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Abstract Weintroduce a strengthening of K-stability, based on filtrations of the homo-
geneous coordinate ring. This allows for considering certain limits of families of test-
configurations, which arise naturally in several settings. We prove that if a manifold
with no automorphisms admits a cscK metric, then it satisfies this stronger stability
notion. We also discuss the relation with the birational transformations in the definition
of b-stability.

1 Introduction

Given a compact complex manifold X with an ample line bundle L, the notion of
a test-configuration is central to the definition of K-stability, which in turn is con-
jecturally related to the existence of a constant scalar curvature Kihler metric in the
first Chern class c¢1 (L), by the Yau-Tian—Donaldson conjecture [9,30,32]. Roughly
speaking, test-configurations for (X, L) are C*-equivariant flat degenerations of X into
possibly singular schemes. It was shown by Witt Nystrom [31] that test-configurations
for (X, L) give rise to filtrations of the homogeneous coordinate ring and in this paper
we explore the converse direction of this. The first observation is that every suitable
filtration gives rise to a family of test-configurations living in larger and larger projec-
tive spaces, and that the filtration should in some sense be thought of as the limit of
this family. See Sect. 3 for the detailed definitions.

It is natural to extend the class of test-configurations to these limiting objects for
several reasons. For instance every convex function on the moment polytope of a toric
variety can be thought of as a filtration, but only the rational piecewise linear convex
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functions give rise to test-configurations by Donaldson’s work [9]. Another reason
is that Apostolov—Calderbank—Gauduchon-Tgnnesen—Friedman [1] have found an
example of a manifold that does not admit an extremal metric, but does not appear to
be destabilized by a test-configuration. Rather it is destabilized by a C*-equivariant
degeneration which is equipped with an irrational polarization, and this can be thought
of as a filtration. Note that by the work of Chen—Donaldson—Sun [5] this issue does not
arise in the case of Kihler—Einstein metrics. Finally in [29] we studied minimizing
sequences for the Calabi functional on a ruled surface, and found that the limiting
behavior of the metrics has an algebro-geometric counterpart, as a sequence of test-
configurations. In general there is no limiting test-configuration, since in the sequence
we need embeddings into larger and larger projective spaces, but once again we can
think of the limit as a filtration. We will describe these examples in more detail in
Sect. 4. Note that Ross and Witt Nystrom [25] have done related work in a more
analytic direction. Starting with a suitable filtration, they define an “analytic test-
configuration”, which is a geodesic ray in the space of metrics in a weak sense. For
more in this direction see for example Phong—Sturm [22].

We define a notion of Futaki invariant for filtrations, extending the usual definition.
Our main result, in Sect. 6 is the following.

Theorem A Suppose that X admits a cscK metric in c¢1(L), and the automorphism
group of (X, L) is finite. Then if x is a filtration for (X, L) such that || x||2 > 0, then
the Futaki invariant of y satisfies Fut(x) > 0.

Here || x ||2 is a norm of the filtration, and the filtrations with zero norm play the role
of the trivial test-configuration. This result is a strengthening of Stoppa’s result [26],
whose conclusion under the same assumptions is that (X, L) is K-stable, since it
implies that the Futaki invariant has to be bounded away from zero uniformly along
certain families of test-configurations. In addition, similarly to Stoppa’s argument, we
use the existence result for cscK metrics on blowups due to Arezzo—Pacard [2], and the
asymptotic Chow stability of cscK manifolds with no discrete automorphism group
due to Donaldson [8].

A key new ingredient in the proof is the Okounkov body [21], and the concave (in
our case convex) transform of a filtration introduced by Boucksom—Chen [4], which
was also used in the context of test-configurations by Witt Nystrom [31]. We review
these constructions in Sect. 5.

In addition, the proof relies on the following result, which was stated as a conjecture
in an earlier version of this paper. The result is due to S. Boucksom, and the proof is
presented in the appendix as Theorem 20.

Theorem B Suppose that S C ®k>0 HO(X, L*) is a graded subalgebra which con-
tains an ample series (see Definition 17). In addition suppose that

lim k" dim S < Jim k" dim HO(X, L"),
— 00

k— 00
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where n is the dimension of X. Then there is a point p € X and a number ¢ > 0, such
that

St € HO(X, L* @ 1]Feh),

for all k, where 1, is the ideal sheaf of the point p.

In [7] Donaldson introduced a new notion of stability, called b-stability, which
is a similar strengthening of K-stability, but it allows for more general families of
test-configurations (and even more general degenerations) than what we are able to
encode using filtrations so far. In Sect. 7 we make some basic observations about the
relation with filtrations. In particular we will show that Proposition 11, which is a
variant Theorem A above, gives a strengthening of the main theorem in [6].

2 Test-configurations, the Futaki invariant and the Chow weight

We briefly recall the notion of test-configuration and their Futaki invariants from
Donaldson [9]. Given a polarized variety (X, L), atest-configuration for (X, L) isaflat,
polarized, C*-equivariant family (X, £) — C, where the generic fiber is isomorphic to
(X, L") for some r > 0. The number r is called the exponent of the test-configuration.
The Futaki invariant and the Chow weight are both computed in terms of the induced
C*-action on the central fiber (X, L¢). Namely let us write d,; for the dimension of,
and w, for the total weight of the action on H 20 (L](j). For large k, using the equivariant
Riemann-Roch theorem, we have expansions

dyi = ao(rk)* + a1 (rk)"™ ' + ...

Wk = bo(rk)" ! + by (rk)" + ..., M
where 7 is the dimension of X. We write the expansions in terms of rk instead of
k, because we think of the numbers d,; and w,, as being related to the line bundles
L% on X. For instance this way the number ay is the volume of (X, L), and does not
depend on the exponent r of the test-configuration. The Futaki invariant of the family
is defined to be

arby — apby
a; '

Fut(X, £) =
Note that the Futaki invariant remains unchanged if we replace the line bundle £ on
X by a power. The Chow weight of the family is

b
Chow, (X, L) = 20 _r. )
ao dr

In the notation for the Chow weight, the subscript r means that the test-configuration
has exponent r. We emphasize this, since unlike for the Futaki invariant, it makes a
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difference if we replace £ by a power, and later on we will not have the line bundle
explicit in the notation. In fact we have

krb
Chow, (X, £4) = =20 — 24,
ag dir
from which it is easy to check that
Fut(X) = lim Chow, (X, ch. (3)
—00

For the record we state the following definitions (see for example Ross—Thomas [24]).

Definition 1 The polarized manifold (X, L) is K-stable, if the Futaki invariant is
positive for every test-configuration, for which the central fiber is not isomorphic to
X.

The polarized manifold (X, L) is asymptotically Chow stable, if there is some ko,
such that the Chow weight is positive for all test-configurations with exponent greater
than kg, and whose central fiber is not isomorphic to X.

We will need to define a norm for test-configurations. There are various options
for this, analogous to various L? norms for functions. Given a test-configuration as
above, write A, for the generator of the C*-action on H)(?O (Lg). So Tr(Ax) = we
in our notation above. We then have an expansion

Tr(A%) = co(rk)"™*2 + ... “4)

for large k, and we define the norm || X'||; of the test-configuration by

b2
X3 = co — ﬁ Q)

This is analogous to the L%-norm of functions, normalized to be zero on constants.
Note that the norm is unchanged if we replace £ by a power.

In what follows, it will be natural to think of test-configurations slightly differ-
ently. Recall that all test-configurations of exponent r for (X, L) can be obtained by
embedding X < P(V*) for V. = HY(X, L"), and then choosing a C*-action on
V*. The test-configuration is then obtained by taking the C*-orbit of X, and complet-
ing this family across the origin with the flat limit. Let us assume that the weights
of the dual action on V are all positive (we can modify the original C*-action by
another action with constant weights, without changing any of the invariants of the
test-configuration). The weight decomposition under this C*-action gives rise to a flag

O=VCcVic...CVy=V, (©6)

where V; is spanned by the eigenvectors with weight at most i. The point we want
to make is that the test-configuration is determined by this flag. This can be seen
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as follows. Suppose that A1, A, : C* — GL(V) are two one-parameter subgroups,
with the same flag (6). Let v € V be such that A1(¢) - v = t'v for all ¢, and let
v = wp + --- + w; be the weight decomposition of v with respect to A,. Note that
only weights up to i occur in this decomposition since A, has the same flag as A;. It
follows that

OO v = w4 ),
and so

lim A2 ()" 'A (1) - v = w;.
t—0

Applying this to each weight vector for A1, we see that M (t) = ()1 (1) extends
toamap M : C — GL(V) (the fact that M (0) is invertible follows by interchanging
A1, A2 in the above argument). It then follows that the families in P(V*) defined by
the orbits of X under the dual actions of A1 and A; are equivalent. Because of this, we
will often speak of the test-configuration induced by a flag in H°(X, L"), and also we
will make use of the matrices Ay as above, as if we have already picked a C*-action
giving rise to the flag. The point of view of flags is useful more generally in GIT, see
for example Sect. 2.2 in Mumford—Fogarty—Kirwan [20].

3 Filtrations

Let (X, L) be a polarized manifold. Let us write Ry = H°(X, L¥), and

R = @Rk = @HO(X, Lk

k=0 k=0

for the homogeneous coordinate ring of (X, L). We will assume throughout the paper
that R generates R.

Definition 2 A filtration of R is a chain of finite dimensional subspaces
C=FRRCFRCRRC...CR,

such that the following conditions hold:

1. The filtration is multiplicative, i.e. (F; R)(F;jR) C Fi;jR foralli, j > 0,

2. The filtration is compatible with the grading Ry of R, i.e. if f € F;R for some
i > 0 then each homogeneous piece of f isin F; R,

3. We have

UF,-R:R.

i>0
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This notion of filtration is more or less equivalent to the one used in Witt Nys-
trom [31]. The main difference is that our indices are the negative of his, and in
addition our filtration is “scaled” so that each nontrivial piece has positive index. In
analogy to [31] we could allow more general filtrations, where F; R can be non-empty
for negative i as well, assuming a boundedness condition. Namely we assume that for
some constant C, the filtration F; Ry on the degree k piece of R satisfies F_cr Ry = {0}.
In this case we could define a new filtration by letting Fi’Rk = F;_ci Ry @ C for all
i > 0, and it would satisfy our conditions. In addition in [31] the filtered pieces are
indexed by real numbers, while ours are integers, but this is also not a significant
restriction.

Given a filtration x of R, the Rees algebra of x is defined by

Rees(x) = @(F,-R)ﬂ' C R[t].
i>0

This is a flat C[z]-subalgebra of R[], since it is a torsion-free C[t]-module (see
Corollary 6.3 in Eisenbud [11]). In addition the associated graded algebra of x is

gr(0) = EPER)/(Fi-1R).

i>0

where F_1 R = {0}. Note that both of these algebras have two gradings. One grading
comes from the grading of R, while another, denoted by i here, comes from the
filtration. The fiber of the Rees algebra of x at non-zero ¢ is isomorphic to R, while
the fiber at + = 0 is isomorphic to gr(x).

3.1 Finitely generated filtrations

Let us call a filtration finitely generated, if its Rees algebra is finitely generated. In
this case the filtration gives rise to a test-configuration for (X, L), whose total space is
Projc(;jRees(x), where the grading in the Proj construction is the grading coming from
R (which is suppressed in the notation). The central fiber of the test-configuration is
Projc(gr(x)), where again we are using the grading induced by the grading of R. The
grading given by the filtration is the one which induces a C*-action on the family as
well as on its central fiber. In order for the action to be compatible with multiplication
on C, the function ¢ must have weight —1. This implies that in terms of sections on
the central fiber, the sections in (F; R)/(F;—1 R) have weight —i. It is these weights
that are used in the calculation of the Futaki invariant.

Finitely generated filtrations therefore give rise to test-configurations. Conversely,
Witt Nystrom [31] showed that every test-configuration gives rise to a finitely gen-
erated filtration of R. Let us recall the construction briefly. We are thinking of a
test-configuration as a C*-equivariant flat family 7= : (X, £) — C, such that the
generic fiber is isomorphic to (X, L") for some power r > 0. If s € R,, then we can
think of s as a section of £ over the fiber 7 ~!(1). Using the C*-action we can extend
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Filtrations and test-configurations 457

s to a meromorphic section 5 of £ over the whole of X'. We then define

FiR, ={s €R, : 1’5 is holomorphic on X’}. (7)
Note that Witt Nystrom uses ¢ /5 instead of #'5, so his filtration is the opposite of ours.
This filtration may not satisfy that Fy R, is empty (which we require of our filtrations),
but this can easily be achieved by first modifying the C*-action on £ by an action
with constant weights. We can then extend this filtration of R, to a filtration of R as
follows. Let N be such that Fy R, = R,. Then let R C R[t] be the C[¢]-subalgebra

generated by
N
Rit™ @ (EB(F,-Rr)t"). ®)
i=1

We can then define a filtration
FiR={s€R :tseR). 9)

The point of adding in the generators Ryt is to ensure that for every s € R there is
some i such that s € F; R, i.e. that Condition (3) in Definition 2 holds. At the same
time because of the choice of N, the induced filtration on Ry, for any k£ > 0 coincides
with that obtained by the construction in Eq. (7) applied to sections of £¥. It follows
from this that Projc, R is isomorphic to the test-configuration &’ that we started with.

3.2 General filtrations

The main point of considering filtrations instead of test-configurations is that filtrations
are more general, since they are not all finitely generated. At the same time any filtration
can be approximated by finitely generated filtrations in the following sense. Suppose
that R is the Rees algebra corresponding to a filtration yx, and in addition let R; be a
sequence of finitely generated C[¢]-subalgebras of R, such that

RiCRyC...CR,

and |J;.oRi = R. Then using the construction in Eq. (9) we obtain a family of
induced filtrations y;, and we think of x as the limit of the sequence ;.

Given a filtration y it will be convenient to choose one specific approximating
sequence in our constructions.

Definition 3 Given a filtration x, the approximating sequence x * is the sequence of
finitely generated filtrations defined as follows. For each k we let x ©) be the finitely
generated filtration induced by the filtration x restricted to Ry as above, in Egs. (8)
and (9).

Equivalently, we can think of x ¥ as the test-configuration of exponent k, corre-
sponding to the filtration on Ry as described at the end of the last section.
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We will use the following comparison between x ®) and y many times. For any /,
let us write Fi’ Ry and F; Ry for the filtrations on Ry; given by x *) and X respectively.
Then by construction Fi/Rk = F; Ry for all i, and Fi’sz C F;Ry forl > 1. Indeed,
once we fix the filtration X(k) on Ry, then for all / > 1 and i, the space F i’Rkl is
the smallest possible subspace of Ry;, which is compatible with the multiplicative
property of x ®.

Definition 4 Given a filtration y, we define the Futaki invariant, and k™ Chow wei ght
of x to be

Fut(x) = lim inf Fut(x %, £)
k—o00

Chowy (%) = Chowx (x®, L),

where (x ®, £) is the test-configuration of exponent k defined by the filtration on Ry
induced by x. We also define a norm of the filtration by

%1l = liminf || ©],.
k— 00

We will see in Lemma 7 that the lim inf in the definition of the norm is actually a limit.

There are other possible numerical invariants of a filtration, related to the Futaki
invariant. For instance in Donaldson’s work [6] the relevant quantity is the asymptotic
Chow weight of a filtration, which is lim inf;_, oo Chowy (). We will explain this in
Sect. 7.1. Note that if the filtration is finitely generated, then the asymptotic Chow
weight is equal to the Futaki invariant, because of Eq. (3).

Example 1 For filtrations, the role of trivial test-configurations is played by fil-
trations with zero norm. This includes filtrations which are limits of non-trivial
test-configurations. For example on P!, we can define the filtration (where R; =

H(Ok))
F; Ry, = {all sections vanishing at (0 : 1)},
for0 <i < k, and
Fi Ry = Ry,

fori > k. Itis not hard to check that the norm of this filtration is 0. The corresponding
sequence of test-configurations is simply deformation to the normal cone of the point
(0 : 1), with smaller and smaller parameters as k — oo (see Ross—Thomas [23]).
While none of these test-configurations is trivial, it is reasonable that their limit should
be thought of as being trivial, and in particular the Futaki invariant of this filtration is
zZero.

Example 2 On the other hand there are also non-trivial test-configurations which have
zero norm. For example the test-configuration for P!, whose central fiber is a double
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line (i.e. the family of conics z> — txy = 0 as t — 0) has zero norm, even though
it has non-zero Futaki invariant. Note that after taking the normalization of the total
space, the test-configuration becomes a product configuration.

We say that a filtration yx is destabilizing, if || x ||> > 0, and Fut(x) < 0. We expect
that if X admits a cscK metric in the class ¢i(L) and has no holomorphic vector
fields, then no destabilizing filtration exists. This is a slightly stronger statement than
saying that (X, L) is K-stable, since certain limiting objects are also required to have
positive Futaki invariant. On the other hand the condition || x |2 > 0 does exclude
some non-trivial test-configurations which are considered in K-stability, like the one
in Example 2. At the same time it was pointed out by Li—Xu [19] that even in the
definition of K-stability one should not consider test-configurations such as these by
restricting attention to test-configurations with normal total space. The reason is that
there are always certain non-normal test-configurations, which are non-trivial, but
have zero Futaki invariant. We therefore believe that the condition || x ||2 > O is very
natural even for test-configurations.

4 Examples

For toric varieties Donaldson [9] showed that any rational piecewise linear convex
function on the moment polytope gives rise to a test-configuration of the variety. We
will show that at the same time any positive convex function on the polytope gives
rise to a filtration of the homogeneous coordinate ring. Since adding a constant to a
rational piecewise linear convex function only changes the test-configuration by an
action on the line bundle with constant weights, it is not restrictive to only consider
positive functions.

Suppose that f : A — R is a positive convex function, where A is the moment
polytope corresponding to the polarized toric variety (X, L). For us A is closed, so f
is automatically bounded, although in Donaldson’s work [9] some unbounded convex
functions also play a role. At the same time we can allow functions which are not
continuous at the boundary of A. A basis of sections of H 0(X, L¥) can be identified
with the rational lattice points in A N %Z". If

1
aeAN-=-7",
k

write s, for the corresponding section of LK. Now on R, = H(X, L) define the
filtration as follows:
F;Ry = span{sy : kf () <i}. (10)

The convexity of f ensures that the filtration of the graded ring of (X, L) defined in this
way will satisfy the multiplicative property. The other two conditions in Definition 2
also follow easily.

We can also see what the sequence of test-configurations are, which approximate
the filtration defined by f. Let f; : A — R be the largest convex function which on
the points ¢ € AN %Z” is defined by
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1
(o) = ZTkf (@)].

Then the filtration defined on Ry by (10) using the function f is the same as that
obtained by the same formula, but using the function fi. So the test-configuration
obtained from the filtration on the piece Ry can be seen as the toric test-configuration
defined by the function fi, which is a rational piecewise-linear approximation to the
function f. As for the Futaki invariants, Donaldson showed that the test-configuration
corresponding to fj has Futaki invariant up to a constant factor given by

Fut(fy) = / fido —a / m
9A A

where do is a certain measure on the boundary, and a is a normalizing constant
(a = ay/ap in the notation of Eq. (1)). Since f is a decreasing sequence of functions
converging to f pointwise, we have

lim Fut(fk)=/ fdo—a/ fdu.
k—00 A A

In [9] this functional plays an important role even when defined on convex functions
which are not piecewise linear. It is therefore useful that it can still be interpreted
algebro-geometrically, as the Futaki invariant of a non-finitely generated filtration.

Another instance where more general convex functions appear is in the study of
optimal test-configurations for toric varieties [28]. Note that the optimal destabilizing
convex functions constructed in that paper are not known to be bounded, so the filtration
given by Eq. 10 might not satisfy Condition (3) in Definition 2. We hope that with
more work one can show that the optimal destabilizing convex functions are actually
bounded, but in any case this filtration should be thought of as being analogous to the
Harder—Narasimhan filtration of an unstable vector bundle. It is tempting to speculate
that in general, on any unstable manifold (X, L) one can define such an optimal
destabilizing filtration.

This picture can be extended to bundles of toric varieties, in particular to ruled
surfaces, following [27]. In this way, the “optimal destabilizing test-configurations”
that we found in [29] can also be seen as filtrations. In addition Apostolov—Calderbank—
Gauduchon-Tgnnesen—Friedman [ 1] found an example of a P!-bundle over a threefold
that does not admit an extremal metric, but appears to be only destabilized by a non-
algebraic degeneration (it has not been shown that there are no destabilizing test-
configurations). This also fits into the above picture applied to toric bundles, and thus
can also be thought of as a filtration.

5 The Okounkov body

The Okounkov body [21] is a convenient way to package some information about
the graded ring R and its filtrations, as shown by Boucksom—Chen [4], and Witt
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Nystrom [31]. In this section we briefly recall the main points of this, but see [4] and
also Lazarsfeld—Mustatd [18] for more details.
First we recall the construction of the Okounkov body. Choose a point p € X and
a set of local holomorphic coordinates zy, ..., z, centered at p. Let s € H 0(X ,L)
be a section which does not vanish at p. Then every section f € H%(X, L¥) can be
written near p as
f =sk. (power series in 21, ..., Zn)- (11D

We use the graded lexicographic order on monomials. This means that monomials
with larger total degree are larger, and monomials with the same degree are ordered
using the lexicographic order. Writing R = @ H%(X, L*), we can define a map

v:R— 7",

such that v( f) is equal to the exponent of the lowest order term in the expansion (11).
For every k > 0 we then define the subset P, C Z" given by

Pe={(f) : feR}CZ"
The Okounkov body is defined to be the closure
P=J Tp
k>1

The property that v(fg) = v(f) 4+ v(g) can be used to show that P is a convex body
in the positive orthant of R". Note that the Okounkov body P will in general depend
on the choice of the point p and the choice of local coordinates z;.

Let us write A, C R” for the n-simplex

Ay = {(al»--~aan) D a; >O,Za,~ < 8}-
It will be useful to know that P contains A, for small € and for this it is important that
we are using the graded lexicographic order and not the ungraded version.

Lemma 5 For sufficiently small ¢ > O we have A, C P. More precisely there exists
some ¢ > 0 such that for sufficiently large k we have Ay, NZ" C Py.

Proof Let ¢ > 0 be a small rational number, smaller than the Seshadri constant of p
with respect to L (in other words the Q-line bundle L — ¢E on the blowup B/, X is
ample). Let Z,, be the ideal sheaf of p. If k is such that ke is an integer, consider the
exact sequence

00— IIIESL" — LF— Okep ®Lk|p — 0.

For large k the cohomology group H!(X, I;kLk ) vanishes, so the map

HY(X, L") — HY(X, Op @ L))
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is surjective. On the other hand this simply maps a section of L to its (ke — 1)-jet at p.

It follows that for any n-tuple a = (ay, ..., a,) € Z" witha; > 0and D>_a; < ke — 1
there exists a section f € H O(X , Lk) such that v(f) = a. This implies that the
Okounkov body P contains Ag. O

Now suppose that we have a filtration {F; R} on R as in Definition 2. Boucksom—
Chen [4] showed how this gives rise to a convex function on the Okounkov body (or
concave in their case, since our conventions differ). Briefly the construction goes as
follows. For every r > 0 we can define a graded subalgebra RS’ C R whose degree
k piece is

ngt:FUkJRk' (12)

Using only sections of RS we can repeat the construction of the Okounkov body, and
we will obtain a closed convex subset P C P, which will be non-empty as long as
t > ty for some constant fy. The convex transform of the filtration is defined to be the
function G : P — R given by

G(x) = inf{t : x € PN}, (13)
Then G is convex, because of the following convexity property:
PSS +(1 - t)P<S2 c pSisi+-0s

It follows that G is continuous on the interior of P, and in [4] it is shown that G is
lower semicontinuous on the whole of P. The restriction of G to the simplex A, from
Lemma 5 is also upper semicontinuous (see Gale-Klee-Rockafellar [12]), so in fact G
is continuous near the corner 0 € P.

We can arrive at the convex function G in a slightly different way too. Namely for
each k, we let G, : P — R be the convex envelope of the function

1
=P R
8k X k= (14)

o +— min{i/k : thereis f € F; Ry such that v(f) = ka},

where we can let Gy = oo outside the convex hull of %Pk. It can then be shown that
Gy > G for all k, and Gy — G uniformly on compact subsets of the interior of P,
but G might not converge to G on the boundary of P.
A crucial point (see [31, Lemma 3.3]) is that for each k > 0 and any function T
we have
D T(i/k) - (dim FiRy — dim Fi 1 Ro) = D T(gi(@)). (15)
il aG%Pk
In particular, if the filtration comes from a test-configuration, and we write Ay for the
generator of the induced C*-action on on the sections over the central fiber, then

Tr(Ag) = Z—i - (dim F; Ry — dim F;_Ry) = —k Z gk (@). (16)

izl ae%Pk
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At the same time for continuous 7', by [4, Theorem A] and (15), we have the asymptotic
result q
Jim = D T(gk(@) =/PToGdu, (17)
oe % Py
where 1 is the Lebesgue measure on P. This shows for instance that if x was induced
by a test-configuration, then in the expansions (1) we have

ap = Vol(P), by = —/ Gydu, (18)
P

where G is the convex transform of the filtration x . Note that the coefficients a; and
by cannot be expressed in terms of the Okounkov body and the convex transform in
general. This is only possible for very special filtrations, for example the filtrations on
toric varieties that we discussed in Sect. 4.

We will often start with a filtration x, and look at the corresponding sequence of
test-configurations x ®) obtained from the induced filtration on Rj. The following
lemma gives some simple properties of the corresponding convex transforms.

Lemma 6 Let x be a filtration on R, and for each k, let x X be the test-configuration
given by the filtration on Ry. Let us also write x® for the corresponding filtration
that we defined in Sect. 3, which is canonically defined on the Veronesi subalgebra
@,20 Ry;. For each [ we can then construct functions

1
k
gz,g,( ¥ 71’1 — R,

according to (14), and also we have the convex transforms G, G®. These functions
satisfy the following properties:

1. We have g,ﬁk) = gk, and g,(cll() > gl foreachk, 1.

2. If the filtration x satisfies R1 C FyR, then g,ilz) < N for all k, 1. In addition
GH® < N for each k.

3. GW > G forall k, and G® — G uniformly on compact subsets of the interior
of P.

Proof Let F;R be the filtration x, and for a fixed k write F!R for the filtration Pl
Then by the construction of x ®) we have Fi’ R = F; Ry, for each i since the filtrations
on Ry induced by x and X(k) coincide. In addition, for each/ > 1 and i, Fl./ Ry is the
smallest possible subspace, such that the multiplicative property holds for the filtration
x Tt follows that

F!Ry C F; Ry foreachi,l > 1. (19)

We now prove the 3 statements that we need.

1. Since F{Rkl C FijRy for all i, > 1, we have glgll() > gk- In addition equality

holds for [ = 1 since F/ Ry = F; Ry for all i.
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2. If Ry C FyR, then the multiplicative property implies Ry C Fyy R. On Ry the
filtrations x *) and x coincide, so we also have Ry C F, iy R. Using the multiplica-
tive property again, Ry; C F}; R. This implies that g,ill‘) < N for all £, . At the
same time, using the notation (12) for the filtration X(k> we have R,§N = Ry, sO

from the construction of the convex transform G*) we have G® < N.
3. The fact that G® > G follows from (19) and the definition of the convex trans-

form. Moreover G is bounded above by the convex envelope of g,ﬁk) = g, but
on compact subsets of the interior of P, the convex envelopes of g converge to G
as k — oo. O

One consequence is the following formula for the norm of a filtration .

Lemma 7 Given a filtration x, its norm || x ||2 can be expressed in terms of the convex
transform G as follows:

lxll3 = /P (Gy — Gy du, (20)

where Ex is the average of Gy on P.

Proof Recall that we defined the norm || x |2 by approximating x using finitely gen-
erated filtrations x®, induced by the filtration x on Ry. Let us write c(()k) for the
constant in the expansion (4) corresponding to the test-configuration x ©, and G®
for the convex transform of x ®). From (15) and (17) applied to T'(x) = x2, we get

C(()k) _ / G®)Y2 dp.
P

Using also the formulas analogous to (18) for %% and the definition of the norm in
(5), we get

1 2
®3 = [ (GP)Ydu— /G(k)d .
X113 /P( ) dp VO](P)( . Iz

By Lemma 6 we have G® — G » uniformly on compact subsets of the interior of P,
and also all the functions are uniformly bounded by the same constant. Therefore the
formula (20) follows by letting k — oo. O

It is important to note that the Okounkov body P and the convex transform G,
will in general depend on the point and local coordinates chosen in the construction of
the Okounkov body. The volume of P and the integrals in (18) and (20) are however
independent of these choices.

We record the following lemmas, which we will use in the next section.

Lemma 8 Suppose that x is a filtration for (X, L), and G, is its convex transform.
The essential supremum of G depends only on x and not on the data (the point p
and local coordinates z;) used in constructing the Okounkov body.
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Proof Recall that by the definition in Eq. (13), we have
Gy(x) =inf{t : x € Pgt},

in terms of the convex sets PS' C P of the Okounkov body, corresponding to the
graded subalgebras RS' C R defined in (12). We claim that the essential supremum
of G, is given by

T =inf{t : PN = P}. 1)

Indeed it is clear that esssup G, < T. On the other hand if s < T, then PSS # P
and these being closed convex bodies there must be an interior point y € P such
that y ¢ PSS, In particular G, (y) = s and since G, is convex, this implies that
esssup G, > s. Since s < T was arbitrary, we getesssup G, > T.

To see that 7', defined by (21), is independent of the choice of Okounkov body, note
that PN = P if and only if vol P! = vol P, since both are closed convex bodies.
Moreover the volumes of these convex bodies can be computed as the asymptotic
volume of the corresponding linear series (cf. Eq. (17) with 7 = 1):

1
vol PS' = lim — dim RS
k—o00 k"

In turn the latter asymptotic volume is clearly independent of the choice of Okounkov
body. O

Lemma 9 Suppose that x is afiltration for (X, L). Write G, for the convex transform,
and gy for the function defined in (14). If

> gi@) = Gydim R, <0 (22)

aG%Pk
for infinitely many k, then (X, L) is asymptotically Chow unstable.
Proof As in Lemma 6, consider the test-configuration x ¥) given by the induced fil-

tration on Ry. Let us also write Ay; for the generator of the C*-action on Ry; given by

the test-configuration x ©). Writing gl(k) for the functions corresponding to x ®) as in
Lemma 6, we have

Tr(Aw) = -kl Y g (@),

1
anPkl

from Eq. (16). From Lemma 6 we then get

Tr(Au) < =kl D gu(@),

1
O[EHP](]
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but crucially, equality holds for / = 1. It then follows from Eq. (17), that

——Tr(A G,du.
(kl)"+1 1(Ax) < /P xdup

From the defining formula (2) for the Chow weight of this test-configuration, we get

Chow (x®) < —

Vol(P)

OtE Pk

Since this is the Chow weight of a test-configuration with exponent k, and by assump-
tion this expression is negative for infinitely many %, it follows that (X, L) is asymp-
totically Chow unstable. O

6 Extending Stoppa’s argument

In this section we will prove Theorem A, which we state again here.

Theorem 10 Suppose that X admits a cscK metric in ¢1(L) and the automorphism
group of (X, L) is finite. If x is a filtration such that || x |2 > 0O, then Fut(x) > 0.

Proof We will first assume that the dimension n > 1. Choose a point in X and local
coordinates so that we can construct the Okounkov body P of (X, L), and the convex
transform G, of the filtration. If || x [l > 0, then according to the formula (20), the
function G, is not constant. Let M be the essential supremum of G, and G, its
average. Let us write

9
A=—M G,,
10 +10 X

and consider the subalgebra RSA C R. As before, write PS4 for the convex subset
of P obtained by performing the Okounkov body construction using only sections of

RS, By the construction of G » and the choice of A, the subset P SA ¢ P isaproper
subset. It follows that

lim k" dim RS < lim k" dim Ry,

k—o00 k—o00
since these limits are just the volumes of PS4 and P. In addition it is shown in [4]

that RS4 contains an ample series (see Definition 17). Applying Theorem 20 we find
a point p € X and a number ¢ > 0, such that

RS c HOX, LF @ 1[F)), (23)

for all k.
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We can now go back and use the point p and any choice of local coordinates to
construct the Okounkov body P, noting that the statement (23) is independent of these
choices. In addition the essential supremum M is unchanged by Lemma 8. We can also
assume that ¢ is small enough such that the simplex A, satisfies A, C P according to
Lemma 5. Note that in constructing the Okounkov body, the sections f € Ry which
vanish to order at least [ke] at p all satisfy

1 -
Ev(f ) € P\A;,
so the convex transform (constructed again with the new choice of p) satisfies
Gy(x) > Aforx € A, (24)

Now consider the sequence of test-configurations obtained by restricting the filtra-
tion x to Ry for each k, and write x ¥ for the corresponding filtrations. We will argue
by contradiction, assuming that

lim inf Fut(x ®) = 0. (25)
k>0

Following [26] the key step is to obtain from this a test-configuration for the blowup
of X at a suitable point. Let § > 0 be small. Then we can choose k as large as we
like, such that Fut(x ®) < §, and to simplify notation, we let = x ®). Write G, for
the convex transform of 1. Given the point p and parameter &, we can consider the
filtration induced by 7 on the subalgebra

P H'x, L e 1[5 ¢ P R

k>0 k>0

If ¢ is rational and less than the Seshadri constant of p in (X, L), then this gives rise
to a filtration on the blowup (Bl,X, L — ¢E), where E is the exceptional divisor.
Our goal is to prove that if § and ¢ are sufficiently small, then we can use Lemma 9
applied to this filtration to show that the blowup is not asymptotically Chow stable.
This will give us the required contradiction, since by Arezzo-Pacard’s result [2] the
blowup admits a cscK metric for small €, and so is asymptotically Chow stable by
Donaldson’s result [8].

To compute the expression (22) on the blowup, note that we can simply work on
the part of the Okounkov body P given by P\ A.. We want to show that the numbers

G,dun
Jeva, Gudn dim HO(X, L™ @ 1[™1)  (26)

Chn=" 2, &nle@)- Vol(P\A,)

aeP\A,NL P,
are negative for large m, where the functions g,, are constructed from the filtration

n according to (14). We will focus on those m for which me € Z. At this point is it
convenient to introduce normalizations G, = G, — Gy, and g,, = g, — G, so that
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G:n has zero average. It is easy to see that we can then compute Ch,, using g,, and
G, and we get the same formula:

G du
Jra, Grdt dim HO(X, L™ @ 1[™).  (27)

Chn=" 2,  Zn@ - Vol(P\ A,)

aeP\ANL P,

Replacing g, by g, corresponds to changing the C*-action on the test-configuration 7
by an action with constant weights, and this leaves the Futaki invariant unchanged. The
advantage is that now in the expansion (1) for n we have by = 0, and Fut(n) = —b1/ay,
where b is given by (see (16))

D> @) =—bim" + OK(" ). (28)

(){E%Pk
At the same time from the Riemann-Roch Theorem we have
dim H(X, L™ ® 1)) = (ap — Vol(A))m" + O (m" ™). (29)
It will be useful to define two boundary pieces of A,, namely let dypA, consist of
those faces which meet in the origin, and let 91 A, be the remaining face. In addition
we define a boundary measure do, which equals the Lebesgue measure on the faces

in dp A, and is a scaling of the Lebesgue measure on the remaining face 91 4., such
that the volume of each face is 8”_1/(71 — D). Using that g,, > G, we have

> @)= > Zml@) - > (@)

aeP\ANL P, aelp, a€(A\D AN L Py,
< D Emla) - > Gy(@)
aelp, ae(A\d1 AN L Py,
~ 1 ~
:—m”/ Gydp +m"! (—b1 —-/ Gydo
3 2 0 Ae
1 ~ n—=2
+= Gpdo )+ O0@m"™). (30)
2 01 4¢

Here we used an Euler—Maclaurin type formula for the sum of G,, over lattice points,
see for example Guillemin—Sternberg [13]. Note that the sign of the integral over 9; A,
is different because we need to compensate for the fact that the lattice points on 91 A,
are missing from the sum.

It will now be convenient to write M = G, + 101, andso A = G +94, where G,
is the convex transform of the filtration we started with. From Lemma 6, G, — G,
uniformly on compact subsets of the interior of P as k — oo, but also G, > G, so
if k is chosen to be large enough, we have
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Gy(x) = G, + 91 forx € A,
g ! €2
(n— 1

/ Gydo < (M +8)Vol(d1A;) = (G, + 10A +6)
01A¢

where we also used (24). Since 6,, — Ex as k — oo, we can choose k large enough
so that (31) implies _

Gp(x) 291 -4 forx € Ag,
g~ ! (32)

G,do < (10% +28) ———,
/Mg ! (n — 1!

Using these bounds in (30), we have, assuming n > 2 and § is sufficiently small,

_ _ 4 n—1 2 n—1
> gm(a)g—m"/ Gydp +m"! (5— & snt2e )
A

(n—1! 2(n — 1!
aeP\A.NLp,

+ O (mn—Z)

g—m"/ éndu—i—m"*] (5—
Ag

n—1

(n—1)!

) + 0m"?).

_ (33)
For the other term in the expression (27) for Ch,,, we have (using that G, has integral
Zero)

fP\AE énd:“

n n—1 _n ~ _ noon—1 4
Vol(P\A,) [VOI(P\A&“)’" + O@m )]2 m / G,du—Ce"m"™', (34)

A

for some C, at least for large enough m. Combining (33) and (34) in the formula (27)
we have

A n—1
Chyy < m"™! (5 - (ng_ it CE”) +Oom"?).

Choosing ¢ sufficiently small, it follows that if § is small enough (i.e. we chose k large
enough when setting n = x®), then Ch,, < 0 for all large m. This concludes the
proof, in the case when X has dimension n > 1.

Suppose now that n = 1. We then take the product of X with any cscK manifold,
which has finite automorphism group. For example we can take ¥ = X x X, with the
polarization Ly = n{'L ® 7L, where 71, 75 are the two projection maps. Writing
RY = >, R,f for the homogeneous coordinate ring of (Y, Ly), we have RY = Ry QRy.
A filtration x for R naturally induces a filtration x ¥ for RY, simply by letting

FiR] = (F;Ry) ® Ry,

for each i, k. Moreover this operation commutes with taking the sequence of finitely
generated filtrations induced by a given filtration. In other words, the filtration
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(x D) coincides with the filtration (x¥)®. Now suppose that x is given by a test-
configuration, and x ! is the induced test-configuration for Y. Writing A; and A ,f for
the generators of the corresponding C*-actions, we can calculate that

Tr(A)) = (dim Ry)Tr(Ay),
and
Tr((A))?) = (dim Ry)Tr(A3?).
From these it is straight forward to calculate that

Fut(x?) = Fut(x)
Ix¥1l2 = Vaollx 2,

where ag is the volume of (X, L) as usual. It follows that the n = 1 case is a conse-
quence of the n = 2 case that we already proved. O

As we mentioned before, there are many alternative possibilities for defining a
Futaki type invariant of a filtration. In the next section we will consider the relation
of our work to Donaldson’s notion of b-stability, and for this the relevant numerical
invariant is the asymptotic Chow weight, which we define as

Choweo (x) = lim inf Chow(x ©). (35)
k—00

Here as in Definition 3, x ) is the test-configuration induced by the filtration x by
restricting x to Rj. Note that if x is a finitely generated filtration, then because of (3)
we have Chow, () = Fut(x), but in general it is not clear what the relationship is
between the two invariants.

Proposition 11 Suppose that X admits a cscK metric in ¢1(L) and the automorphism
group of (X, L) is finite. Then if x is a filtration for (X, L) such that || x||2 > 0, then
Chow(x) > 0.

Proof of Proposition 11 The proof of this proposition is not too different from the
proof of Theorem 10. In fact we can follow the proof of Theorem 10 word for word
up to Eq. 30, except in Eq. 25 we use the Chow weight instead of the Futaki invariant,
and now we will have to control Ch,, for m = k. In other words we will not be able
to take m much larger than k, as was done in the proof of Theorem 10. This makes
the proof more difficult and the convexity of the convex transform plays a crucial role
when we apply Lemma 12 below.

Let us fix a small § > 0, and suppose initially that n > 1. We can then find
arbitrarily large k, such that the test-configuration n = x® satisfies Chow(n) < 8.
As in the proof of Theorem 10, we introduce normalized functions 5,, =Gy, — 5,,,
and gy = gr — 6,,. Then the Chow weight of 5 is given by
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k ~
’ aE%Pk

Moreover using the notation from the proof of Theorem 10, if we choose k large
enough, then we can assume that G, satisfies similar bounds to (31):

Gy(x) 291 -6 forx € A,

~ ne"~! (37)
/ Gydo < (10A 4 28)Vol(A\Ag—p/k) < (10A + 28) ———,
A\Ae—n/k k(l’l - 1)'

for some A > 0. As before, we want to control Chy, given by the formula (27), with k
instead of m. We also have the inequality (34) as before, so if k is large enough, then

Ch< > &l +k"/ Gydp + Ce"k" 1. (38)
a€P\ANL Py A

In this equation we have

> m@= D mn@w- D %@, (39)

a€P\A N} Py acl Py a€(Ae\d AN Py

and now we bound the last sum in a different way from what we did before, using
Lemma 12 below. Note that if k is large enough, then by changing ¢ slightly, we can
assume that ke € Z. For example we can replace ¢ by %(ke} without changing the
last sum in (39). Then

1 1
(A\014:) N %Pk = A1k N EPk~

Using the bound (37) together with Lemma 12 applied to the simplex A, /¢, and
that g > G, on %Pk, we have

(3n — 1e"!

_ Clkn_2
2(n — 1) ’

Z gk(a) > k”/ Gydu+ k"1 (91 — )

A
aGAE,I/kﬂ%P]‘ e-n/k

where we can choose C; to be independent of ¢ and k. Using (37) again, we get

n—1

> a@ >k”/ Gydu — k"0 + 25y
. A, n—1)!
a€Ae—1/kNy Px
_ (Bn — De"~! -
KlOon — ) ——— — C1k"
+ ( ) 2= 1) 1
~ 50 Tn—1 n—1
>k”/ Gpdp + k"' = — “ ° — C1k"2,
A, 2 2 (n—1)!
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where we used that n > 2. Putting this together with (39) into the bound (38) for Chy,
if § is sufficiently small we get

gn—l

(n—1)!

Chi < D gile) — k""" (zx

1
a€g P

+ Ce") + C1k" 2.

Using the bound (36) on the Chow weight of 7, this implies

n—1

Chy < k" ! |:8V01(P) - 2)\( + CS"} + k"2,

n—1)!

where C; can be chosen to be independent of §. Now if we choose ¢, and then §
sufficiently small, then the leading coefficient is negative. So if k is sufficiently large
we will have Chy < 0, and just as in Theorem 10, this gives a contradiction. In addition
just as before, the n = 1 case can be reduced to the higher dimensional result. O

We used the following lemma.
Lemma 12 Suppose that for some rational ¢ € (0, 1), the function f is convex on the
simplex

Ac={(x1,...,x5) 1 x; =20, x1+...+x, <c} CR",

and f(x) = L for all x € A.. There is a constant C(n) depending only on the
dimension such that for all large k for which kc € Z we have

_ n—1
E fla) = kn/ fdu +k”’]L&
] A 2(n —1)!
aeANgZ! oy

— K" 2C(n)L.

With some more work it is likely that the integral can be taken over A., with a
corresponding change in the k"~ term, but for us this simpler result is enough. Such
expansions for Riemann sums over polytopes are well known (see e.g. Guillemin-
Sternberg [13]), but usually the error term depends on derivatives of the function. The
point of this result is that if f is convex, then we have better control on the error term.

Proof First let us assume that f > 0. If Q is a cube with volume 1/k", then Jensen’s
inequality implies that

1
5 X swek [ i (40)
v vertex of Q Q

Now the key point is that we can cover the simplex A ._ .1 with cubes whose vertices
k

arein A N %Z”. Applying (40) to all of these cubes, we obtain

> f@= k" / fau, 1)
aeAEﬂ%Z" AC—"T_I
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since we will have to count each vertex at most 2" times. Vertices near the boundary
only need to be counted fewer times, but since f > 0, counting them more times just
increases the sum.

In general if f > L, then we apply (41) to f — L, and we get

PINNICEY|

A n-1

1
fdu—K'LNoNA _u1) + L #(Ac N 22, (42)
aeA‘;ﬁ%Z” Tk

where we know that the number of lattice points in A, N %Z” is given by

1 e (4 D!
#(A: N ;Z”) = R

n—2
. 20— D) + O(K" ™).

At the same time

n n—1

Vol(A, s1) = — — + Ok,
k n! !

k(n —2)

Using these expansions in (42), we get the required result. O

7 Relation to b-stability
7.1 Birationally transformed test-configurations

In this section we will show how the main result in Donaldson [6] can be improved
using Proposition 11. This result shows that a manifold admitting a cscK metric satis-
fies a weak version of b-stability, which is a notion introduced in Donaldson [7]. We
quickly recall one ingredient in the definition of b-stability.

The starting point is a test-configuration 7 : (X, £) — C for the pair (X, L), and
for simplicity we assume that the exponent of the test-configuration is 1. In addition,
suppose that the central fiber X has a distinguished component B. Using this data,
Donaldson defines a family of test-configurations (X, £;) — C, which we will recall
below. Given the same data, we can also define a filtration for the homogeneous
coordinate ring, similarly to the construction of Witt Nystrom in Eq. 7. As before,
given any s € H%(X, L¥) we extend this as a C*-invariant meromorphic section 5 of
£*, and now we define for all i, k

FI-B Ry ={s € Ry : #'s has no pole at the generic point of B}. 43)

We might need to modify the C*-action on £ by an action with constant weights to
ensure that this filtration satisfies Fy R = C. Let us write x for the resulting filtration.
We claim that the filtrations of Ry for £ > 1 induce a sequence of test-configurations
x®, which coincide with the birationally modified test-configurations defined by
Donaldson.

@ Springer



474 G. Székelyhidi

One way to see this is using the point of view of the Rees algebras. Let us write
F; R for the filtration corresponding to our test-configuration X'. Then we can think
of

P F Rt

i>0

as all the holomorphic sections of £¥ over X, and

B ROt

i=0

as those meromorphic sections of £¥, which only have poles on X\ B. In the notation
of [6], we can write this as the sections of L5 ® A™ for some large enough m, where
A™ is the sheaf of meromorphic functions with poles of order at most m along X\ B.
In Donaldson’s construction we need to take sections o, which give a basis in each
fiber of 7, (L% ® A™). These sections give an embedding of X x C* into PN x C
where dim Ry = N + 1, and the new family (X, L) is the closure of the image of
this embedding. More explicitly, let us choose a decomposition of Ry as a direct sum

Ry = @ Ry,

where for each i we have

FER, = @ R
J<i

Then choose a basis {0, } for R such that each o, is in one of the Ry ;,i.e. 0, € Rk,
for some i,. We can then define o, = t'“o, for each a. Since these span the space of
sections of £¥ ® A™ over the central fiber under the restriction map

PFE RO — PDFPRO/(FE Ro),

i>0 i>1

they give a basis of sections for m.(£¥ ® A™) at each point. The embedding of
X x C* — PV x Cis then given by

(x, 1) = ([t%cp(x) :...: t"Vony(x)], 1).

The closure of this is precisely the test-configuration for X given by the C*-action with
weights ao, ..., ay, which is the same as the test-configuration given by the filtra-
tion F I.B on Ry. Therefore the sequence of birationally transformed test-configuration
(Xx, Ly) coincides with our test-configurations y ).

From this point of view, the main result of [6] can be rephrased as follows. Write
Ay, for the generator of the C*-action on the central fiber of the test-configuration y ),
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and let Nj be the difference between the maximum and minimum eigenvalues of Ag.
Then the result in [6] is the following

Theorem 13 (Donaldson [6]) Suppose that X admits a cscK metric in c¢1(L), and the
automorphism group of (X, L) is finite. Assume that central fiber X( above is reduced,
and the component B does not lie in a hyperplane in P(H°(Xo, Lo)*). Moreover,
suppose that for each k, the power Ig of the ideal sheaf of B in X coincides with the
sheaf of holomorphic functions vanishing to order k at the generic point of B. Then
there is a constant C > 0, such that for all k we have

Chow(x®) > Ck~' Ny. (44)

It is natural to define a norm || x || of the filtration x by
i lim inf lN
= liminf — Nj.
Alloo k—oo k k

Then (44) is equivalent to saying that if || x ||cc > 0, then Chows,(x) > 0, using the
asymptotic Chow weight we defined in Eq. (35).

We will now show that Proposition 11 implies this theorem, even without the
condition on the powers If; of the ideal sheaf of B.

Proposition 14 Suppose that X admits a cscK metric in ¢ (L), and the automorphic
group of (X, L) is finite. Suppose that we have a test-configuration for X with reduced
central fiber X¢. Suppose that X contains an irreducible component B, which is not
contained in a hyperplane in P(H%(Xo, Lo)*). Construct the filtration x as above. If
lxlloo > 0O, then Chowso(x) > O.

Proof We just need to show that | x|[2 > 0 in order to apply Proposition 11. If
Ixllco > O, then the test-configuration is necessarily non-trivial, and since B is not
contained in any hyperplane the C*-action on H°(B, L) is non-trivial (i.e. it does
not have constant weights). We can choose a C*-invariant complement of the space
of sections vanishing on B inside H 0(Xo, L’é). Let us write

H(B, LY) ¢ H(Xo, LY)

for this complementary subspace. By the construction, the weights of the C*-action
of the birationally modified test-configuration x ®) on this subspace are the same as
the weights of the original test-configuration. Therefore the norm || x ®) 1, is bounded
below by the norm of the C*-action on (B, L) given by the original test-configuration
Xx- So we just need to check that this C*-action on (B, L) has positive norm. Since
X is non-trivial, the corresponding C*-action on H O(B, L) does not have constant
weights, so the smallest weight 1,,;, differs from the largest weight X,,4x. Let spin
and s;,4x be corresponding C*-equivariant sections. For any k divisible by 3 we have
an inclusion

HB, L)) — H(B, L),
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k)3 i o . . o
win - Thisimplies that in the weight decomposition

of H(B, L’é) there will be at least dim H°(B, L§/3) sections with weights at most
%‘Amax + 23—kkmin. Writing A, for the average weight on HO(B, L§/3) we then have

Tr(Ar)\’ . k 2%\
Tr Ay — ——— 2 cok" \ Ak — S Amax — = Amin
di 3 3

+

where the map is multiplication by s

for some c¢p > 0, where we are writing (x)4+ = max{x, 0}.
In an similar way we can also get

Tr(A0)\’ {2k k 2
Tr Ap — 2 cok” | = Amax + 5 Amin — Ak
d 3 3 .

Since
2 2 1 2
(=@} + (b=~} > (b —a)

for any a < b, it follows that

2 2
Tr Ak _ TI'(Ak) > lCokn+2 Amax — Amin )
dy 2 3

In particular || x|l2 > 0, so we can apply Proposition 11. O

7.2 Filtrations from arcs

In the definition of b-stability, in addition to families of birationally modified test-
configurations, one also needs to consider more general degenerations which Donald-
son calls arcs.

Just like for test-configurations, we first embed X into a projective space X PV
using sections of L” for some r. Then instead of acting by a one-parameter subgroup,
we choose a meromorphic map g : D — GL(N + 1), where D is the disk of radius 2
in C (by rescaling we could use any disk), such that g restricts to a holomorphic map
on C*, and g(1) = Id. Looking at the family g(z) - X for ¢t # 0, and taking the closure
across zero in the Hilbert scheme, we obtain a flat family 7 : (X', £) — D, such that
the fibers away from O are isomorphic to (X, L"). Conversely any such family can
be seen using a meromorphic map g : D — GL(N + 1) once it is embedded into a
projective space.

Such degenerations also give rise to filtrations in a similar way to test-configurations.
For simplicity we assume that » = 1. Thinking of a section u € H°(L*) as a section
of £F over 71 (1), we can extend any sectionu € H OLMtoa meromorphic section
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7 of £ over X. We define a filtration of R = B0 HO(L*) by

there exists a holomorphic family of sections
F;R={u e R : v(t) € R such that , (45)

i (u + tm) is holomorphic on X’

where to ensure that FoR = C, we may need to multiply g(7) by a power of 7. Note
that if 7 (w7 + tv(¢)) and ¢/ (u3 + tva(¢)) are holomorphic, then so is their product

(49 58 + 1 (o) + o) + o Ov0)],

soujuy € Fiy;R, and we get a filtration.

This filtration x gives rise to a sequence of test-configurations x ©) as usual. More
concretely, for each k, our arc induces a meromorphic family of linear maps on
R = HO(X, L*), which we can think of as a meromorphic family of matrices g (1),
invertible for ¢ % 0. As explained in [7, Proposition 2], this family can be factored in
the form

ge(t) = L)1t Ri(1), (46)

where Ay is a diagonal matrix with entries o t“’k, and L (t), Ri(t) are
holomorphic and invertible for all 7. We can then define a flag in Ry, by letting x € F/ Ry
if 124% acts on Ry (0)x with weights at least —i.

Lemma 15 The filtrations F! and F; on Ry, defined using the factorization (46) and
by (45) respectively coincide.

Proof We will do this for k = 1, and we will drop the k subscript. For any u € Rj,
the extension u is just given by g(r)u. If t4 acts on R(0)u with weights at least —i,
then 1’ L()t* R(0)u is holomorphic, which means that

f'g(R@) RO

is holomorphic. But R(t) = R(0) 4 ¢S(¢) for some holomorphic family of matrices
S(t), so

RO 'R =u—tR()'S(t)u.
Letting v(t) = R(1)~'S(1)u we see that u € F;R.
Conversely suppose that we have v(¢) such that ' g(¢) (u 4 tv(¢)) is holomorphic.
Since
t'g(t)(u+tv(t) = ' LA RO + T L)1 5(1)
for some v(¢), we see that R(0)u cannot have a non-zero component in a weight space

less than —i, since the resulting singularity cannot be cancelled using the other term.
Therefore u € F/R;. O
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Given an arc, an extension of the Chow weight is defined in [7], which coincides
with the usual Chow weight if the arc is actually a test-configuration. We will see that
this can be computed from the filtration x. Let us take r = 1 again for simplicity. We
think of the degeneration as amap f : D — Hilb, and pull back the Chow line bundle
Lchow to D. Picking any element x in the fiber over 1, we can use the map g(¢) to
define a meromorphic section of Lchow Over D, which is holomorphic away from the
origin. If this section has a pole of order —w, then the Chow weight is essentially w,
once we normalize so that each g(¢) is in SL(N + 1). To compute this, we just need to
know that according to Knudsen-Mumford [17], the Chow line bundle can be defined
as the leading term A, of the expansion

k
det 7, (LX) = A,Eg*;) ®...® Ag, (47)
for large k, where A; are certain natural Q-line bundles on the base of the family
7w : (X, L) — D (in fact they are pulled back from the Hilbert scheme, under the map
f). Note that if we were not only considering matrices in SL(N + 1) then we would
need an extra factor involving det 7, (£F) in the definition of the Chow line bundle.

In terms of the matrices g (¢) above, we are interested in the asymptotics as k —
oo of the order of the pole of det gx(¢) at + = 0, where g;(¢) is normalized to be
in SL(N + 1). From the factorization (46) it is clear that the order of the pole is
—Ap—...—An = —Tr(Ag). The Chow weight is then given up to a positive multiple
by the asymptotic formula

bo = lim k=" TDTr(Ap).
k— 00

If g1(¢) were not normalized to be in SL(N + 1), then we could compensate for this
to get the general formula

Chow () = 20— ™
ow = — — ,
= TN+

where ag is the volume of (X, L) as usual. This is analogous to the formula we had
in the case of a test-configuration, in Eq. 2. The subscript 1 means that the original
test-configuration had exponent 1 (in general the formula changes just like for the
usual Chow weight in Eq. (2)). In addition we put a tilde on top to distinguish this
Chow weight from the Chow weights Chowy () of the filtration in Definition 4.

In general these two Chow weights are not equal, and in fact for each k we have

Chowg (x) > Chowg (x). (48)

This is very similar to what we used in Lemma 9. Indeed, focusing on the case when
k =1, recall that Chow () ) is the Chow weight of the test-configuration induced by
the filtration on R;. As in Lemma 6, let us write x () for the corresponding finitely-
generated filtration. If we write G, and Gg(l) for the convex transforms of x and x "
(corresponding to a fixed Okounkov body), then the two Chow weights are given by
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Chow((x) = —6(1) i

*TNTL

Chow(x) = —C o
ow =-Gy — —,
X XTNTI

where we used the relations (18) for both x and x . From Lemma 6 we know that
Gg(l) > Gy, so the inequality (48) on the Chow weights follows. It should not be
surprising that we get a smaller Chow weight by looking at the corresponding test-
configuration, since by the Hilbert-Mumford criterion we know that in testing for
Chow stability, it is enough to look at test-configurations and we do not need general
arcs.

Let us now combine arcs with the construction from the previous section, so let us
suppose that we have a distinguished component B in the central fiber of our arc X.
Just as in the case of test-configurations, Donaldson constructs a sequence of arcs Xj;.
At the same time, we can also obtain a filtration x just like in Eq. (43), by letting

/! (u + tm) has no pole at

FER = {ueRy: R
the generic point of B for some v(¢)

Now the sequence of test-configurations x ) induced by y are certainly not the
same as the arcs X;. Instead for each i, the test-configuration x ) is simply the test-
configuration given by the filtration on H%(X, L?) which is induced by the arc X;. It
follows then in the same way as above, that the Chow weight of the arc A; is bounded
from below by the Chow weight Chow; () of the test-configuration x ). In other
words

lim inf Chow; (X;) > Chowas (x).

1—> 00

in terms of the asymptotic Chow weight of the filtration.
The conclusion from all this is that Proposition 11 can be used to obtain a result
analogous to Proposition 14 for arcs instead of just test-configurations.

7.3 Webs of descendants

The full definition of b-stability in [7] focuses more on the possible central fibers rather
than the degenerations themselves. This leads to extra complications, since a given
scheme could be the central fiber of several different degenerations. It is not clear
whether filtrations are versatile enough to encode this richer data of what Donaldson
calls a “web of descendants”™, so we leave a more detailed examination of this to future
studies.

Acknowledgments 1 would like to thank Jeff Diller, Simon Donaldson, Sonja Mapes and Jacopo Stoppa
for useful conversations. I am also grateful for Sebastien Boucksom providing the proof of Theorem B as
an appendix to this paper. This work was partially supported by NSF grant DMS-0904223.
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Appendix: Asymptotic vanishing orders of graded linear
series—S. Boucksom'

[itaka dimension and multiplicity

Let X be a projective variety over an algebraically closed field k (of any characteristic),
setn := dim X, and let L be a line bundle on X. Denote by

R=R(X,L) = @ HO(X,mL)

meN

the algebra of sections of L. Given a graded subalgebra S of R (aka graded linear
series of L), set

N(S) :={m e N| S, # 0},

which is a sub-semigroup of of N, hence coincides outside a finite set with the multiples
of the gcd m(S) € N of N(S), sometimes known as the exponent of S. Define also
the litaka dimension of S as k(S) := tr.deg(S/k) — 1 if § # k, and x(S) := —oc0
otherwise, so that ¥ (S§) € {—o0,0, 1, ..., n}.

In this generality, the following result is due to Kaveh and Khovanskii [16] (see
also [3)]).

Theorem 16 Let S # k be a graded subalgebra of R(X, L), and write k = «(S).
(i) The multiplicity
|

K'
e(S) = lim — dim §,,,
meN(S), m—oo m¥

exists in 10, +o00l.
(ii) For each m € N(S), let ®,, : X --» P(Sy;) be the rational map defined by linear

series Sy, and denote by Yy, its image. Then we have dim Y,,, = k forallm € N(S)
large enough, and

deg,
e§)=  lim 8im

meN(S), m—oo mK

Note that L is big iff (X, L) := k(R) is equal to n := dim X, and we then have
e(R) = vol(L), the volume of L.

Definition 17 We say that S contains an ample series if

(1) Sy # O forall m > 1,i.e. S has exponent m(S) = 1.

(i1) There exists a decomposition L = A + E into Q-divisors with A ample and E
effective such that H%(X, mA) C S,, ¢ H(X, mL) for all sufficiently divisible
m e N.

I CNRS-Université Pierre et Marie Curie, e-mail: boucksom@math.jussieu.fr.
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This condition immediately implies that the rational map ®,, : X --» P(S))
defined by S, in birational onto its image Y, for all m > 1.

Assuming this, let b,,, C Oy be the base-ideal of S,,,, i.e. the image of the evaluation
map S, ® Ox(—mL) — Ox. Let uy, : X,, = X be any birational morphism with
X, normal and projective and such that b, - Ox,, is locally principal, hence of the
form Oy, (—F},) for an effective Cartier divisor F,,, on X,,. We then set

Py = pwhL — L Fy, (49)

which is a nef Q-Cartier divisor on X,,. If m divides /, then we may choose X; to
dominate X,,, and we have P, > P,, after pulling back to X; (in the sense that the
difference is an effective Q-divisor). Note also that the intersection number (P,;) does
not depend on the choice of X, by the projection formula, and that (P;') > (P,)
when m divides [, since P,, and P; are nef with P; > P,,.

As a consequence of Theorem 16 above (see also [15, Theorem C]), we get the
following version of the Fujita approximation theorem:

Corollary 18 Let S be a graded subalgebra of R, and assume that S contains an
ample series. Then e(S) = lim, oo (P)}).

Proof With the notation of Theorem 16, the rational map ®,, lifts to a morphism
fm : Xm — P(S}) which is birational onto its image Y, and such that f O(1) =
wh(mL) — Fy, = mP,. We thus see that

deg Yy,
(Py) = o
and the result follows from (ii) in Theorem 16. O

Remark 19 The special case of Theorem 16 where S contains an ample series, which
is what is being used in the previous corollary, was first established in [18].

Asymptotic vanishing orders and multiplicities

Our goal is to prove the following result.

Theorem 20 Let X be a smooth projective variety over an algebraically closed field
k, and let L be a line bundle on X. Let S be a graded subalgebra of R = R(X, L),
and assume that S contains an ample series. Assume also that e(S) < e(R) = vol(L).
Then there exists ¢ > 0 and a (closed) point x € X with maximal ideal m, C Ox

such that S,, ¢ H° (X mL ® m)EmeJ) for all m.

Recall that a divisorial valuation (aka discrete valuation of rank 1) on X is a
valuation v : k(X)* — R of the form v = cordg with ¢ > 0 and E a prime divisor
on a birational model X’ of X, which can always be assumed to be normal, projective
and to dominate X. In particular, since X is smooth, every scheme theoretic point
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& € X defines a divisorial valuation ord. If we denote by V = {€} the subvariety of
X having £ as its generic point, then we have for all f € Oy ,

orde (f) = mi‘r/l ordy (f). (50)
X€E

If we still denote by by, the base-ideal of S, then each divisorial valuation v on X
defines a subadditive sequence

v(by) = min{v(f) | f € by \{0}},
and we may thus define the asymprotic vanishing order of S along v (cf. [10]) as

v(bm)

m

v(S) := lim € [0, 4-o0l.

m— 00
In this language, the conclusion of Theorem 20 amounts to the existence of a closed
point x € X such that ord,(S) > 0. We begin with the following consequence of
Izumi’s theorem on divisorial valuations.

Lemma 21 [f there exists a divisorial valuation v on X such that v(S) > 0, then
ordy (S) > 0 for some closed point x € X.

Proof Let&é € X bethe center of v on X (concretely, there exists a birational morphism
u: X' — X with X’ projective and a prime divisor E C X' such that v = cordg,
¢ > 0, and £ is then the generic point of w(E) C X). Since the divisorial valuations
ords and v share the same center & on X, the version of Izumi’s theorem proved in
[14, Theorem 1.2] implies that there exists C > 0 such that

Clu(f) < ordg(f) < Cu(f)

for all f € Ox ¢. Applying this to f € by, yields in the limit as m — oo

ordg (S) = C~1u(S) > 0.

similarly implies ord, (S) > ordg (S), hence ord, (S) > 0. O

But for any closed point x € {£} we also have ord, > ordg on Oy . by (50), and this

As a consequence of Corollary 18, we next prove:

Lemma 22 Let S, S’ be two graded subalgebras of R containing an ample series. If
v(S) > v(S") for all divisorial valuations v, then e(S) < e(S").

Proof Letb,,, b, C Ox be the base-ideals of S,, and S, respectively, and let P,, and
P, be the nef Q-Cartier divisors they determine on some high enough model X, over
X, as in (49).
Given ¢ > 0, Corollary 18 allows to find mo € N such that e(S) < (Pn';o) + ¢, and
hence
e(S) < (P, - Pl + e (51)
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for any multiple m; of mg, since P, is nef and P,,, < Py, . By the projection formula

and the definition of Py, and P, , we have

Pn—l)’

mo

ordg (Fy,) _ordg (Fy) (E
mi mi

Py - i) = (B Pa = (

ECXm

where the sum runs over prime divisors E of X,,, and any E actually contributing
to the sum is contained in the support of Fy,, + F), ,» hence belongs to a finite set of
prime divisors of X, independent of m1. Since we have by assumption

dg(F, ordg (F/
OrE—(’”l) =ordg(S) > ordg(S) = lim M
m

=00 mi

lim

mp—oo m

for any such E, we may thus choose m a large enough multiple of mq to guarantee
that

(P, - Ppchy < (P, - Poc)) + e,

and hence

e(S) < (P, Puy - Ppo?) +26 (52)
for any multiple my of my, by (51) and the fact that Py, P, , P, are nef with
Py, < Pp,. We similarly have

(P Py Py = (Pyy - Pro - Pa?) =

my
ordg(F,,) ordg(F
D ) [ U B
nm»y nmy
ECXn,

for m large enough, hence
e(S) < (Pl - Pp, - Puy - PI3) + 3¢

for any multiple m3 of m», using (52) and P,, < P,,. Continuing in this way, we
finally obtain positive integers my, ..., m, with m; dividing m; 1 and such that

e(S) < (Py, oot Py )+ (n+ 1)e,
hence
e(S) < (Pp)+ (n+ e

since Py, < Py, . Butm, can be taken to be as large as desired, thus (P,;fn) is as close
to e(S’) as we like by Corollary 18, and we conclude as desired that e(S) < e(S’). O

Proof of Theorem 20 By Lemma 22, the assumption e(S) < e(R) implies that v(S) >
v(R) > 0 for some divisorial valuation v. We conclude using Lemma 21. O
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