^ d zl satisfy

!kl D ıkl �
X

i;j

Rijklzi zj CO.jzj3/

and

!0
kl D �kıkl CO.jzj/
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near p. Here Rijkl denotes the curvature tensor of !, ıkl stands for the Kronecker
symbol, and �1 � : : : � �n are the eigenvalues of !0 with respect to ! at p.

Observe that the inverse matrix .!kl/ D .!kl/
�1 satisfies

!kl D ıkl C
X

i;j

Rijklzi zj CO.jzj3/: (4.1)

Recall also that the curvature tensor of !0 is given in the local coordinates .zi / by

R0
ijkl D �@i@j!0

kl C
X

p;q

!0
pq@i!

0
kq@j!

0
pl;

hence

R0
ijkl D �@i@j !0

kl C
X

p

��1
p @i!kp@j !

0
pl (4.2)

at p. Set u WD tr !.!0/, and note that

�!0 log u D u�1�!0 u � u�2tr !0.du ^ dcu/:

At the point p we have

�!0 u D
X

ik

��1
i @i @i .!

kk!0
kk/

and

tr !0 .du ^ dcu/ D
X

i;k;l

��1
i @i!

0
kk@i!

0
ll;

with

@i @i .!
kk!0

kk/ D �kRiikk C @i@i!
0
kk

thanks to (4.1). It follows that

�!0 log u D u�1
0

@
X

ik

��1
i �kRiikk C

X

i;k

��1
i @i @i!

0
kk

1

A

� u�2
0

@
X

i;k;l

��1
i @i!

0
kk@i!

0
ll

1

A (4.3)

holds at p. On the one hand, the assumption on the holomorphic bisectional
curvature of ! reads Riikk � B for all i; k, hence
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X

ik

��1
i �kRiikk � B

 
X

i

��1
i

! 
X

k

�k

!

D Btr !0.!/u: (4.4)

On the other hand, (4.2) yields

X

i;k

��1
i @i @i!

0
kk D �

X

i;k

��1
i R

0
iikk C

X

i;k;p

��1
i �

�1
p j@i!0

kpj2:

Note that
P

i;k �
�1
i R

0
iikk D tr !Ric.!0/, while

X

i;k;p

��1
i �

�1
p j@i!0

kpj2 �
X

i;k

��1
i �

�1
k j@i!0

kkj2 � u�1X

i;k;l

��1
i @i!

0
kk@i!

0
ll

by the Cauchy–Schwarz inequality. Combining this with (4.3) and (4.4) yields the
desired inequality. ut

4.1.2 The Maximum Principle

The following simple maximum principle (or at least its proof) will be systemati-
cally used in what follows to establish a priori estimates.

Proposition 4.1.3. Let U be a complex manifold and 0 < T � C1. Let .!t /t2Œ0;T /
be a smooth path of Kähler metrics on U , and denote by �t D tr !t dd

c the
Laplacian with respect to !t . Assume that

H 2 C0 .U � Œ0; T // \ C1 .U � .0; T //

satisfies either

�
@

@t
��t

�

H � 0;

or

@H

@t
� log

�
.!t C ddcH/n

!nt

�

on U � .0; T /. When U is non compact, assume further that H ! �1 at infinity
on U � Œ0; T 0�, for each T 0 < T . Then we have

sup
U�Œ0;T /

H D sup
U�f0g

H:



194 S. Boucksom and V. Guedj

If we replace � with � in the above differential inequalities and assume that
H ! C1 in the non compact case, then the conclusion is that

inf
U�Œ0;T /H D inf

U�f0g
H:

Proof. Upon replacing H with H � "t (resp. H C "t for the reverse inequality)
with " > 0 and then letting " ! 0, we may assume in each case that the differential
inequality is strict. It is enough to show that supU�Œ0;T 0� H D supU�f0g H for each
T 0 < T . The properness assumption guarantees that H achieves its maximum
(resp. minimum) on U � Œ0; T 0�, at some point .x0; t0/ 2 U � Œ0; T 0�, and the strict
differential inequality forces t0 D 0. Indeed, we would otherwise have ddcH � 0

at .x0; t0/, @H@t D 0 if t0 < T 0, and at least @H
@t

� 0 if t0 D T 0, which would at any
rate contradict the strict differential inequality. ut

4.1.3 Evans–Krylov Type Estimates for Parabolic Complex
Monge–Ampère Equations

Since it will play a crucial in what follows, we want to give at least a brief idea
of the proof of the next result, which says in essence that it is enough to control
the time derivative and the Laplacian to get smooth solutions to parabolic complex
Monge–Ampère equations.

Theorem 4.1.4. Let U b C
n be an open subset and T 2 .0;C1/. Suppose that

u; f 2 C1 � NU � Œ0; T �� satisfy

@u

@t
D log det

�
@2u

@zj @Nzk
�

C f; (4.5)

and assume also given a constant C > 0 such that

sup
U�.0;T /

�ˇ
ˇ
ˇ
ˇ
@u

@t

ˇ
ˇ
ˇ
ˇC j�uj

�

� C:

For each compact K b U , each " > 0 and each p 2 N, the Cp norm of u on
K � Œ"; T � can then be bounded in terms of the constantC and of the Cq norm of f
on NU � Œ0; T � for some q � p.

The first ingredient in the proof are the Schauder estimates for linear parabolic
equations. If f is a function on the cylinder Q D U � .0; T /, recall from Chap. 2
that for 0 < ˛ < 1 the parabolic ˛-Hölder norm of f on Q is defined as

kf kC˛P .Q/ WD kf kC0.Q/ C Œf �˛IQ ;
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where Œf �˛IQ denotes the ˛-Hölder seminorm with respect to the parabolic distance

dP
�
.z; t/; .z0; t 0/

� D max
˚jz � z0j; jt � t 0j1=2� :

For each k 2 N, the parabolic Ck;˛-norm is then defined as

kf k
C
k;˛
P .Q/

WD
X

jˇjC2j�k
kDˇ

xD
j
t f kC˛P .Q/:

If .�t /t2.0;T / is a path of differential forms on U , we can similarly consider Œ�t �˛;Q
and k�tkCk;˛P .Q/

, with respect to the flat metric!U onU . In our context, the parabolic

Schauder estimates can then be stated as:

Lemma 4.1.5. Let .!t /t2.0;T / be a smooth path of Kähler metrics onU , and assume
that u; f 2 C1.Q/ satisfy

�
@

@t
��t

�

u D f;

with �t the Laplacian with respect to !t , and setting as above Q D U � .0; T /.
Suppose also given C > 0 and 0 < ˛ < 1 such that onQ we have

C�1!U � !t � C!U and Œ!t �˛;Q � C:

For eachQ0 D U 0 �."; T / with U 0 b U and " 2 .0; T /, we can then find a constant
A > 0 only depending on U 0, " and C such that

kuk
C
2;˛
P .Q0/

� A
�kukC0.Q/ C kf kC˛P .Q/

�
:

This result follows for instance from [Lieb96, Theorem 4.9] (see also Chap. 2 in
the present volume). Note that these estimates are interior only with respect to the
parabolic boundary, i.e. the upper limit of the time interval is the same on both sides
of the estimates.

The second ingredient in the proof of Theorem 4.1.4 is the following version
of the Evans–Krylov estimates for parabolic complex Monge–Ampère equations.
We refer to [Gill11, Theorem 4.9] for the proof, which relies on a Harnack estimate
for linear parabolic equations.

Lemma 4.1.6. Suppose that u; f 2 C1.Q/ satisfy

@u

@t
D log det

�
@2u

@zj @Nzk
�

C f;

and assume also given a constant C > 0 such that
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C�1 �
�

@2u

@zj @Nzk
�

� C and

ˇ
ˇ
ˇ
ˇ
@f

@t

ˇ
ˇ
ˇ
ˇC jddcf j � C:

For each Q0 D U 0 � ."; T / with U 0 b U an open subset and " 2 .0; T /, we can
then find A > 0 and 0 < ˛ < 1 only depending on U 0, " and C such that

Œddcu�˛;Q0 � A:

Proof of Theorem 4.1.4. The proof consists in a standard boot-strapping argument.
Consider the path !t WD ddcut of Kähler forms on U . By assumption, we have
!t � C1!U with C1 > 0 under control. Since

!nt D exp

�
@u

@t
� f

�

!nU

where @u
@t

� f is bounded below by a constant under control thanks to the
assumptions, simple eigenvalue considerations show that !t � c!U with c > 0

under control. We can thus apply the Evans–Krylov estimates of Lemma 4.1.6 and
assume, after perhaps slightly shrinking Q, that Œ!t �˛;Q is under control for some
0 < ˛ < 1.

Now let D be any first order differential operator with constant coefficients.
Differentiating (4.5), we get

�
@

@t
��t

�

Du D Df : (4.6)

Since
ˇ
ˇ @u
@t

ˇ
ˇ C j�uj is under control, the elliptic Schauder estimates (for the flat

Laplacian �) show in particular, after perhaps shrinking U (but not the time
interval), that the C0 norm of Du is under control. By the parabolic Schauder
estimates of Lemma 4.1.5, the parabolic C2;˛ norm of Du is thus under control
as well. ApplyingD to (4.6) we find

�
@

@t
��t

�

D2u D D2f C
X

j;k

	
D!

jk
t


 @2Du

@zj @Nzk ;

where the parabolic C˛ norm of the right-hand side is under control. By the
parabolic Schauder estimates, the parabolic C2;˛ norm of D2u is in turn under
control, and iterating this procedure concludes the proof of Theorem 4.1.4. ut

4.2 Smoothing Properties of the Kähler–Ricci Flow

By analogy with the regularizing properties of the heat equation, it is natural to
expect that the Kähler–Ricci flow can be started from a singular initial data (say a
positive current, rather than a Kähler form), instantaneously smoothing out the latter.
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The goal of this section is to illustrate positively this expectation by explaining
the proof of the following result of Szekelyhidi–Tosatti [SzTo11]:

Theorem 4.2.1. Let .X; !/ be a n-dimensional compact Kähler manifold. Let F W
R �X ! R be a smooth function and assume  0 2 PSH.X; !/ is continuous1 and
satisfies

.! C ddc 0/
n D e�F. 0;x/!n:

Then  0 2 C1.X/ is smooth.

As the reader will realize later on, the proof is a good warm up, as the arguments
are similar to the ones we are going to use when proving Theorem 4.3.3.

Let us recall that such equations contain as a particular case the Kähler–Einstein
equation. Namely when the cohomology class f!g is proportional to the first Chern
class ofX ,2 �f!g D c1.X/ for some � 2 R, then the above equation is equivalent to

Ric.! C ddc 0/ D �.! C ddc 0/;

when taking

F.'; x/ D �' C h.x/

with h 2 C1.X/ such that Ric.!/ D �!Cddch. Szekelyhidi and Tosatti’s result is
thus particularly striking since the solutions to such equations, if any, are in general
not unique.3

The interest in such regularity results stems for example from the recent works
[BBGZ13, EGZ11] which provide new tools to construct weak solutions to such
complex Monge–Ampère equations.

The idea of the proof is both simple and elegant, and goes as follows: assume we
can run a complex Monge–Ampère flow

@'

@t
D log

�
.! C ddc'/n

!n

�

C F.'; x/

with an initial data '0 2 PSH.X; !/\ C0.X/ in such a way that

' 2 C0 .X � Œ0; T �/ \ C1 .X � .0; T �/ :

1The authors state their result assuming that  0 is merely bounded, but they use in an essential way
the continuity of  0, which is nevertheless known in this context by Kołodziej [Kol98].
2This of course assumes that c1.X/ has a definite sign.
3In the Kähler–Einstein Fano case, a celebrated result of Bando and Mabuchi [BM87] asserts that
any two solutions are connected by the flow of a holomorphic vector field.
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Then  0 will be a fixed point of such a flow hence if  t denotes the flow originating
from  0,  0 �  t has to be smooth!

To simplify our task, we will actually give full details only in case

F.s; x/ D �G.s/C h.x/ with s 7! G.s/ being convex

and merely briefly indicate what extra work has to be done to further establish
the most general result. Note that this particular case nevertheless covers the
Kähler–Einstein setting.

In the sequel we consider the above flow starting from a smooth initial potential
'0 and establish various a priori estimates that eventually will allow us to start from a
poorly regular initial data. We fix once and for all a finite time T > 0 (independent
of '0) such that all flows to be considered are well defined on X � Œ0; T �: it is
standard that the maximal interval of time on which such a flow is well defined can
be computed in cohomology, hence depends on the cohomology class of the initial
data rather than on the (regularity properties of the) chosen representative.

4.2.1 A Priori Estimate on 't

We consider in this section onX�Œ0; T � the complex Monge–Ampère flow .CMAF/

@'

@t
D log

�
.! C ddc'/n

!n

�

C F.'; x/

with initial data '0 2 PSH.X; !/\C1.X/. Our aim is to bound k'kL1.X�Œ0;T �/ in
terms of k'0kL1.X/ and T .

4.2.1.1 Heuristic Control

Set M.t/ D supX 't . It suffices to bound M.t/ from above, the bound from below
form.t/ WD infX 't will follow by symmetry.

Assume that we can find t 2 Œ0; T � 7! x.t/ 2 X a differentiable map such that
M.t/ D 't .x.t//. ThenM is differentiable and satisfies

M 0.t/ D @'t

@t
.x.t// � F.'t .x.t//; x.t// � F .M.t//;

where

F .s/ WD sup
x2X

F.s; x/

is a Lipschitz map.
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It follows therefore from the Cauchy–Lipschitz theory of ODE’s that M.t/ is
bounded from above on Œ0; T � in terms of T;M.0/ D supX '0 and F (hence F ).

4.2.1.2 A Precise Bound

We now would like to establish a more precise control under a simplifying
assumption:

Lemma 4.2.2. Assume that '; 2 C1 .X � Œ0; T �/ define !-psh functions 't ;  t
for all t and satisfy

@'

@t
� log

�
.! C ddc'/n

!n

�

C F.'; x/

and

@ 

@t
� log

�
.! C ddc /n

!n

�

C F. ; x/

on X � Œ0; T �, where

F.s; x/ D �s �G.s; x/ with s 7! G.s; �/ non-decreasing.

Then we have

sup
X�Œ0;T �

.' �  / � e�T maxfsup
X

.'0 �  0/; 0g:

Proof. Set u.x; t/ WD e��t .'t �  t /.x/ � "t 2 C0 .X � Œ0; T �/, where " > 0 is
fixed (arbitrary small). Let .x0; t0/ 2 X � Œ0; T � be a point at which u is maximal.

If t0 D 0, then u.x; t/ � .'0 �  0/.x0/ � supX.'0 �  0/ and we obtain the
desired upper bound by letting " > 0 decrease to zero.

Assume now that t0 > 0. Then Pu � 0 at this point, hence

0 � �" � �e��t .'t �  t/C e��t . P't � P t /:

On the other hand ddcxu � 0, hence ddcx't � ddcx t and

P't � P t � F.'t ; x/ � F. t ; x/C log

�
.! C ddc't /n

.! C ddc t /n

�

� F.'t ; x/ � F. t ; x/:

Recall now that F.s; x/ D �s �G.s; x/. Previous inequalities therefore yield

G.'t ; x/ < G. t ; x/ at point .x; t/ D .x0; t0/:
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Since s 7! G.s; �/ is assumed to be non-decreasing, we infer 't0.x0/ �  t0.x0/, so
that for all .x; t/ 2 X � Œ0; T �,

u.x; t/ � u.x0; t0/ � 0:

Letting " decrease to zero yields the second possibility for the upper bound. ut
By reversing the roles of 't ;  t , we obtain the following useful:

Corollary 4.2.3. Assume '; are solutions of .CMAF/ with F as above. Then

k' �  kL1.X�Œ0;T �/ � e�T k'0 �  0kL1.X/:

As a consequence, if '0;j is a sequence of smooth !-psh functions decreasing
to '0 2 PSH.X; !/ \ C0.X/, and 'j are the corresponding solutions to .CMAF/
on X � Œ0; T �, then the sequence 'j converges uniformly on X � Œ0; T � to some
' 2 C0 .X � Œ0; T �/ as j ! C1.

4.2.2 A Priori Estimate on @'

@t

We assume here again that on X � Œ0; T �

@'

@t
D log

�
.! C ddc'/n

!n

�

C F.'; x/

with initial data '0 2 PSH.X; !/\ C1.X/.

Lemma 4.2.4. There exists C > 0 which only depends on k'0kL1.X/ such that for
all t 2 Œ0; T �,

k P'tkL1.X/ � eCT k P'0kL1.X/:

Let us stress that such a bound requires both that the initial potential '0 is
uniformly bounded and that the initial density

f0 D .! C ddc'0/n

!n
D log P'0 � F.'0; x/

is uniformly bounded away from zero and infinity. We shall consider in the sequel
more general situations with no a priori control on the initial density f0.

Proof. Observe that

@ P'
@t

D �t P' C @F

@s
.'; x/ P';
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where�t denotes the Laplace operator associated to !t D ! C ddc't .
Since F is C1, we can find a constant C > 0 which only depends on (F and)

k'kL1.X�Œ0;T �/ such that

�C <
@F

@s
.'; x/ < CC:

ConsiderHC.x; t/ WD e�Ct P't .x/ and let .x0; t0/ be a point at whichHC realizes
its maximum on X � Œ0; T �. If t0 D 0, then P't .x/ � eCT supX '0 for all .x; t/ 2
X � Œ0; T �. If t0 > 0, then

0 �
�
@

@t
��t

�

.HC/ D e�Ct

�
@F

@s
.'t ; x/ � C

�

P'

hence P't0.x0/ � 0, since @F
@s
.'t ; x/�C < 0. Thus P't .x/ � 0 in this case. All in all,

this shows that

P't � eCT max

�

sup
X

P'0; 0
�

:

Considering the minimum of H�.x; t/ WD eCCt P't .x; t/ yields a similar bound
from below and finishes the proof since maxfsupX P'0;� infX P'0g � 0. ut

4.2.3 A Priori Estimate on �'t

Recall that we are considering on X � Œ0; T �

@'t

@t
D log

�
.! C ddc't /n

!n

�

C F.'t ; x/

with initial data '0 2 PSH.X; !/ \ C1.X/. Our aim in this section is to establish
an upper bound on �!'t , which is uniform as long as t > 0 and is allowed to blow
up when t decreases to zero.

4.2.3.1 A Convexity Assumption

To simplify our task, we shall assume that

F.s; x/ D �G.s/C h.x/; with s 7! G.s/ being convex.
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This assumption allows us to bound from above�!F.'; x/ as follows:

Lemma 4.2.5. There exists C > 0 which only depends on k'0kL1.X/ such that

�! .F.'t ; x// � C Œ1C tr !.!t /� ;

where !t D ! C ddc't .

Recall here that for any smooth function h and .1; 1/-form ˇ,

�!h WD n
ddch ^ !n�1

!n
while tr !ˇ WD n

ˇ ^ !n�1

!n
:

Proof. Observe that

ddc .F.'; x// D �G00.'/d' ^ dc' �G0.'/ddc' � �G0.'/ddc'

sinceG is convex. Now ddc' D .!Cdd c'/�! D !'�! D !t �! is a difference
of positive forms and �C � �G0.'/ � CC , therefore

ddc .F.'; x// � C .!t C !/ ;

which yields the desired upper bound. ut
Our simplifying assumption thus yields a bound from above on �! .F.'; x//

which depends on tr !.!'/ (and k'0kL1.X/) but not on kr'tkL1.X�Œ";T �/. A slightly
more involved bound from above is available in full generality, which relies on
Blocki’s gradient estimate [Bło09]. We refer the reader to the proofs of [SzTo11,
Lemmata 2.2 and 2.3] for more details.

4.2.3.2 The Estimate

Proposition 4.2.6. Assume that F.s; x/ D �G.s/C h.x/; with s 7! G.s/ convex.
Then

0 � tr !.!t / � C exp .C=t/

where C > 0 depends on k'0kL1.X/ and k P'0kL1.X/.

Proof. We set u.x; t/ WD tr !.!t / and

˛.x; t/ WD t log u.x; t/ �A't .x/;

where A > 0 will be specified later. The desired inequality will follow if we can
uniformly bound ˛ from above. Our plan is to show that
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�
@

@t
��t

�

.˛/ � C1 C .Bt C C2 � A/tr !t .!/

for uniform constants C1; C2 > 0 which only depend on k'0kL1.X/, k P'0kL1.X/.
Observe that

�
@

@t
��t

�

.˛/ D log u C t

u

@u

@t
�A P't � t�t log u C A�t't :

The last term yieldsA�t't D An�Atr !t .!/. The for to last one is estimated thanks
to Proposition 4.1.2,

�t�t log u � Bt tr !t .!/C t
tr !.Ric.!t //

tr !.!t /
:

It follows from Lemma 4.2.5 that

t

u

@u

@t
D t

u
�t

�

log
!nt
!n

�

C t

u
�!F.'t ; x/

D t

u
f�tr !.Ric!t /C tr !.Ric!/g C t

u
�!F.'t ; x/

� �t tr !.Ric!t /

tr !.!t /
C C

.1C u/

u
:

We infer

�t�t log u C t

u

@u

@t
� Bt tr !t .!/C C1;

using that u is uniformly bounded below as follows from Proposition 4.1.2 again.
To handle the remaining (first and third) terms, we simply note that P't is

uniformly bounded below, while

log u � log

C tr !t .!/

n�1� � C2 C C3tr !t .!/

by Proposition 4.1.2 and the elementary inequality logx < x. Altogether this yields

�
@

@t
��t

�

.˛/ � C4 C .Bt C C3 � A/ tr !t .!/ � C4;

if we choose A > 0 so large that Bt C C3 � A < 0. The desired inequality now
follows from the maximum principle. ut
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4.2.4 Proof of Theorem 4.2.1

4.2.4.1 Higher Order Estimates

By Theorem 4.1.4, it follows from our previous estimates that higher order a priori
estimates hold as well:

Proposition 4.2.7. For each fixed " > 0 and k 2 N, there exists Ck."/ > 0 which
only further depends on k'0kL1.X/ and k P'0kL1.X/ such that

k'tkCk.X�Œ";T �/ � Ck."/:

4.2.4.2 A Stability Estimate

Let 0 � f; g 2 L2.!n/ be densities such that

Z

X

f!n D
Z

X

g!n D
Z

X

!n:

It follows from the celebrated work of Kolodziej [Kol98] that there exists unique
continuous !-psh functions '; such that

.! C ddc'/n D f!n; .! C ddc /n D g!n and
Z

X

.' �  /!n D 0:

We shall need the following stability estimates:

Theorem 4.2.8. There exists C > 0 which only depends on kf kL2 ; kgkL2 such that

k' �  kL1.X/ � Ckf � gk�
L2.X/

;

for some uniform exponent � > 0.

Such stability estimates go back to the work of Kolodziej [Kol03] and Blocki
[Blo03]. Much finer stability results are available by now (see [DZ10, GZ12]). We
sketch a proof of this version for the convenience of the reader.

Proof. The proof decomposes in two main steps. We first claim that

k' �  kL2.X/ � Ckf � gk 1
2n�1

L2.X/
; (4.7)

for some appropriate C > 0. Indeed we are going to show that

Z

X

d.' �  / ^ dc.' �  / ^ !n�1 � C1I.';  /
2�.n�1/

; (4.8)
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where

I.';  / WD
Z

X

.' �  / f.! C ddc /n � .! C ddc'/ng � 0

is non-negative, as the reader can check that an alternative writing is

I.';  / D
n�1X

jD0

Z

X

d.' �  / ^ dc.' �  / ^ !j' ^ !n�1�j
 :

In our case the Cauchy–Schwarz inequality yields

I.';  / D
Z

X

.' �  /.g � f /!n � k' �  kL2kf � gkL2 ;

therefore (4.7) is a consequence of (4.8) and Poincaré’s inequality.
To prove (4.8), we write ! D !' � ddc' and integrate by parts to obtain,

Z

d.' �  / ^ dc.' �  / ^ !n�1

D
Z

d.' �  / ^ dc.' �  / ^ !' ^ !n�2

�
Z

d.' �  / ^ dc.' �  / ^ ddc' ^ !n�2

D
Z

d.' �  / ^ dc.' �  / ^ !'1 ^ !n�2

C
Z

d.' �  / ^ dc' ^ .!' � ! / ^ !n�2

We take care of the last term by using Cauchy–Schwarz inequality, which yields

Z

d.' �  / ^ dc' ^ !' ^ !n�2 � A

�Z

d.' �  / ^ dc.' �  / ^ !' ^ !n�2
�1=2

;

where

A2 D
Z

d' ^ dc' ^ !' ^ !n�2

is uniformly bounded from above, since ' is uniformly bounded in terms of
kf kL2.X/ by the work of Kolodziej [Kol98]. Similarly

�
Z

d.' �  / ^ dc' ^ ! ^ !n�2 � B

�Z

d.' �  / ^ dc.' �  / ^ ! ^ !n�2
�1=2

;
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where

B2 D
Z

d' ^ dc' ^ ! ^ !n�2

is uniformly bounded from above. Note that both terms can be further bounded from
above by the same quantity by bounding from above !' (resp. ! ) by !' C ! .

Going on this way by induction, replacing at each step ! by !' C ! , we end
up with a control from above of

R
d.' � /^ dc.' � /^!n�1 by a quantity that

is bounded from above by CI.';  /2
�.n�1/

(there are .n � 1/-induction steps), for
some uniform constant C > 0. This finishes the proof of the first step.

The second step consists in showing that

k' �  kL1.X/ � C2k' �  k�
L2.X/

for some constants C2; � > 0. We are not going to dwell on this second step here, as
it would take us too far. It relies on the comparison techniques between the volume
and the Monge–Ampère capacity, as used in [Kol98]. ut

4.2.4.3 Conclusion

We are now in position to conclude the proof of Theorem 4.2.1 [at least in case
F.s; x/ D �G.s/ C h.x/, with G convex]. Let  0 2 PSH.X; !/ be a continuous
solution to

.! C ddc 0/
n D e�F. 0;x/!n:

Fix uj 2 C1.X/ arbitrary smooth functions which uniformly converge to  0
and let  j 2 PSH.X; !/\ C1.X/ be the unique smooth solutions of

.! C ddc j /
n D cj e

�F.uj ;x/!n;

normalized by
R
X. j �  0/!

n D 0. Here cj 2 R are normalizing constants wich
converge to 1 as j ! C1, such that

cj

Z

X

e�F.uj ;x/!n D
Z

X

!n;

and the existence (and uniqueness) of the j ’s is provided by Yau’s celebrated result
[Yau78]. It follows from the stability estimate (Theorem 4.2.8) that

k j �  0kL1.X/ �! 0 as j ! C1;
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hence

k j � ujkL1.X/ �! 0 as j ! C1:

Consider the complex Monge–Ampère flows

@'t;j

@t
D log

�
.! C ddc't;j /n

!n

�

C F.'t;j ; x/ � log cj ;

with initial data '0;j WD  j . It follows from Lemma 4.2.2 that

k't;j � 't;kkL1.X�Œ0;T �/ � e�T k j �  kkL1.X/ C ˇ
ˇlog cj � log ck

ˇ
ˇ ;

thus .'t;j /j is a Cauchy sequence in the Banach space C0 .X � Œ0; T �/. We set

't WD lim
j!C1't;j 2 C0 .X � Œ0; T �/ :

Note that 't 2 PSH.X; !/ for each t 2 Œ0; T � fixed and '0 D  0 D lim'0;j
by continuity. Proposition 4.2.7 shows moreover that .'t;j /j is a Cauchy sequence
in the Fréchet space C1 .X � .0; T �/, hence .x; t/ 7! 't.x/ 2 C1 .X � .0; T �/.
Observe that

k P'0;j kL1.X/ D kF. j ; x/ � F.uj ; x/kL1.X/ � Ck j � ujkL1.X/ ! 0:

Lemma 4.2.4 therefore yields for all t > 0,

k P'tkL1.X/ D lim
j!C1 k P't;j kL1.X/ � C lim

j!C1 k P'0;j kL1.X/ D 0:

This shows that t 7! 't is constant on .0; T �, hence constant on Œ0; T � by
continuity. Therefore  0 � 't is smooth, as claimed.

4.3 Degenerate Parabolic Complex Monge–Ampère
Equations

Until further notice, .X; !X/ denotes a compact Kähler manifold of dimension n
endowed with a reference Kähler form.

4.3.1 The Ample Locus

Recall that the pseudoeffective cone in H1;1.X;R/ is the closed convex cone of
classes of closed positive .1; 1/-currents in X . A .1; 1/-class ˛ in the interior of the
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pseudoeffective cone is said to be big. Equivalently, ˛ is big iff it can be represented
by a Kähler current, i.e. a closed .1; 1/-current T which is strictly positive in the
sense that T � c!X for some c > 0. In the special case where the .1; 1/-form � is
semipositive, it follows from [DemPaun04] that its class is big iff

R
X
�n > 0, i.e. iff

� is a Kähler form on at least an open subset of X .
The following result is a consequence of Demailly’s regularization theorem

[Dem92] (cf. [DemPaun04, Theorem 3.4]).

Lemma 4.3.1. Let � be a closed real .1; 1/-form onX , and assume that its class in
H1;1.X;R/ is big. Then there exists a �-psh function  � � 0 such that:

(i)  � is of class C1 on a Zariski open set � � X ,
(ii)  � ! �1 near @�,

(iii) !� WD .� C ddc �/ j� is the restriction to � of a Kähler form on a
compactification QX of � dominatingX .

More precisely, condition (iii) means that there exists a compact Kähler manifold
. QX;! QX/ and a modification � W QX ! X such that � is an isomorphism over� and
��!� D ! QX on ��1.�/.

By the Noetherian property of closed analytic subsets, it is easy to see that the set
of all Zariski open subsets � so obtained admits a largest element, called the ample
locus of � and denoted by Amp .�/ (see [Bou04, Theorem 3.17]). Note that Amp .�/
only depends on the cohomology class of � .

For later use, we also note:

Lemma 4.3.2. Let � be a closed real .1; 1/-form with big cohomology class, and
let U � Amp .�/ be an arbitrary Zariski open subset. We can then find a �-psh
function 	U such that 	U is smooth on U and 	U ! �1 near @U .

Proof. Let  � be a function as in Lemma 4.3.1, with � D Amp .�/. Since A WD
X n U is a closed analytic subset, it is easy to construct an !X -psh function 

with logarithmic poles along A (see for instance [DemPaun04]). We then set 	U WD
 � C c
 with c > 0 small enough to have � C ddc � � ı!X for some ı > 0. ut

4.3.2 The Main Result

In the next sections, we will provide a detailed proof of the following result, which
is a mild generalization of the technical heart of [ST09]. The assumptions on the
measure � will become more transparent in the context of the Kähler–Ricci flow on
varieties with log-terminal singularities, cf. Sect. 4.6.

Theorem 4.3.3. Let X be a compact Kähler manifold, T 2 .0;C1/, and let
.�t /t2Œ0;T � be a smooth path of closed semipositive .1; 1/-forms such that �t � �

for a fixed semipositive .1; 1/-form � with big cohomology class. Let also � be
positive measure on X of the form
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� D e 
C� �

!nX

where

•  ˙ are quasi-psh functions on X (i.e. there exists C > 0 such that  ˙ are both
C!X -psh);

• e� � 2 Lp for some p > 1;
•  ˙ are smooth on a given Zariski open subset U � Amp .�/.

For each continuous �0-psh function '0 2 C0.X/ \ PSH.X; �0/, there exists a
unique bounded continuous function ' 2 C0

b .U � Œ0; T // with 'jU�f0g D '0 and
such that on U � .0; T / ' is smooth and satisfies

@'

@t
D log

�
.�t C ddc'/n

�

�

: (4.9)

Furthermore, ' is in fact smooth up to time T , i.e. ' 2 C1 .U � .0; T �/.
Remark 4.3.4. Since 'jX�ftg is bounded and �t -psh on a Zariski open set of X ,
it uniquely extends to a bounded �t -psh function on X by standard properties of
psh functions. We get in this way a natural quasi-psh extension of ' to a bounded
function onX � Œ0; T �, but note that no continuity property is claimed onX � Œ0; T �
(see however Theorem 4.3.5 below).

As we shall see, uniqueness in Theorem 4.3.3 holds in a strong sense: we have

sup
U�Œ0;T �

j' � ' 0j D sup
U�f0g

j' � ' 0j

for any two

'; ' 0 2 C0
b .U � Œ0; T //\ C1 .U � .0; T //

satisfying (4.9) and such that the restriction to U � f0g of either ' or ' 0 extends
continuously to X � f0g.

In the geometric applications to the (unnormalized) Kähler–Ricci flow, the path
.�t / will be affine as a function of t . In that case, we have a global control on the
time derivative:

Theorem 4.3.5. With the notation of Theorem 4.3.3, assume further that .�t /t2Œ0;T �
is an affine path. For each " > 0, @'

@t
is then bounded above on U � Œ"; T �, and

bounded below on U � Œ"; T � "�. In particular, the quasi-psh extension of ' to
X � Œ0; T � is continuous on X � .0; T /, and on X � fT g as well.
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4.4 A Priori Estimates for Parabolic Complex
Monge–Ampère Equations

4.4.1 Setup

Recall that .X; !X/ is a compact Kähler manifold endowed with a reference Kähler
form. In this section, .�t /t2Œ0;T � denotes a smooth path of Kähler forms on X , and
we assume given a semipositive .1; 1/-form � with big cohomology class such that

�t � � for t 2 Œ0; T �:
Let also � be a smooth positive volume form on X , and suppose that ' 2
C1 .X � Œ0; T �/ satisfies

@'

@t
D log

�
.�t C ddc'/n

�

�

: (4.10)

Our goal is to provide a priori estimates on ' that only depend on � , the sup norm
of '0 WD 'jX�f0g, and the Lp-norm and certain Hessian bounds for the density f of
�. More precisely, we will prove the following result:

Theorem 4.4.1. With the above notation, suppose that � is written as

� D e 
C� �

!nX

with  ˙ 2 C1.X/, and assume given C > 0 and p > 1 such that

(i) �C � supX  
˙ � C and ddc ˙ � �C!X .

(ii) ke� �kLp � C .
(iii) k'0kC0 � C .

The C0 norm of ' onX � Œ0; T � is then bounded in terms of � , C , T , p and a bound
on the volume

R
X
�nt for t 2 Œ0; T �.

Further, ' is bounded in C1 topology on Amp .�/ � .0; T �, uniformly in terms
of � , C , T , p and C1 bounds for .�t / onX � Œ0; T � and for  ˙ on Amp .�/. More
explicitly, for each compact set K b Amp .�/, each " > 0 and each k 2 N, the
Ck-norm of ' on K � Œ"; T � is bounded in terms of � , C , T , p and C1 bounds for
.�t / on X � Œ0; T � and for  ˙ in any given neighborhood of K .

During the proof, we shall use the following notation. We introduce the smooth
path of Kähler forms

!t WD �t C ddc't ;

and denote by �t D tr !t dd
c the corresponding time-dependent Laplacian operator

on functions. We trivially have
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�
@

@t
��t

�

' D P' C tr �t .�t /� n; (4.11)

where P' is a short-hand for @'

@t
. Writing P�t for the time-derivative of �t , it is also

immediate to see that
�
@

@t
��t

�

P' D tr �t . P�t / (4.12)

To simplify the notation, we set � WD Amp .�/, and choose a �-psh function  � as
in Lemma 4.3.1, so that  � ! �1 near @� and

!� WD .� C ddc � /j�
is the restriction to � of a Kähler form on a compactification of � dominating X .
Since �t � � for all t , (4.11) shows that

�
@

@t
��t

�

.' �  �/ � P' C tr �t .!�/� n (4.13)

on � � Œ0; T �.
As a matter of terminology, we shall say that a quantity is under control if it can

be bounded by a constant only depending on the desired quantities within the proof
of a given lemma.

4.4.2 A Global C 0-Estimate

Lemma 4.4.2. Suppose that ' 2 C1 .X � Œ0; T �/ satisfies (4.10). Assume given
C > 0, p > 1 such that

(i)
R
X
�nt � C for t 2 Œ0; T �;

(ii)
R
X
� � C�1 and kf kLp � C for the density f WD �=!nX .

Then there exists a constant A > 0 only depending on � , p, T and C such that

sup
X�Œ0;T �

j'j � sup
X�f0g

j'j C A:

Proof. Step 0: an auxiliary construction. We introduce an auxiliary function,
which will also be used in the proof of Lemma 4.4.4 below. For " 2 .0; 1=2�

introduce the Kähler form

�" WD .1 � "/� C "2!X ;
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and set

c" WD log

�R
�n"R
�

�

:

Since �t is a continuous family of Kähler forms, we can fix " > 0 small enough
such that �t � "!X for all t 2 Œ0; T �. Since

R
X
�n is positive, c" is under control,

even though " itself is not! Observe also that �t � .1 � "/� C "�t , and hence

�t � �" for t 2 Œ0; T �: (4.14)

By [Yau78] there exists a unique smooth �"-psh function 
" such that
supX 
" D 0 and

.�" C ddc
"/
n D ec"�: (4.15)

Since the Lp-norm of the density of ec"� is under control and since

1
2
� � �" � � C !X � C1!X

with C1 > 0 only depending on � , the uniform version of Kolodziej’s
L1-estimates [EGZ09] shows that the C0 norm of 
" is under control.
Step 1: lower bound. Consider �" and 
" as in Step 0, and set

H WD ' � 
" � c"t:

By (4.15) and (4.14) we get

@H

@t
D log

.�t C ddc
" C ddcH/n

.�" C ddc
"/n
� log

.�t C ddc
" C ddcH/n

.�t C ddc
"/n

on X � Œ0; T �, and hence infX�Œ0;T � H D infX�f0gH by Proposition 4.1.3. Since
c" and the C0 norm of 
" are both under control, we get the desired lower bound
for '.
Step 2: upper bound. By non-negativity of the relative entropy of the probability
measure �=

R
� with respect to

.�t C ddc'/n
R
�nt

D e P'�
R
�nt

(or, in other words, by concavity of the logarithm and Jensen’s inequality), we
have

Z �

log

�R
�ntR
�

�

� P'
�

� � 0:
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It follows that

d

dt

�Z

't�

�

�
�Z

�

�

log

�Z

�nt

�

�
�Z

�

�

log

�Z

�

�

� kf kLp
�Z

!nX

�1�1=p
logC C e�1 DW A1

is under control, and hence

sup
t2Œ0;T �

R
't�R
�

�
R
'0�R
�

C A1T � sup
X

'0 CA1T

with A1 > 0 under control. We claim that there exists B > 0 under control such
that

sup
X

 �
R
 �
R
�

C B

for all �-psh functions  . Applying this with  D 't will yield the desired
control on its upper bound. By Skoda’s integrability theorem in its uniform
version [Zer01], there exist ı > 0 and B > 0 only depending on � such that

Z

e�ı !nX � B

for all �-psh functions  normalized by supX  D 0. By Hölder’s inequality, it
follows that

R
e�ı0 � � B 0 with ı0; B 0 under control, and the claim follows by

Jensen’s inequality. ut
Remark 4.4.3. The proof given above is directly inspired from that of [ST09,
Lemma 3.8]. Let us stress, as a pedagogical note to the non expert reader, that the
C0-estimate thus follows from

• The elementary maximum principle (Proposition 4.1.3);
• Kolodziej’s L1 estimate for solutions of Monge–Ampère equations [Kol98,

EGZ09];
• Skoda’s exponential integrability theorem for psh functions (which is in fact also

an ingredient in the previous item).

4.4.3 Bounding the Time-Derivative and the Laplacian
on the Ample Locus

Lemma 4.4.4. Suppose that ' 2 C1 .X � Œ0; T �/ satisfies (4.10). Assume that the
volume form � is written as
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� D e 
C� �

!nX

with  ˙ 2 C1.X/, and let C > 0 be a constant such that

(i) �C!X � P�t � C!X for t 2 Œ0; T �;
(ii) supX  

˙ � C ;
(iii) ddc ˙ � �C!X .

For each compact set K � �, we can then find A > 0 only depending on K , � , T
and C such that

sup
K�Œ0;T �

t .j P'j C log j�'j/ � A

 

1C sup
X�Œ0;T �

j'j � inf
K
 �

!

;

where � denotes the Laplacian with respect to the reference metric !X .

Proof. Since !� extends to a Kähler form on a compactification of � dominating
X , there exists a constant c > 0 under control such that !� � c!X , and hence

�t C ddc � � c!X (4.16)

on � � Œ0; T � since �t � � .

Step 1: upper bound for P'. We want to apply the maximum principle to

HC WD t P' C A. � � '/;

with a constant A > 0 to be specified in a moment. Thanks to (4.12) and (4.13),
we get

�
@

@t
��t

�

HC � �.A � 1/ P' C tr !t
	
t P�t � A!�



C An:

By (i) and (4.16) we have

t P�t � A!� � TC!X � Ac!X:

Choosing

A WD c�1TC C 1;

we obtain
�
@

@t
��t

�

HC � �A1 P' C A2 (4.17)
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with A1;A2 > 0 under control. We are now in a position to apply the maximum
principle. Since  � ! �1 near @�, HC achieves its maximum on � � Œ0; T �
at some point .x0; t0/. If t0 D 0 then

sup
��Œ0;T �

HC � �A inf
X
';

since  � � 0. If t0 > 0 then
�
@
@t

��t

�
HC � 0 at .x0; t0/, and (4.17) yields an

upper bound for P' at .x0; t0/. It follows that

sup
��Œ0;T �

HC � C1 � A inf
X
':

with C1 > 0 under control. Since  � is bounded below on the given compact set
K � �, we get in particular the desired upper bound on t P'.
Step 2: lower bound for P'. We now want to apply the maximum principle to

H� WD t.� P' C 2 �/C A. � � '/;

which satisfies by (4.12) and (4.13)

�
@

@t
��t

�

H� � �.AC1/ P'C2 �Ctr !t
	
�t P�t � 2tddc � �A!�



CAn:

(4.18)

On the one hand, note that

� P' D log

�
!nX
!nt

�

C  C �  �;

and hence

� P' � . P' � 2 �/C 2 log

�
!nX
!nt

�

C 2C

since supX  
C � C . Using  � � 0, we also have t. P' � 2 �/ � �.H� CA'/,

and we get

�.AC1/ P'C2 � � �t�1.AC1/.H�CA'/C2.AC1/ log

�
!nX
!nt

�

C.2AC4/C

on X � .0; T �, using this time supX  
� � C . On the other hand, (i), (iii) and

(4.16) show that

�t P�t � 2tddc � � A!� � .3TC � Ac/!X ;

which is bounded above by �!X if we choose
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A WD c�1 .3TC C 1/ :

Plugging these estimates into (4.18), we obtain

�
@

@t
��t

�

H� � �t�1.AC1/.H�CA'/C2.AC1/ log

�
!nX
!nt

�

�tr !t .!X/CC2

on � � .0; T �, with C2 > 0 under control. By the arithmetico-geometric
inequality and the fact that 2.A C 1/ logy � ny1=n is bounded above for y 2
.0;C1Œ, we have

2.AC 1/ log

�
!nX
!nt

�

� tr !t .!X/ � 2.AC 1/ log

�
!nX
!nt

�

� n

�
!nX
!nt

�1=n
� C3

and hence
�
@

@t
��t

�

H� � �t�1.AC 1/.H� CA'/C C4 (4.19)

with C3; C4 > 0 under control. We can now apply the maximum principle to
obtain as before

sup
��Œ0;T �

H� � C5 � A inf
X
':

this yields the desired lower bound on P'.
Step 3: Laplacian bound. We are going to apply the maximum principle to

H WD t.log tr !�.!t /C  �/CA. � � '/;

with A > 0 to be specified below. Since !� extends to a Kähler metric on some
compactification of �, its holomorphic bisectional curvature is bounded below
by �C1 with C1 > 0 under control, and Proposition 4.1.2 yields

��t log tr !�.!t / � tr !�Ric.!t /

tr !�.!t /
C C1tr !t .!�/: (4.20)

On the one hand, we have Ric.!t / D Ric.�/ � ddc P' since !nt D e P'�. On the
other hand,

@

@t
log tr !�.!t / D tr !�. P�t C ddc P't /

tr !�.!t /
;

and hence
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�
@

@t
��t

�

log tr !�.!t / �
tr !�

	
Ric.�/C P�t




tr !�.!t /
C C1tr !t .!�/:

Now P�t � C!X by assumption, and

Ric.�/ D �ddc C C ddc � C Ric.!X/ � C2!� C ddc �

for some C2 > 0 under control, using ddc C � �Cc�1!� and

Ric.!X / � C 0!X � C 0c�1!X :

It follows that
�
@

@t
��t

�

log tr !�.!t / � C3 C�!� 
�

tr !�.!t /
C C1tr !t .!�/

with C3 > 0 under control. In order to absorb the term involving  � in the
left-hand side, we note that Cc�1!� C ddc � � 0, and hence

Cc�1!� C ddc � � tr !t .Cc�1!� C ddc �/!t ;

which yields after taking the trace with respect to !�

0 � nCc�1 C�!� 
�

tr !�.!t /
� Cc�1tr !t .!�/C�t 

�:

Using the trivial inequality tr !�.!t /tr !t .!�/ � n we arrive at

�
@

@t
��t

�

.log tr !�.!t /C  �/ � C4tr !t .!�/ (4.21)

with C4 > 0 under control. By (4.21) and (4.11) we thus get

�
@

@t
��t

�

H � log tr !�.!t /C  � �A P' C .C4T �A/tr !t .!�/:

Lemma 4.1.1 shows that

log tr !�.!t /C  � � P' C .n � 1/ log tr !t .!�/C C5; (4.22)

since supX  
C � C and !X � C1!�. If we choose A WD C4T C 2, we finally

obtain
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�
@

@t
��t

�

H � �tr !t .!�/� C6 P' C C7; (4.23)

since .n � 1/ logy � 2y � �y CO.1/ for y 2 .0;C1/.

We are now in a position to apply the maximum principle. Since  � ! �1 near
@�, there exists .x0; t0/ 2 � � Œ0; T � such that H.x0; t0/ D sup��Œ0;T � H . If t0 D 0

then

sup
��Œ0;T �

H � A sup
X

j'0j;

using  � � 0. If t0 > 0 then
�
@
@t

��t

�
H � 0 at .x0; t0/, and (4.23) yields

tr !t .!�/C C6 P' � C7;

and in particular P' < C7=C6, at .x0; t0/. Plugging this into (4.22), it follows that

log tr !�.!t /C  � � P' C .n � 1/ log.�C6 P' C C7/C C5

at .x0; t0/. Since yC.n�1/ log.�C6yCC7/ is bounded above for y 2��1; C7=C6Œ,
we get log tr !�.!t /C  � � C8 at .x0; t0/, and hence

sup
��Œ0;T �

H D H.x0; t0/ � A sup
X�Œ0;T �

j'j C TC8:

Finally, there exists a constant CK > 0 such that on the given compact set K � �

we have  � � �CK and !� � CK!, and the result follows. ut
Remark 4.4.5. The arguments used to bound the time-derivative are a combination
of the proofs of Lemmas 3.2 and 3.9 in [ST09]. The proof of the Laplacian bound
is similar in essence to that of [ST09, Lemma 3.3].

4.4.4 Bounding the Time Derivative in the Affine Case

Lemma 4.4.6. Under the assumptions of Lemma 4.4.2, suppose that .�t / is an
affine path, so that P�t is independent of t . Then we have

sup
X�Œ0;T �

.t P'/ � 2 sup
X�Œ0;T �

j'j C nT;

and for each T 0 < T there exists A > 0 only depending on � , C , p and T 0 such
that



4 Regularizing Properties of the Kähler–Ricci Flow 219

inf
X�Œ0;T 0�

.t P'/ � �A
 

1C sup
X�Œ0;T �

j'j
!

:

Proof. The upper bound follows directly from the maximum principle applied to

HC WD t P' � ' � nt;

which satisfies
�
@

@t
��t

�

HC D tr !t .t P�t � �t / D tr !t .��0/ � 0

on X � Œ0; T �. To get the lower bound, take 
" as in Step 0 of the proof of
Lemma 4.4.2, and set

H� WD �t P' � A' C 
":

where A > 0 will be specified in a moment. We then have

�
@

@t
��t

�

H� D �.AC 1/ P' C tr !t .�t P�t �A�t � ddc
"/C An:

Since �t is affine, we have

A�t C t P�t D A

�

�0 C t P�t C t

A
P�t
�

D A�.AC1/t=A;

and hence

A�t C t P�t � �"

for t 2 Œ0; T 0� by (4.14), if we fix A 	 1 such that .A C 1/T 0=A < T . With this
choice of A we get on X � Œ0; T 0�

�
@

@t
��t

�

H� � .AC 1/ log

�
�

!nt

�

� tr !t .�" C ddc
"/CAn

� .AC 1/ log

�
�

!nt

�

� nec"=n
�
�

!nt

�1=n
� A1

with A1 > 0 under control, using the arithmetico-geometric inequality, (4.15) and
the fact that .A C 1/ logy � nec"=ny1=n is bounded above for y 2 .0;C1/. The
lower bound for t P' follows from the maximum principle, since supX j
"j is under
control. ut
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Remark 4.4.7. This result corresponds to [ST09, Lemma 3.21].

4.4.5 Proof of Theorem 4.4.1

We are now in a position to prove Theorem 4.4.1. Since supX  
C is assumed to

be bounded below, the mean value inequality for C!X -psh functions shows thatR
 C!nX is also bounded below. By Jensen’s inequality and the upper bound on

 �, it follows that condition (i) in Lemma 4.4.2 is satisfied. Using the upper bound
on  C and the Lp bound for e� �

, we also check condition (ii) of Lemma 4.4.2,
which therefore shows that the sup-norm of ' on X � Œ0; T � is bounded in terms
of C .

By Lemma 4.4.4, on any given neighborhood of K � Œ"; T � j P'j and j�'j are
bounded in terms of the C , the C1 norm of .�t / on X � Œ0; T � and the C0 norm of
 � on the neighborhood in question. We conclude by applying the Evans–Krylov
type estimates of Theorem 4.1.4 locally on the ample locus of � .

4.5 Proof of the Main Theorem

Our goal in this section is to prove Theorems 4.3.3 and 4.3.5.

4.5.1 The Non-degenerate Case

As a first step towards the proof of Theorem 4.3.3, we first consider the non-
degenerate case, which amounts to the following result:

Theorem 4.5.1. Let X be a compact Kähler manifold and 0 < T < C1. Let
.�t /t2Œ0;T � be a smooth family of Kähler forms on X and let � be a smooth positive
volume form. If '0 2 C1.X/ is strictly �0-psh, i.e. �0 C ddc'0 > 0, then there
exists a unique ' 2 C1 .X � Œ0; T �/ such that 'jX�f0g D '0 and

@'

@t
D log

�
.�t C ddc'/n

�

�

on X � Œ0; T �.
At least in the case of the Kähler–Ricci flow, this result goes back to [Cao85,
Tsu88, Tzha06], see Theorem 3.3.1 in Chap. 3 of the present volume. But since the
above statement follows directly from the a priori estimates we have proved so far
(Theorem 4.4.1), we may as well provide a proof for completeness.
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Proof. Uniqueness follows from the maximum principle (Proposition 4.1.3). By the
general theory of non-linear parabolic equations, the solution ' is defined on a
maximal half-open interval Œ0; T 0/ with T 0 � T . Since .�t /t2Œ0;T � is a smooth path
of Kähler metrics, we have �t � c!X for all t 2 Œ0; T � if c > 0 is small enough, and
we may thus apply Theorem 4.4.1 with � D c!X and K D X D Amp .�/ to get
that all Ck norms of ' are bounded onX� Œ"; T 0/ for any fixed " > 0. It follows that
' extends to a C1 function on X � Œ0; T 0�. Since P' is in particular bounded below,
the smooth function 'jX�fT 0g is strictly �T 0-psh. By the local existence result, we
conclude that T 0 D T , since ' could otherwise be extended beyond the maximal
existence time T 0. ut

4.5.2 A Stability Estimate

If '; ' 0 2 C1 .X � Œ0; T �/ are two solutions as in Theorem 4.5.1 corresponding
to two initial data '0; ' 0

0 2 C1.X/, the maximum principle of Proposition 4.1.3
immediately implies that

k' � ' 0kC0.X�Œ0;T �/ � k'0 � ' 0
0kC0.X/:

In order to treat the general case of Theorem 4.3.3, we need to generalize this
estimate when the path of Kähler metrics .�t / is allowed to vary as well.

Proposition 4.5.2. Let .�t /t2Œ0;T � and .� 0
t /t2Œ0;T � be two smooth paths of Kähler

metrics on X , and suppose that '; ' 0 2 C1 .X � Œ0; T �/ satisfy

@'

@t
D log

�
.�t C ddc'/n

�

�

and

@' 0

@t
D log

�
.� 0
t C ddc'/n

�

�

;

with the same volume form � in both cases. As in Theorem 4.4.1, write � as

� D e 
C� �

!nX

with  ˙ 2 C1.X/, and assume given C > 0 and p > 1 such that

(i) �t � C!X and � 0
t � C!X for t 2 Œ0; T �;

(ii) �C � supX  
˙ � C ;

(iii) ddc ˙ � �C!X ;
(iv) ke� �kLp � C .
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Finally, let � be a semipositive .1; 1/-form with big cohomology class such that

(v) �t � � and � 0
t � � for t 2 Œ0; T �.

For each compact subset K b Amp .�/, we can then find a constant A > 0 only
depending on K , � , C , p and T such that

k' � ' 0kC0.K�Œ0;T �/ � k'0 � ' 0
0kC0.X/

C A

�

1C k'0kC0.X/ C k' 0
0kC0.X/ � inf

K
 �

�

k�t � � 0
t kC0.X�Œ0;T �/:

Proof. Set N WD k'0 � ' 0
0kC0.X/ and M D k�t � � 0

tkC0.X�Œ0;T �/. We may assume
that M > 0, and we set for � 2 Œ0;M �

��t WD �
1 � �

M

�
�t C �

M
� 0
t :

For each � fixed, .��t /t2Œ0;T � is a smooth path of Kähler forms, and Theorem 4.5.1
yields a unique solution '� 2 C1 .X � Œ0; T �/ to the parabolic complex Monge–
Ampère equation

8
ˆ̂
<

ˆ̂
:

@'�

@t
D log

"�
��t C ddc'�

�n

�

#

'�jX�f0g D �
1 � �

M

�
'0 C �

M
' 0
0

(4.24)

By the local existence theory, '� depends smoothly on the parameter�. If we denote
by ��

t the Laplacian with respect to the Kähler form

!�t WD ��t C ddc'�t ;

then we have

�
@

@t
���

t

��
@'�

@�

�

D tr !�t

�
@��t
@�

�

;

and hence

�
@

@t
���

t

��
@'�

@�

�

D M�1tr !�t
�
� 0
t � �t

� � tr !�t .!X /; (4.25)

by definition of M .
Using the notation of Sect. 4.4.1, we are going to apply the maximum principle

to the functionH 2 C1 .� � Œ0; T �/ defined by



4 Regularizing Properties of the Kähler–Ricci Flow 223

H WD e�At
�
@'�

@�

�

C A � CA2. � � '�/;

where A > 0 will be specified below. Using (4.13), (4.25) and ddc � � �C!X ,
we compute

�
@

@t
���

t

�

H � �Ae�At
�
@'�

@�

�

C tr !�t
�
e�At!X C AC!X

�

CA2 log

"
�

�
!�t
�n

#

� A2tr !�t .!�/C A2n

D �AH C A2 � C A3. � � '�/C .1C AC/tr !�t .!X/

CA2 C � A2 � CA2 log

�
!nX

.!�t /
n

�

�A2tr !�t .!�/C A2n:

Since !� � c!X for some c > 0 under control, the arithmetico-geometric
inequality allows us, just as before, to choose A 	 1 under control such that

.1C AC/tr !�t .!X/C A2 log

�
!nX

.!�t /
n

�

� A2tr !�t .!�/ � A1

withA1 > 0 under control. By Lemma 4.4.2, there existsA2 > 0 under control such
that

sup
X�Œ0;T �

j'�j � k'0kC0.X/ C k' 0
0kC0.X/ C A2: (4.26)

Using  C � C and  � � 0, we finally get

�
@

@t
���

t

�

H � �AH CA3
�k'0kC0.X/ C k' 0

0kC0.X/
�C A3

with A3 > 0 under control. Now

H j��f0g � M�1N C A � C A2
�k'0kC0.X/ C k' 0

0kC0.X/
�
;

and the maximum principle thus yields

sup
��Œ0;T �

H � M�1N C A4
�
1C k'0kC0.X/ C k' 0

0kC0.X/
�
:

Since  � is bounded below on the given compact set K , we get using again (4.26)
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sup
K�Œ0;T �

@'�

@�
� M�1N C A5

�

1C k'0kC0.X/ C k' 0
0kC0.X/ � inf

K
 �

�

:

Integrating with respect to � 2 Œ0;M � and exchanging the roles of ' and ' 0 yields
the desired result. ut
Remark 4.5.3. The proof of Proposition 4.5.2 is directly adapted from that of
[ST09, Lemma 3.14].

4.5.3 The General Case

We now consider as in Theorem 4.3.3 a smooth path .�t /t2Œ0;T � of closed semiposi-
tive .1; 1/-forms such that �t � � for a fixed closed semipositive .1; 1/-form � with
big cohomology class. Let � be a positive measure on X of the form

� D e 
C� �

!nX

where

•  ˙ are quasi-psh functions on X (i.e. there exists C > 0 such that  ˙ are both
C!X -psh);

• e� � 2 Lp for some p > 1;
•  ˙ are smooth on a given Zariski open subset U � Amp .�/.

Given '0 2 C0.X/ \ PSH.X; �0/, our goal is to prove the existence and
uniqueness of

' 2 C0
b .U � Œ0; T �/ \ C1 .U � .0; T �/

such that 'jU�f0g D '0 and

@'

@t
D log

�
.�t C ddc'/n

�

�

(4.27)

on U � .0; T /.

4.5.3.1 Existence

We regularize the data. By Demailly [Dem92], there exist two sequences  k̇ 2
C1.X/ such that

•  k̇ decreases pointwise to  ˙ on X , and the convergence is in C1 topology
on U ;
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• ddc k̇ � �C!X for a fixed constant C > 0.

Note that
ˇ
ˇsupX  k̇

ˇ
ˇ is bounded independently of k, while we have for all k

ke� �

k kLp � ke� �kLp :

By Richberg’s theorem, we similarly get a decreasing sequence 'j0 2 C1.X/ such

that ıj WD supX

ˇ
ˇ
ˇ'
j
0 � '0

ˇ
ˇ
ˇ ! 0 and �0 C ddc'j0 > �"j! with "j ! 0. We then

set

• �
j
t WD �t C "j!X ;

• �k;l D e 
C

k � �

l !nX .

Since .�jt /t2Œ0;T � is a smooth path of Kähler forms, �k;l is a smooth positive volume
form and 'j0 is smooth and strictly �j0 -psh, Theorem 4.5.1 shows that there exists a
unique function 'j;k;l 2 C1 .X � Œ0; T �/ such that

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@'j;k;l

@t
D log

2

6
4

	
�
j
t C ddc'j;k;l


n

�k;l

3

7
5

'j;k;l jX�f0g D '
j
0 :

(4.28)

By Theorem 4.4.1, 'j;k;l is uniformly bounded on X � Œ0; T �, and bounded in C1
topology on U � .0; T �.

Furthermore, the maximum principle (Proposition 4.1.3) shows that for each j
fixed the sequence 'j;k;l is increasing (resp. decreasing) with respect to k (resp. l).
As a consequence,

'j;k D lim
l!1'j;k;l ; 'j D lim

k!1'j;k

define bounded functions onX � Œ0; T � that are uniformly bounded in C1 topology
on U � .0; T �. Note also that 'j jX�f0g D '

j
0 by construction. The stability estimate

of Proposition 4.5.2 shows that for each compact K � U there exists AK > 0 such
that

sup
K�Œ0;T �

ˇ
ˇ'i;k;l � 'j;k;l

ˇ
ˇ � AK

�
ıi C ıj C "i C "j

�
(4.29)

for all i; j; k; l , and hence

sup
K�Œ0;T �

ˇ
ˇ'i � 'j

ˇ
ˇ � AK

�
ıi C ıj C "i C "j

�

for all i; j . As a consequence, .'i / is a Cauchy sequence in the Fréchet space
C0 .U � Œ0; T �/, and hence converges uniformly on compact sets of U � Œ0; T � to a
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bounded function ' 2 C0 .U � Œ0; T �/, the convergence being in C1 topology on
U � .0; T �. Passing to the limit in (4.28) shows that ' satisfies (4.27) on U � .0; T /,
and ' coincides with '0 D limj '

j
0 on U � f0g.

4.5.3.2 Uniqueness

Let ' be the function just constructed, and suppose that

' 0 2 C0
b .U � Œ0; T �/ \ C1 .U � .0; T //

satisfies (4.27). We are going to show that

sup
U�Œ0;T �

j' � ' 0j D sup
U�f0g

j' � ' 0j;

which will in particular imply the desired uniqueness statement.
By Lemma 4.3.2, we can choose a �-psh function 	U � 0 that is smooth onU and

tends to �1 near @U . Fix 0 < c 
 1 with c � � !X , so that !X C c ddc	U � 0.
For a given index j define Hj 2 C0 .U � Œ0; T // \ C1 .U � .0; T // by

Hj WD 'j � ' 0 � c"j 	U ;

using the same notation as in the proof of the existence of '. On U � .0; T / we have

@Hj

@t
D log

�
.�t C "j!X C ddc'j /n

.�t C ddc' 0/n

�

D log

"�
�t C ddc' 0 C ddcHj C "j .!X C c ddc	U /

�n

.�t C ddc' 0/n

#

� log

"�
�t C ddc' 0 C ddcHj

�n

.�t C ddc' 0/n

#

;

and hence

inf
U�Œ0;T / H

j D inf
U�f0g

Hj

by Proposition 4.1.3. Since 'j0 ! '0 uniformly on U � f0g and 	U � 0, we get in
the limit as j ! 1

inf
U�Œ0;T /.' � ' 0/ � inf

U�f0g
.' � ' 0/:
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In order to prove the similar inequality with the roles of ' and ' 0 exchanged, we
need to introduce yet another parameter in the construction of ', in order to allow
more flexibility. For each ı 2 Œ0; 1/, .1� ı/'j is smooth and strictly .1� ı/�j0 -psh,
and Theorem 4.5.1 thus yields a unique function 'ı;j;k;l 2 C1 .X � Œ0; T �/ such
that

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@'ı;j;k;l

@t
D log

2

6
4

	
.1 � ı/�

j
t C ddc'ı;j;k;l


n

�k;l

3

7
5

'ı;j;k;l jX�f0g D .1 � ı/'j :

(4.30)

If we further require that ı 2 Œ0; 1=2�, then .1 � ı/�
j
t � 1

2
� for all j and t , and we

thus see just as before that 'ı;j;k;l is monotonic with respect to k and l , uniformly
bounded on X � Œ0; T � and bounded in C1 topology on U � .0; T �, and that for
each compactK b U we have an estimate

sup
K�Œ0;T /

ˇ
ˇ'ı;i;k;l � 'ı;j;k;l

ˇ
ˇ � AK."i C "j C ıi C ıj /:

We may thus consider

'ı D lim
j!1 lim

k!1 lim
l!1'ı;j;k;l ;

which belongs to C0 .U � Œ0; T �/ \ C1 .U � .0; T // and satisfies

@'ı

@t
D log

�
..1 � ı/�t C ddc'ı/n

�

�

:

Since k'j;k;l0 �'ı;j;k;l0 kC0.X/ and k�jt �.1�ı/�jt kC0.X�Œ0;T �/ are bothO.ı/ uniformly
with respect to j; k; l , Proposition 4.5.2 shows that

sup
K�Œ0;T �

ˇ
ˇ'ı;j;k;l � 'j;k;l

ˇ
ˇ � CKı

for each compact K b U , with CK > 0 independent of ı; j; k; l , and hence in the
limit

sup
K�Œ0;T �

ˇ
ˇ'ı � 'ˇˇ � CKı (4.31)

for all ı 2 Œ0; 1=2�. Now define for each ı 2 Œ0; 1=2� a function Hı 2
C0 .U � Œ0; T �/ \ C1 .U � .0; T �/ by

Hı WD ' 0 � 'ı � ı	U :
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We have

@Hı

@t
D log

"�
.1 � ı/�t C ddc'ı C ı.�t C ddc	U /C ddcHı

�n

�
.1 � ı/�t C ddc'ı

�n

#

� log

"�
.1 � ı/�t C ddc'ı C ddcHı

�n

�
.1 � ı/�t C ddc'ı

�n

#

;

and hence

inf
U�Œ0;T �H

ı D inf
U�f0g

Hı:

Since 	U � 0, we get

' 0 � 'ı � ı	U C inf
U�f0g

.' 0 � .1 � ı/'/

on U � Œ0; T �, and hence

inf
U�Œ0;T �.'

0 � '/ � inf
U�f0g

.' 0 � '/

in the limit as ı ! 0, using (4.31) and the fact that ' is bounded.

4.5.4 The Affine Case: Proof of Theorem 4.3.5

We use the notation of the existence proof above. If .�t / is an affine path, then so
is �jt D �t C "j!X . We may thus apply Lemma 4.4.6 to conclude that for each

" > 0, @'j;k;l

@t
is uniformly bounded above on X � Œ"; T �, and uniformly bounded

below on X � Œ"; T � "�. Since ' is a limit of 'j;k;l in C1-topology on U � .0; T �,
we conclude as desired that @'

@t
is bounded above on U � Œ"; T � and bounded below

on U � Œ"; T � "�.
Denote also by ' the quasi-psh extension to X � Œ0; T � and let " > 0. Since the

time derivative is bounded above on X � Œ"; T �, there exists C" > 0 such that

.�t C ddc'/n � C"�

on X � ftg for each t 2 Œ"; T �. By the results of [EGZ11] (which rely on viscosity
techniques), if follows that ' is continuous on X � ftg for each t 2 Œ"; T �. Since the
time derivative is bounded onU�Œ"; T �"�, ' is also uniformly Lipschitz continuous
in the time variable on X � Œ"; T � "�, and it follows as desired that ' is continuous
on X � .0; T /.
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Remark 4.5.4. It is of course reasonable to expect that ' is in fact continuous on
the whole of X � Œ0; T �.

4.6 The Kähler–Ricci Flow on a Log Terminal Variety

4.6.1 Forms and Currents with Local Potentials

Let X be a complex analytic space with normal singularities, and denote by n its
dimension. Since closed .1; 1/-forms and currents on X are not necessarily locally
ddc-exact in general, we need to rely on a specific terminology (compare [EGZ09,
Sect. 5.2]). We refer for instance to [Dem85] for the basic facts on smooth functions,
distributions and psh functions on a complex analytic space. The main point for us is
that any psh function on Xreg uniquely extends to a psh function onX by normality,
see [GR56]. For lack of a proper reference, we include:

Lemma 4.6.1. Any pluriharmonic distribution on X is locally the real part of a
holomorphic function, i.e. the kernel of the ddc operator on the sheaf D0

X of germs
of distributions coincides with the sheaf <OX of real parts of holomorphic germs.

Proof. If u 2 D0
X satisfies ddcu D 0, then ˙u is psh on Xreg, and hence extends

to a psh function on X by Grauert and Remmert [GR56]. In particular, ˙u is usc
and bounded above, which means that u is the germ of a continuous (finite valued)
function.

From there on, the proof is basically the same as [FS90, Proposition 1.1]. Let � W
X 0 ! X be a proper bimeromorphic morphism with X 0 smooth. Since ˙.u ı �/ is
psh on the complex manifold X 0, we have u 2 �� .<OX 0/. We will thus be done if
we prove that

�� .<OX 0/ D <OX:

Since X is normal, Zariski’s main theorem implies that ��OX 0 D OX , and hence �
has connected fibers. The claim is thus that the coboundary morphism

�� .<OX 0/ ! R1��.iR/ (4.32)

associated to the short exact sequence

0 ! iR ! OX 0 ! <OX 0 ! 0

is zero. For each x 2 X , the composition of (4.32) with the restriction morphism

R1�� .iR/x ! H1
�
��1.x/; iR

�
(4.33)
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is zero, because it factors through

H0
�
��1.x/;<O��1.x/

� D R

by the maximum principle, ��1.x/ being compact and connected. But (4.33) is
in fact an isomorphism, just because � is a proper map between locally compact
spaces (cf. for instance [Dem09, Theorem 9.10, p. 223]), and it follows as desired
that (4.32) is zero. ut
Definition 4.6.2. A .1; 1/-form (resp. .1; 1/-current) with local potentials on X is
defined to be a section of the quotient sheaf C1

X =<OX (resp. D0
X=<OX ). We also

introduce the Bott–Chern cohomology space

H1;1
BC .X/ WD H1.X;<OX/:

Thanks to Lemma 4.6.1, a .1; 1/-form with local potentials can be more concretely
described as a closed .1; 1/-form � on X that is locally of the form � D ddcu for
a smooth function u. We say that � is a Kähler form if u is strictly psh. Similarly, a
closed .1; 1/-current T with local potentials is locally of the form ddc' where ' is
a distribution. Since X is normal, and hence locally irreducible, ddc' is a positive
current iff ' is a psh function.

The sheaves C1
X and D0

X being soft, hence acyclic, the cohomology long exact
sequence shows that H1;1

BC .X/ is isomorphic to the quotient of the space of .1; 1/-
forms (resp. currents) with local potentials by ddcC1.X/ (resp. ddcD0.X/). In
particular, any .1; 1/-current T with local potentials can be (globally) written as

T D � C ddc'

where � is a .1; 1/-form with local potentials and ' is a distribution.
Note also thatH1;1

BC .X/ is finite dimensional whenX is compact, as follows from
the cohomology long exact sequence associated to

0 ! iR ! OX ! <OX ! 0

and the finite dimensionality of H1.X;OX/ andH2.X;R/.

Proposition 4.6.3. Let ˛ 2 H
1;1
BC .X/ be a .1; 1/-class on a normal complex space

X , and let T be a closed positive .1; 1/-current on Xreg representing the restriction
˛jXreg to the regular part of X . Then:

(i) T uniquely extends as a positive .1; 1/-current with local potentials on X , and
the ddc-class of the extension coincides with ˛;

(ii) if X is compact Kähler and if T has locally bounded potentials on an open
subset U of Xreg, then the positive measure T n, defined on U in the sense of
Bedford–Taylor, has finite total mass on U .
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Proof. Let � be a .1; 1/-form with local potentials representing ˛. On Xreg we then
have T D � jXreg Cddc', where ' is a �-psh function onXreg. IfU is a small enough
neighborhood of a given point of X , then � D ddcu for some smooth function u on
U , and u C ' is a psh function on Ureg. By the Riemann-type extension property for
psh functions [GR56], u C' uniquely extends to a psh function on U , and (i) easily
follows.

Point (ii) follows from [BEGZ10, Proposition 1.16] (which is in turn an
easy consequence of Demailly’s regularization theorem [Dem92]). More precisely,
choose a resolution of singularities � W X 0 ! X , where X 0 can be taken to be a
compact Kähler manifold and� is an isomorphism aboveXreg. Denoting by h��T ni
the top-degree non-pluripolar product of ��T on X 0 (in the sense of [BEGZ10]),
we then have

Z

U

T n D
Z

��1.U /

��T n �
Z

X 0

h��T ni < C1: ut

We will also use the following simple fact.

Lemma 4.6.4. Let � W X 0 ! X be a bimeromorphic morphism between normal
compact complex spaces, let A � X and A0 � X 0 be closed analytic subsets of
codimension at least 2, and let u be a psh function on .X 0 n A0/ \ ��1.X n A/.
Then u is constant.

Proof. Since A0 has codimension at least 2, u extends to a psh function on
��1.X n A/ by Grauert and Remmert [GR56]. By Zariski’s main theorem, � has
connected fibers, and u therefore descends to a psh function v on X n A, which
extends to a psh function on X since A has codimension at least 2. It follows that v
is constant. ut

4.6.2 Log Terminal Singularities

Recall that a complex space X is Q-Gorenstein if it has normal singularities and
if its canonical bundle KX exists as a Q-line bundle, which means that there exists
r 2 N and a line bundle L on X such that LjXreg D rKXreg .

Let X be a Q-Gorenstein space, and choose a log resolution of X , i.e. a
projective bimeromorphic morphism � W X 0 ! X which is an isomorphism over
Xreg and whose exceptional divisorE D P

i Ei has simple normal crossings. There
is a unique collection of rational numbers ai , called the discrepancies of X (with
respect to the chosen log resolution) such that

KX 0 �Q �
�KX C

X

i

aiEi ;

where �Q denotes Q-linear equivalence. By definition, X has log terminal singu-
larities iff ai > �1 for all i . This definition is independent of the choice of a log
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resolution; this will be a consequence of the following analytic interpretation of log
terminal singularities as a finite volume condition. As an example, quotient singular-
ities are log terminal, and conversely every two-dimensional log terminal singularity
is a quotient singularity (see for instance [KolMori98] for more information on log
terminal singularities).

After replacing X with a small open subset, we may choose a local generator 
of the line bundle rKX for some r 2 N

�. Restricting to Xreg, we define a smooth
positive volume form by setting

� WD
	
i rn

2

 ^ N

1=r

: (4.34)

Such measures are called adapted measures in [EGZ09]. The key fact is then the
following analytic interpretation of the discrepancies:

Lemma 4.6.5. Let zi be a local equation ofEi , defined on a neighborhoodU � X 0
of a given point of E . Then we have

�
���

�
UnE D

Y

i

jzi j2ai dV

for some smooth volume form dV on U .

This result is a straightforward consequence of the change of variable formula.
As a consequence, a Q-Gorenstein variety X has log terminal singularities iff every
(locally defined) adapted measure� has locally finite mass near each singular point
of X . The construction of adapted measures can be globalized as follows: let � be a
smooth metric on the Q-line bundle KX . Then

�� WD
 
i rn

2
 ^ N

j jr�

!1=r

(4.35)

becomes independent of the choice of a local generator  of rKX , and hence defines
a smooth positive volume form on Xreg, which has locally finite mass near points of
Xsing iff X is log terminal.

Remark 4.6.6. In [ST09], an adapted measure of the form �� for a smooth metric �
on KX is called a smooth volume form. We prefer to avoid this terminology, which
has the drawback that !n is in general not smooth in this sense even when ! is
a smooth positive .1; 1/-form on X . This is in fact already the case for quotient
singularities.

The following result illustrates why log terminal singularities are natural in the
context of Kähler–Einstein geometry.
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Proposition 4.6.7. Let X be a Q-Gorenstein compact Kähler space, and let ! be
a Kähler form on Xreg with non-negative Ricci curvature. Assume also that Œ!� 2
H1;1

BC .Xreg/ extends to X . Then X necessarily has log terminal singularities.

Recall that Œ!� extends to X iff ! extends as a positive .1; 1/-current with local
potentials, by Proposition 4.6.3.

Proof. The volume form !n, defined on Xreg, induces a Hermitian metric on KXreg .
If  is a local generator of the line bundle rKX near a given singular point of X ,
we can consider its pointwise norm j j on Xreg, and it is easy to check from the
definitions that

� D j j2=r!n:

Since  is local generator, ddc log j j is equal to minus the curvature form of the
metric on rKXreg , i.e.

ddc log j j D rRic.!/:

The assumption therefore implies that log j j is a local psh function on Xreg, and
hence extends to a local psh function on X by Grauert and Remmert [GR56]. In
particular, log j j is locally bounded above onX , and we thus get near each singular
point of X � � C!n for some constant C > 0. Since Œ!� extends to X , !n has
finite total mass on Xreg by Proposition 4.6.3, and it follows as desired that � has
locally finite mass on X . ut

4.6.3 The Kähler–Ricci Flow on a Log Terminal Variety

Given an initial projective variety X0 with log terminal singularities and KX0

pseudoeffective, each step of the Minimal Model Program produces a birational
morphism f W X ! Y with X; Y projective and normal, X log terminal and
KX f -ample. The following result, due to Song and Tian [ST09], shows that it
is then possible to run the (unnormalized) Kähler–Ricci flow onX , starting from an
initial positive current with continuous local potentials coming from Y (the actual
assumption on the initial current in [ST09] being in fact slightly more demanding).

Theorem 4.6.8. Let f W X ! Y be a bimeromorphic morphism between two
normal compact Kähler spaces such that X is log terminal andKX is f -ample. Let
also ˛ 2 H1;1

BC .Y / be a Kähler class on Y , so that f �˛ C t ŒKX� is a Kähler class
in H1;1

BC .X/ for 0 < t 
 1, and set

T0 WD sup ft 2 .0;C1/ j f �˛ C t ŒKX� is Kähler on Xg :
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Given a positive .1; 1/-current!0 with continuous local potentials onX and Œ!0� D
f �˛, there is a unique way to include !0 in a family .!t /t2Œ0;T0/ of positive .1; 1/-
currents with continuous local potentials on X such that

(i) Œ!t � D f �˛ C t ŒKX� for all t 2 Œ0; T0/;
(ii) setting � WD Xreg n Exc.f /, the local potentials of !t are continuous on � �

Œ0; T0/, and locally bounded on X � Œ0; T � for each T < T0;
(iii) .!t /t2.0;T0/ restricts to a smooth path of Kähler forms on � satisfying

@!t

@t
D �Ric.!t /:

Moreover, the measures!nt are uniformly comparable to any given adapted measure
as long as t stays in a compact subset of .0; T /.

This result of course applies in particular when f is the identity map and ˛ is any
Kähler class on X . This special case of Theorem 4.6.8 yields the following result
for the normalized Kähler–Ricci flow:

Corollary 4.6.9. Let X be a projective complex variety with log terminal singu-
larities such that ˙KX ample. Then each positive .1; 1/-current with continuous
local potentials !0 such that Œ!0� D Œ˙KX� extends in a unique way to a family
.!t /t2Œ0;C1/ of positive .1; 1/-currents with continuous local potentials such that

(i) Œ!t � D Œ˙KX� for all t 2 Œ0;C1/;
(ii) the local potentials of !t are continuous on Xreg � Œ0;C1/, and bounded on

X � Œ0; T � for each T 2 .0;C1/;
(ii) .!t /t2.0;C1/ restricts to a smooth path of Kähler forms on Xreg satisfying

@!t

@t
D �Ric.!t /� !t :

Moreover, the volume forms !nt are uniformly comparable to any given adapted
measure as long as t stays in a compact subset of .0; T /.

Indeed, as is well-known, setting

!0
s WD .1˙ s/!˙ log.1˙s/

defines a bijection between the solutions of

@!t

@t
D �Ric.!t /� !t

on Xreg � .0;C1/ and those of

@!0
s

@s
D �Ric.!0

s/
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on Xreg � .0; T0/, with Œ!0
s � D Œ˙KX�C sŒKX� and T0 D C1 when CKX is ample

(resp. T0 D 1 when �KX is ample).

Proof of Theorem 4.6.8. Since ˛ can be represented by a Kähler form on Y , we
may choose a closed semipositive .1; 1/-form �0 with local potentials on X such
that Œ�0� D f �˛. We thus have !0 D �0 C ddc'0 with '0 a continuous �0-psh
function on X . Given T 2 .0; T0/, we can choose a Kähler form �T representing
f �˛ C T ŒKX�, by definition of T0. For t 2 Œ0; T � set

�t WD �0 C t�

with � WD T �1.�T � �0/, which defines an affine path of semipositive .1; 1/-forms
with local potentials. For t 2 Œ0; T �, the path of currents we are looking is of the
form !t D �t C ddc't with

' 2 C0
b .� � Œ0; T �/ \ C1 .� � .0; T �/

and 'j��f0g D '0. Since � D T �1.�T � �0/ is a representative of ŒKX�, we can
find a smooth metric � on the Q-line bundle KX having � as its curvature form.
If we denote by � WD �� the corresponding adapted measure, it follows from the
definitions that for any Kähler form ! on an open subset U of Xreg we have

� ddc log

�
!n

�

�

D �C Ric.!/ (4.36)

On � � .0; T �, the equation @!t
@t

D �Ric.!t / is thus equivalent to

ddc
�
@'

@t

�

D ddc log

�
.�t C ddc'/n

�

�

:

By Lemma 4.6.4, this amounts to

@'

@t
D log

�
.�t C ddc'/n

�

�

C c.t/

for some smooth function c W Œ0; T � ! R, since

� D f �1.Y n Ysing/\ .X n Xsing/

and X , Y each have a singular locus of codimension at least 2 by normality. After
choosing a primitive of c.t/, we can absorb it in the left-hand side, and we end up
with showing the existence and uniqueness of

' 2 C0
b .� � Œ0; T �/ \ C1 .� � .0; T �/



236 S. Boucksom and V. Guedj

such that 'j��f0g D '0 and

@'

@t
D log

�
.�t C ddc'/n

�

�

on � � .0; T �. Since �T is a Kähler form, we have

�T � � WD c �0

for 0 < c 
 1, and hence �t � � for all t 2 Œ0; T �. Now let � W X 0 ! X be a
log resolution, which is thus in particular an isomorphism above Xreg, and pick a
Kähler form !X 0 onX 0. Since X has log terminal singularities, by Lemma 4.6.5 the
measure �0 WD ��� is of the form

�0 WD e 
C� �

!nX 0

where  ˙ are quasi-psh functions on X 0 with logarithmic poles along the excep-
tional divisor E , smooth on X 0 n E D ��1.Xreg/, and such that e� � 2 Lp for
some p > 1. We also have � 0

t WD ���t � � 0 WD ��� . Finally, since Œ� 0� is the
pull-back by f ı � of a Kähler class on Y , we have

Amp .� 0/ D X 0 n Exc.f ı �/ D ��1.�/ ' �:

Using Theorems 4.3.3 and 4.3.5, it is now easy to conclude the proof of Theo-
rem 4.6.8. ut
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