arxXiv:1602.03778v1l [math.CV] 11 Feb 2016

DUALITY BETWEEN THE PSEUDOEFFECTIVE AND THE MOVABLE CONE
ON A PROJECTIVE MANIFOLD

DAVID WITT NYSTROM

WITH AN APPENDIX BY EBASTIEN BOUCKSOM

ABSTRACT. We prove a conjecture of Boucksom-Demailly-Paun-Peigrmamely that
on a projective manifoldX the cone of pseudoeffective cIassesHﬁi’l(X ) is dual to

the cone of movable classesmﬁl’g’l’"’1 (X)) via the Poincaré pairing. This is done by
establishing a conjectured transcendental Morse inggdatithe volume of the difference

of two nef classes on a projective manifold. In an appendiBbycksom it is shown that

the Morse inequality also implies that the volume functiediiferentiable on the big cone,
and one also gets a characterization of the prime divisottseimon-Kahler locus of a big

class via intersection numbers.

1. INTRODUCTION

In [BDPP13] Boucksom-Demailly-Paun-Peternell proveatta line bundle on a pro-
jective manifold is pseudoeffective iff its degree along axember of a covering family of
curves is non-negative. As in explained in [BDPP13] thisulteshould be understood in
terms of duality of cones.

Let X be a compact Kahler manifold. Recall that a classt{@l(X) is called pseu-
doeffective if it contains a closed positive current. Theafesuch classes form a closed
convex cone inHﬂé’l(X) called the pseudoeffective cone and is usually denotefl. b4
line bundleL is pseudoeffective ifé; (L) € &.

In Hﬂ’g’l’”’l(X) there is a cone called the the movable cdvie It is defines as the
closure of the convex cone generated by classes of curretits form

/L*((:)l VANPYWAN ‘Dn—l)a

wherey : X — X is some modification and, are Kahler forms oX. The cohomology
class associated to a curve X will lie in M iff it moves in an analytic family which
coversX: such a curve is called movable.

Furthermore, whelX is projective we le€ys := £ N NSg(X) where

NSr(X) := (Hg''(X) N H*(X,Z)/tors) @z R,
and similarlyM ys := M N N1(X), where
Ni(X) = (Hg """ N (X)n H>2(X,Z)/tors) @z R.

One can now formulate the result of Boucksom-Demailly+RReternell in [BDPP13] in
the following way:

Theorem 1.1. On a projective manifoldX the cones€ys and My are dual via the
Poincaré pairing of N Sg(X') with N (X).

They also formulated a conjecture:
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Conjecture 1.1. On any compact Kahler manifold the cone€ and M are dual via the
Poincaré pairing offy’' (X) with Hz ~ 5"~ (X).

More concretely the conjecture says that a c&as5HD§’1 (X)) contains a closed positive
current iff for all modificationg: : X — X of X and Kahler classe$; on X we have that

/ (@) ABL A e A By > 0. (1.1)

X
The if part follows almost immediately from the fact that aaa pull back a closed positive
(1,1)-current by to get a closed positivél, 1)-current onX. The (very) hard part is
establishing the existence of a closed positive curremigusie numerical data (1.1).
Our main result confirms the conjecture wh¥ns projective.

Theorem A. When X is projective ther€ and M are dual via the Poincaré pairing of
Hy''(X) with Hy "7 H(X).

It was observed already in [BDPP13] that to prove Conjecluteit is enough to es-
tablish a certain lower bound on the volume of the differesfcevo nef classes and 3,
namely

vol(a — B) > (™) — n(a™ 1t - j). (1.2)
This inequality is known as a transcendental Morse inetyudlhe case when andg lies
in N Sg(X) is well-known and not hard to prove (see [BDPP13]), and isisclin a crucial
way in the proof of Theorem 1.1. Indeed given the transcetadléforse inequality (1.2)
the rest of the proof of Theorem 1.1 in [BDPP13] extends tagéeeral case.

It was also recognized in [BDPP13] that to prove Conjectutdr the case wheX is
projective, it is enough to establish (1.2) for pairs of Nessesy, 5 wheref € N Sg(X).
This is what we set out to do in this paper.

Theorem B. Let « and3 be two nef classes on a projective maniféidand assume that
B € NSg(X). Then
vol(a — ) > (a™) — n(a" 1. ).
In [BFJ09] Boucksom-Favre-Jonsson proved, using the astir(iL.2), the following
two theorems:

Theorem 1.2. The volume function i§'* on £, 4 and the partial derivatives are given by
% t:oVOI(a +ty) =nla™ ) .
Theorem 1.3. For any class big clasa € NSk we have that
vol(a) = (") - a
In particular a prime divisorD will lie in the augmented base locus bfiff
{er (D)"Y - e1(D) = 0.

Here(a™ 1) denotes a positive selfintersectioncgfwhich is equal tax”~! whena is
nef but not in general. This last result can be thought of asrdrogonality relation (see
[BFJO09)).

After learning of our results Boucksom produced a note [B&url which he not only
explains how Theorem A is derived from Theorem B, but alsos@sathat Theorem B
implies the analogues of Theorem 1.2 and Theorem 1.3:
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Theorem C. On a projective manifold the volume function is continuously differentible
on the big cone and

d
—| ol ty) = n(a™ 1) - .
G|, vollas 1) = i)

Theorem D. For any classx € £3, 4 on a projective manifold” we have that
vol(a) = (o™ 1)1 . q.
In particular a prime divisoD will lie in the non-Kahler locus ofy iff
(@™ 1Y ¢y (D) = 0.

A striking consequence of Theorem C is that the estimate &ofdm B in fact holds
for all pairs of nef classes andg, irrespective of3 lying in N Sg(X) or not. We thus get:

Theorem B'. Let« andj be two nef classes on a projective manifald Then
vol(a — B) > (a™) —n(a™ ' B).
Boucksom'’s note [Boul16] now forms an appendix to our pap@pgxdix A).
1.1. Outline of proof of Theorem B. First we note that by continuity we can assume
to be nef and big and to Kahler and integral, i.e3 = ¢; (L) for some line bundld.. To
prove Theorem B in that case we will establish an infinitesweasion, which then easily

implies the theorem. The infinitesimal estimate we want tivpistates that i is big and
[ is Kahler and integral then

L vol(a— £6) — vol(a)
t—0+ t

> —n(a"_l) - B. (1.3)

Let & be a smooth representative @fand letw be a Kahler form in3. Without loss
of generality we can assume that= ¢, (L) whereL is effective. We call the associated
divisorY'. There is amv-psh functiony such thatid®g = [Y']—w; g will have a logarithmic
singularity alongy”.

Now we pick a > 0 such thaty— ¢S is big. Addingtg turns any(6 — tw)-psh function
into ag-psh function with logarithmic singularity of order at léaslongD.

One finds the volume oft — ¢8 by integrating the Monge-Ampére measure of any
(0 — tw)-psh function with minimal singularities. This trick of aidd tg does not change
the Monge-Ampeére measure, so we see that we want to fifosh function with the right
singularity alongD, whose total Monge-Ampeére mass can be appropriately eEgifrdm
below.

We create such a function by considering a family of uppeekapes. It is well-known
that a good way to construétpsh functions with minimal singularities is by envelopes:
i.e. we specify some functiofion X and then consider the envelope

¢ :=sup{y < f: ¢ 6-psh}.
So one way to get 8-psh function with correct behavior alorigis to take
Poo := sup{y) < tg : 1) O-pshy.
To estimate the Monge-Ampere massqdaf we will write it as the limit of a decreas-

ing sequence af-psh functionssr, all having minimal singularities. Since eagh has
minimal singularities we know that for eac¢h

(/MM@@zmM)
X
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The Monge-Ampere measurdg Ay(¢r) do not converge weakly t87 Ay(¢,) On the
whole of X because then anda — ¢ would have the same volume, which is not true.
By a crucial continuity property of the Monge-Ampeére ogerahough we have weak
convergence on any open set on whigh is locally bounded. Thus we want to pick a
large open sel/ like that and see what happens to the measlged Ag(dr).

To be able to control these measures we firsplet sup{v < 0 : ¢ 6-psh} and then
define

¢r = sup{y < ¢+ tgg : ¢ O-pshi,

wheregr, is a certain regularization gfwhich decreases tpasR tends to infinity. A deep
result of Berman-Demailly [BD12] says thatis particularly well-behavedid®$ hasL>°-
coefficients away from the non-Kahler locus, and the MoAggpere measure is simply
given by1 0™ whereD := {¢ = 0}. We can use this to prove that the Monge-Ampere
measure of eachy, also is well-behaved, it is given by, (6 + dd°¢ + tdd°gr)™ where
Dpr :={¢r = ¢ +lgr}.

LetU be an open set at a given distance frBimWe choose our regularizationpg such
that for any such setr = ¢ for R large enough. Thus ali the obstacle + tgr does not
change for larg&? which for one thing means that

]].DRQU(G + ddc¢ + tddch)n = ]]-DRﬂU(e + ddc¢ + tddcg)n,

but even more importantly makdsz N U decrease witlR. It follows that the measures
1y M Ag(ér) converge tol p,~u (0 + dd°¢p + tdd°g)™. If we also assume that,, is
locally bounded ori/ then we get that

vol(a — t8) = /X MAg(do0) > /D (6 + dd°¢ + tdd°g)" =

rNU

— Jim /UMAG@R):vol(a)—ngnm | MAo(on).

R— o0

Thus we need to estimafg.. M Ay(¢r) from above. We again use thaf Ay (¢r) is of
a nice form, and get, using the multilinearity of the nonfjgalar product, the following:

MAy(dr) = 1p, (0 +dd°¢ +tdd°gr)" < 1p,(0 + dd°¢ + t(w + ddgr))" <

< MAg(¢) + > tF (Z) (6 4 dd°¢)" %) A (w + dd°gr)".
k=1
Finally integrating ovet/¢ yields

MAp(pr)
UC

< | MAg(¢)+ >tk <Z> /U (0 + dd°¢)"*) A (w + dd°gr)*

ue k=1

IN

IN

< | MAg(¢)+ > t* (Z) (") - k.
k=1

Ue

By enlargingU we can makerC M Ap(¢) as small as we want. This then implies the
infinitesimal estimate (1.3).
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1.2. Related work. As has already been said Boucksom-Demailly-Paun-Pdtproged
the integral version of Conjecture 1.1 in [BDPP13]. Theyoadsttled the conjecture in
the case wherX is compact hyperkahler, or more generally, a limit by defation of
projective manifolds with Picard numbgr= h'! (see [BDPP13], Corollary 10). In the
projective case they established a weaker version of The&genamely that ifo is nef
andg is nef and lies inVSg(X) then
2
vol(a — ) > (o) — "X an =t )
Their proof is different from ours. As ours it uses a familygbsh functions that converge
to something with a logarithmic singularity along the doni®f w. But instead of being
envelopes these functions solve a Monge-Ampeére equatibich concentrates the mass
along the divisor.
In [Xiao13] Xiao proved a kind of weaker qualitative versiofi(1.2), namely given two
nef classes and3 on a compact Kahler manifold then if

(&™) > 4n(a™ ' B)

it follows thata — 3 is big. Later, using the same kind of techniques as Xiao, #opo
improved on this, showing that

(@") >n(@"~"-p)

impliesa. — /5 to be big. Then Xiao refining the techniques further esthblisn [Xiao14]
that if o« is big ands movable then

vol(a) > n((a" 1) - 8)

impliesa — 3 to be big.

The differentiability of the volume of big line bundles wasoped independently and
at the same time as Boucksom-Favre-Jonsson by Lazarsfestakd [LMO09] using the
theory of Okounkov bodies. They expressed the derivativerims of restricted volumes,
and as a consequence the restricted volume of a big line &lralbng a prime divisor®
coincides with the pairinge; (L)" 1) - ¢; (D). The restricted volume is only really defined
along subvarieties that are not contained in the augmerase locus, while the pairing
{e1 (L)1) - ¢1(D) always is defined and furthermore depend continuously .ot thus
follows from Theorem 1.3 that if a prime divis@? is not contained in the augmented base
locus for small ample perturbatiois+ ¢ A of L and furthermore the restricted volume of
L + €A along D remains bounded from below by some positive number therannot
be contained in the augmented base locus.of deep result of Ein-Lazarsfeld-Mustata-
Nakamaye-Popa [ELMNPO09] states that the restricted volcamebe used to characterize
the whole augmented base locus. Whether the analogous pestdining to the non-
Kahler locus of a big class is true is still non known, but ve¢enthat our Theorem D can
be seen as a partial result in that direction. The nef casgythwas recently completely
settled by Collins-Tosatti [CT15]. They prove thatifis a nef and big class on a compact
Kahler manifold then the non-Kahler locus@fis equal to the null-locus, i.e. union of all
irreducible analytic subspac&ssuch that

/ adlan —0.
1%

Apart from the pseudoeffective and the big cone‘ﬁ@’l(X ) there are two other very
important cones, namely the Kahler cdkeand its closure the nef con¥. In the deep
and important work [DP04] (indeed it is used in a crucial way([BDPP13] and hence
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also in the proof of our results) Demailly-Paun proves thatnef coneV is dual to the
pseudoeffective cone iﬁlﬂg’l"”’l(X) (i.e. those classes that contain a closed positive
(n —1,n — 1)-current). See also the simpler proof by Chiose in the ref¢amt6].

Acknowledgmentl would like to thank Robert Berman, Bo Berndtsson, Jeamr@ibe-
mailly and Mihai Paun for fruitful discussions on this to@ind their valuable comments
on an early draft of this paper. | am particularly grateful &&bastien Boucksom writing
the appendix, providing the deriviation of Theorem A, B’, @D from Theorem B.

2. PRELIMINARIES

2.1. 0-psh functions. Let (X, w) be a compact Kahler manifold.

Letd be a closed smooth redl, 1)-formonX anda := [0] € Hﬂé’l(X) its cohomology
class. We say that a functien: X — [—o0, o) is #-psh if whenever locally = dd°v for
some smooth function we have that, + v is plurisubharmonic and not identically equal
to —oco. Thusé + dd°u is a closed positivél, 1)-current. Conversely, if" is a closed
positive (1, 1)-current in then there exists &-psh functionu such thatl’ = 6 + dd‘u,
and thisu is unique up to a constant.

A functionu which is-psh for somé is called almost psh.

If ¢’ is another closed smooth redl, 1)-form cohomologuous té, then by thedd*-
lemma there exists a smooth functigrsuch that’ = 6 + dd°f. Thus one sees thatis
f-pshiffu — f is 6’-psh.

The set of)-psh functions is denoted ByS H (X, 0). The classv is called pseudoeffec-
tive if it contains a closed positive current and we note thiatis equivalent td®?SH (X, 0)
being nonempty. A class is said to be big if for some 0 and some Kahler clas$we
have thaty — ¢33 is pseudoeffective.

A 6-psh functionu is said to have analytic singularities if locally it can beitten as
cIn(>", |g:|*) + f wherec > 0, g, is a finite collection of local holomorphic functions
and f is smooth. A deep regularization result of Demailly stakes if « is big then there
exists af-psh function with analytic singularities.

A 6-psh functionu is said to have minimal singularities if for everye PSH (X, 0)
we have that. > v + O(1). Itis easy to show using envelopes that whenevisrpseudo-
effective one can find-psh functions with minimal singularities. They are fanfronique
though, in fact this is what we will exploit later in the praaff Theorem B.

2.2. Lelong numbers and the non-Kahler locus. Given af-psh functionu its Lelong
number at a point € X, denoted by, (u), is defined as the supremum of allsuch
thatu(z) < Aln|z|? + O(1) locally nearz, wherez; are local holomorphic coordinates
centered at. WhenY is an irreducible analytic subset we define the Lelong nurober
uwalongY asvy (u) := inf,cy v, (u). A fundamental result of Siu [Siu74] states that for
anyc the setb.(u) := {z : v,(u) > ¢} is analytic. In particular this implies that (u)
equals the Lelong number afat a generic point of".

If a is big we define the Lelong number ofat a pointz asv, («) := v, (u) whereu
is anyd-psh function with minimal singularities. The skt,,, () := {x : v,(«) > 0} is
called the non-neflocus ef, and one can show that it is a countable union of analytic sets
One also defines the non-Kahler lodtisk («) as

() B ([0 — ew]).

Clearly E,.,,(a) C E,k(«), but the non-Kahler locus has the advantage of being a prope
analytic subset oKX (see [Bou02)).
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2.3. Non-pluripolar positive products and Monge-Ampere measures.A key tool will
be the notion of non-pluripolar positive products of clogegitive currents. This theory
was first developed in the local setting by Bedford-TayloT 2] and later in the geo-
metric setting of compact Kahler manifolds by Boucksonss&iglieux-Guedj-Zeriahi in
[BEGZ10].

If T;, i = {1,...,p} are closed positivél, 1)-currents one defines a closed positive
(p, p)-current called the non-pluripolar positive productiof denoted by(T A ... A T,)
(see [BEGZ10] for the definition). To avoid some technicaliss we will henceforth only
consider products when the cohomology classes of the dsffeare all big. The product
is symmetric and multilinear, so in particularfi andT; are two closed positivél, 1)-
currents then

(@41 =3 (1)t ath.
k=0
Alsoif n is a closed semipositive, 1)-formthen(Ty A... AT, An?) = (Ty A...ANT,) Ant.
An important property of non-pluripolar products (whiclsa@lexplains the name) is that
they never put any mass on pluripolar sets, which includeggranalytic subsets.
Whenp = n = dime X, (T1 A ... AT,) is a positive measure, and when theurrents

are all equall; = 6 + dd°y, then{(6 4+ dd“¢)™) is known as the (non-pluripolar) Monge-
Ampére measure af, which we also denote by/ 4y (). A basic fact is that if on some
upen setJ we have that) is locally bounded andd“y has coefficients i, then

1y M Ag(1h) = 17 (8 + ddu)™.

Here the right hand side simply denotes the measure oneytikihg the appropriate de-
terminant of the coefficient functions (typically this omhakes sense when the coefficients
are L°°-functions, since in general one cannot multiply measures)

An absolutely fundamental role in this theory is played by tbllowing convergence
result for Monge-Ampere measures, proved by Bedford-drapl [BT82].

Theorem 2.1. LetU be an open set and, be a decreasing sequenceéepsh functions
such that := lim_, . uy, is locally bounded o/ (u will then automatically by-psh on
U). Then the measurds; M Ay (ux) converge weakly té M Ag(u).

Remark 2.1. One can also allow, to increase a.e. to their limit and the convergence
still holds, and one is also allowed to restrict to a plurifopen set (see [BT82]) but we
will not need that here. One should note that the assumptienb®ing locally bounded is
absolutely vital, without it the statement would be blalafdlse.

We cite the following important result from [BEGZ10].

Theorem 2.2. Assume we have twetuples of currentsl; = 6; + dd®y; and T} =
0; + dd°i} such that for each, ¢; < ¢! 4+ O(1) and furthermore eachp; is bounded
from below by some almost psh function with analytic singiids (or more generally
with small unbouded locus). Then the cohomology clag$iof ... A T},) is bounded from
above by the cohomology class(@f A ... A T}).

This resultimplies that iT; = 0; +dd°y;,i € {1,...,p} wherey; € PSH(;) all have
minimal singularities, then the cohomology class of

(Ty A .. NT)

only depends on the cohomology clasags= [;] and not on the particuldr;. This class
is called the positive intersection af and denoted by

(a1 Ao A a).
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It is important to note that it does not in general depend itmégrly on the cohomology
classes. But it is naturally homogeneous in each variabieitas also monotone in the
following sense:
(ai Ao Nap) < (o Ao Aa)

if each differencey; — «; is pseudoeffective. This again follows from Theorem 2.2eSéh
properties together imply that.; A ... A «;,) at least depends continuously on the classes
a; (see [BEGZ10]).

In particular we see that the numbgr M Ag(u) = ((6 4 ddu)") only depends on
« as long as, has minimal singularities. This number is called the volwhe, and is
written as vola). We also see from Theorem 2.2 thaviE PSH (X, 6) is bounded from
below by some almost psh function with analytic singulastihen

/ MAp(v) < vol(a).
X

The following is a deep result of Boucksom in [Bou02] builglion work of Demailly-
Paun in [DP04] (see also [Chil6]).

Theorem 2.3. Let o, be a sequence of big classes that converge to a elasShen if
lim sup,,_, ., Vol(az;) > 0 it follows thata is big.

From this we see that letting \@l) := 0 for « not big gives a continuous extension of
the volume function to the whole dfy"' (X).

3. REGULARITY OF ENVELOPES

In our proof of Theorem B a key role will be played by a familyesfvelopes. The proof
will rely on us being able to control the behaviour of their Mg-Ampére measures. For
this we need a deep result of Berman-Demailly [BD12].

Theorem 3.1. Let# be a smooth closed redl, 1)-form on a compact hler manifold
(X,w). Assume that the clags:= [f] is big and lety, be a strictlyf-psh function with
analytic singularities. Let be defined as
¢:=sup{ty <0:¢ € PSH(X,0)},
andletD := {¢ = 0}. Then¢ € PSH(X,6) has minimal singularities and for some
constants” and B we have that
|dd*¢l., < C([tol +1)%P1%01.

It follows that
MAy(¢) = 1pb"

vol(a):/XMAg(gb):/DG".

Remark 3.1. It was remarked in [BD12] that in Theorem 3.1 is allowed to have coeffi-
cients inL>.

and hence

This theorem deals with one particular envelope. For oup@ses we will need a vari-
ation of it where we are allowed to consider more generakabstunctions. For technical
reasons we want to use functions of the fasrt f as obstacles for the envelope, where
is the envelope from Theorem 3.1 afids smooth. It turns out that we can use Theorem
3.1 combined with the continuity property of the Monge-Aenpoperator Theorem 2.1 to
get basic control of the Monge-Ampére measures of thegieplkar envelopes.
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Proposition3.2. Let 6 and¢ be as in Theorem 3.1, Igtbe a smooth function oX', and
let

7 =sup{t) < ¢+ f : ¢ € PSH(0)}.
Theng, € PSH(#) has minimal singularities and

MAg(¢py) = ]lDf\Z(e +dd°¢ +dd°f)",
whereD; := {¢; = ¢+ f} andZ := {¢po = —cc}. We thus get that

vol(a) = /D Jorddosarpy
f

Proof. Note thatp + miny f is a candidate for the envelope, showing that miny f <
¢+ and hence; has minimal singularities.
Let |- |,eq be a smooth convex function @& which coincides witH - | for |z| > 1 and

max(x,y) = TAY 1T Ylreg
reg 2
be the corresponding regularized max function. Let

¢r = max(¢, —k — max (¢, —k — 1)).
reg reg
Thengy decreases down wanddy, := 0 + dd°¢, + dd° f hasL>°-coefficients. Let
ug :==sup{v <0:v e PSH(0)}
andDy, := {u = 0}. By Theorem 3.1 (with.>*-coefficients, see Remark 3.1)
MAgk(uk) = ]leHZ. (31)

Itis easy to see that

ug + ¢ + f=sup{y) < dp + f 1) € PSH(0)} =: Yy,
and soDy, = {1y, = ¢r, + f} and by (3.1)
MAg(Yr) = 1p, (0 + dd ¢y, + dd° f)™.
Since¢,, decreases down towe get that);, decreases down 0.
Without loss of generality we can assume thgt< 0 which then implies that)y < ¢.

Let Ue := {¢p > —C1}, then untangling the definition shows thiat = ¢ onU¢ as long
ask > 2C. Thus for largek,

]]-Uc MA@ (U)k) = ]]-DkﬁUc (9 + ddc¢ =+ ddcf)n
We now claim that fok > 2C, D, N U decreases with and

( ﬂ Dy)NUc =DyNUc.

k>2C
For the first statement, € Dy, N Uc iff Y (x) = én(x) + f(z) = ¢(z) + f(x), but since
¥y (z) decreases ik we must have thab;, N Us decreases witkk. On the other hand,
x € DyNUcIff ¢5(x) = ¢(x) + f(x) iff Yp(z) = ¢(x) + f(z) forall £ > 2C.

If 1 is a finite measure andy is a decreasing sequence of measurable setsAvith
Nr A, then the basic continuity of measures implies that,: converge (strongly) t@ 4 .
Thus we see thaty, M Ag(¢) converges td p,nu. (6 + dd°¢ + dd® f)™.

We also note that; > 1y — C’ for some constan€’, so ¢, is bounded orl/c.
By Theorem 2.1 we thus get that,, M Ag (1) converges weakly td . M Aq(¢r) and
hence

Ly MAg(¢y) = Ip,;nve (0 + dd°¢ + dd° f).
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Letting C' tend to infinity proves the proposition sin¢e-Uq-)¢ = Z being pluripolar
cannot support any part af Ag(¢y). O

4. PROOF OFTHEOREMB

Our goal is to establish the fundamental volume bound (h2yfnef andg nef and
lying in N.Sg(X). To do this we will prove the following

Theorem 4.1. Let X be projective, lety be a big class (so non necessarilgltider) ands
an integral Kahler class. Then we have that
lim inf vol(a — #8) — vol(a) > —n(a" 1) - .
t—0+ t
This is the appropriate infinitesimal version of (1.2) exted to arbitrary big classes

Before turning to the proof of Theorem 4.1 let us explain hbimplies Theorem B.
We use the following elementary lemma:

Lemma 4.2. Let f, g : [a,b] — R be two continuous functions such that forak [a,b)

we have that
lim inf —f(t +h) — f(t)
h—0+ h

Thenf(b) — f(a) > [ g(t)dt.

Proof. By consideringf (t) — f; g(s)ds we can assume that= 0 and hence we want to
show that this implies'(b) > f(a). Picke > 0. Letto := sup{t € [a,b] : f(s) — f(a) >
—esforall s € [a,]}. If ty # bthen itwould follow thatim infj, o Ll =/t < _
which is a contradiction. Henag = bso f(b) — f(a) > —e and thusf(b) > f(a). O

> g(t).

4.1. Proof of Theorem B given Theorem 4.1.

Proof. By continuity and the scaling properties of the volume armdiibersection numbers
we can assume thatis Kahler whiles is Kahler and integral (i.e5 = ¢, (L) for some
holomorphic line bundld.).
Let
to :=sup{t € [0,1] : a — tf8 € £°},
f(t) == vol(a — tB) andg(t) := —n{(a — tB)"" 1) - 5. Both f andg are continuous on
[0, %) (see Section 2) and it is also easy to show that increasing. Theorem 4.1 now
exactly says that
ft+h) - f(t)

- -
T =90
thus by the lemma above we get that for any [0, t)

t

vol(a — t8) > vol(a) — n/ (((a=sp)"" ") - B)ds >

s=0
> vol(a) — nt{a™ 1) - B = (&™) —nt(a" - B).
Assume that
(@™) —nt(a™1-8)>0

because otherwise the volume estimate is trivially true thiéa get that for any € [0, to)

vol(a — t3) > (™) — nt(a™ ' - B) > (a™) —n(a™' - B) > 0. (4.1)
By Theorem 2.3 which as we recall says that the volume tendsrmas one approaches
the boundary of the big cone we see that (4.1) impliesdhat, 5 is big and henceg, = 1.
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The continuity of the volume function in the big cone comhiméth (4.1) then establishes
the desired volume estimate.
O

4.2. Proof of Theorem 4.1.

Proof. Let 6 be a smooth representative@fnd letw be a Kahler form ins.

Pickt > 0 such thaty — ¢3 is big (which is always possible sinéd is an open cone).
By the homogeneity of the positive intersection we are atldwo multiply botha andé
with the same positive constant. Thus without loss of gditgrae may assume that is
effective. Lets be a nontrivial holomorphic section éf There is a positive metrie of L
whose curvature form is, and we let

g:=In|s|7,
where we normalizé so thatmax g = 0. We thus haveld®g = [Y] — w whereY is the
effective divisor defined by. For anyR > 0 we let
gr += max(g, —R).
Letas in Theorem 3.1
¢:=sup{ty <0:¢ € PSH(O)}.
Let also
or:=sup{ < p+tgr:v € PSH(9)}
and
Dpr :={¢r = ¢ +tgr}.
From Proposition 3.2z € PSH(#) has minimal singularities, and hence

vol(a) = / MAy(6p). 4.2)
X
We also get from Theorem 3.1 and Proposition 3.2 that
MAg(¢r) = 1pp\z(0 + dd°¢ 4 tddgr)", (4.3)

the measure being locally™ on X \ Z whereZ is the singular set of some strictypsh
functiony with analytic singularities.
Let also
doc = sup{t) < ¢ +1g: ) € PSH(H)}
and
Dy = {(boo = ¢+t9}-
We claim thatp., — tg € PSH(0 — tw) and that in fact

hoo —tg =sup{th <0:1 € PSH(O —tw)}. (4.4)

Namely, we note that sinc&l°g = [Y] — w we have thatld®(¢. — tg) > —60 + tw on

X \ Y. On the other hang., —tg < ¢ < 0 so it extends as aft — tw)-psh function
acrosy’ . If ¢ is any otherf — tw)-psh function withy> < 0, then itis alsd@-psh (sincew

is Kahler) and thug) < ¢ (¢ being defined as the supremum of all such functions). Since
1 + tg clearly lies inPSH (0) it follows thatvy + tg < ¢, which shows the validity of
(4.4). In particulak, — tg has minimal singularities and so

vol(a — t8) = /X MAg_ 1o ($oe — tg) = /X M Ag(doo). (4.5)
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Sincea — t3 was assumed to be big we also get that > v); for some quasi-psh function
11 with analytic singularities.

The obstacle® + tgr decreases tg + tg and therefore the envelopés decreases
t0 ¢oo. LetUc := {¢y1 > —C} N {g > —C}. Note that forR > C + 1, gr =
max,eq(g, —R) = gonU¢ and so by (4.3)

LycMAp(Pr) = Lprrve\z(0 + ddp — tw)".
We now claim that foR > C' + 1, Dr N U decreases witlk and

([ Dr)NUc = Do NUc.

R>C
It is exactly the same situation as in the proof of Proposi8®. For the first statement,
x € DrNUc (R > C+1)iff ¢pr(z) = ¢(z) + tgr(z) = ¢(x) + tg(z), but since
¢r(x) decreases iR we must have thabr N Ux decreases witlk. On the other hand,
2 € Doo NUG Iff oo () = () + tg(x) iff pr(z) = ¢(x) + tg(x) forall R > C + 1.

We also note as in Proposition 3.2 that this implies thaf,~y .\ z(0 + dd°¢ — tw)"

converge (strongly) t@ p_ .\ z (0 + dd°¢ — tw)™. But sincep., > 1 we have thab
is bounded o/ and thus Theorem 2.1 implies thig, M Ag(¢r) converge weakly to
1y, M Ay(do ). Put together this shows that

lye MAg(Poo) = Lp_nve\z(0 + dd°¢ — tw)"
and hence
lim MAy(or) = MAy(doo)- (4.6)

R—o0 Uc Uc

Combining (4.2),(4.5) and (4.6) we get that

vol(a — t8) = / MAg(do) > | MAg(doo)”
x ve 4.7)
= lim MAg(gf)R) = V0|(9) — lim MAg(gf)R)
R— o0 Uc R—o0 Ug
We thus need to estimap(%\]é MAg(or) from above. But using (4.3) we clearly have
that
MAg(¢r) = 1p,\z(0 + dd°¢ + tdd°gr)"
< Ipz(0 +dd°¢ + t(w + ddgr))"
<1x\z(0 +dd°¢ + t(w + dd°gr))" = M Agt1u(P + tgr).
Here we used that addirig only increases the mass @y, \ Z (it being Kahler), and then
thatgr is w-psh, making/ Ay, (¢ + tgr) a well-defined positive measure éh
Since bothf + dd°¢ andt(w + dd°gr) are closed positivél, 1)-currents we get that

MAgy1(d+tgr) = (0 + dd°¢ + t(w + dd°gr))") =

-3¢ (1) 0+ daroy= n o+ dacgn)) =

VARVAN

(4.8)

(4.9)
= MAg(¢) + Yt (Z) (0 + dd°¢)™*) A (w + dd°gR)*,
k=1

simply using the multilinearity of the non-pluripolar pnect (see Section 2).



DUALITY BETWEEN THE PSEUDOEFFECTIVE AND THE MOVABLE CONE OM PROJECTIVE MANIFOLD 13

We can now use (4.8) and (4.9) to estim@te M Ay(¢r), namely
(e}

MAp(or) < MAgi10(P+tgr) =
vég uég

- /UC <MA9(¢) + ; t* (k) (6 4+ dd°p)" %) A (w + ddch)k>

= (T c \n—k c k
< MA9(¢)+;L‘ (k) /X<(9+dd O)"FY A (w4 dd°gR)

ve

IN

= | MAg(¢)+ ) t* (Z) (a"ky . g,
k=1

Ug
where we in the last step used that béthndgr have minimal singularities (see Section
2).
Since this estimate is independent/fve conclude from (4.7) that

vol(a — t3) > vol(a) — M Ay(¢) — Zt’“ (Z) (a"ky . gk
k=1

Ue

while letting C tend to infinity yields

vol(a — t8) > vol(a) — t’“<n> a" Ry gr,
(= 15) > vol(a) ; L)@ s
In particular
lim inf vol(a — t8) — vol(«)
t—0+ t
which was to be proved.

> _n<an71> ! ﬂv

O

APPENDIXA. REMARKS ON ORTHOGONALITY, DIFFERENTIABILTITY AND DUALITY
— S. BOUCKSOM

A.1. Differentiability and duality in the projective case. Demailly conjectures that the
following 'transcendental Morse inequality’
vol(a — B) > (™) —n(a" "t - B) (A1)

holds for any two nef classes 3 € Hﬂé’l (X)) on acompact Kahler manifold of complex
dimension.
In the main paper the following was proved:

Theorem A.1. The Morse inequality (A.1) holds whéhis projective ands € N.Sg(X).
As we shall see, this result implies the following generaleshents.

Theorem A.2. Let X be a projective manifold.

(i) The Morse inequality (A.1) holds for arbitrary n@f, 1)-classes.
(i) The differentiability theorem diBFJ09] holds for all (1,1)-classes: for each
a,v € Hy'' (X) with o big, we have

d
—|  volla+ty)=ny-(a" ).
dt],—o
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(i) The duality theorem §BDPP13]holds for all(1, 1)-classes: aclass € Hy'(X)
is psef iff
a-p (W) >0
for any modification: : X’ — X and any Kahler classv on X',

A.2. From orthogonality to differentiability. As we next show, the orthogonality prop-
erty of [BDPP13] is equivalent to the differentiability grerty of [BFJ09]. Our argument
is inspired by the simplified proof of [BB10, Theorem B] prded in [LN, Lemma 6.13]
(see also [Xiaol4, Proposition 1.1] for a related result).
Theorem A.3. For a given compact &hler manifold X, the following properties are
equivalent;

(i) Orthogonality: each big class € Hy'' (X) satisfies

vol(a) = a - (™7 1).

(i) Differentiability: for eacha,~ € Hg''(X) with a big, we have

d
—|  volla+ty)=ny-(a" ).
dt|,_,

Further, these properties imply the transcendental Monggjuality (A.1) for all nef classes,
as well as the duality theorem.

Lemma A.4. The differentiability property (ii) holds if and only if

Vol(a)l/” - Vol(ﬂ)l/” > —(a —h) o)

A.2
—  vol(a)l-1/n A2)
for any two big classes, 8 € Hy'(X).
Proof. Sincevol is positive on the big cone, (ii) is equivalent to
d . n—1
21 volla+ty)/m =2 (") (A.3)

dt vol(a)t=1/n"

t=0
By concavity ofvol'/™ on the big cone [Bou02], we thus see that (ii) implies (A.25-A
sume conversely that the latter holds. Then

ty- (o) yn o 17 (@ + 1))
vol() =1/ > Yolla )T

for |t| < 1, which yields (A.3) by continuity of positive intersectignoducts on the big
cone [BFJO9]. O

> vol(a + ty)/™ — vol(«)

Sincevol(a) = (a™) is differentiable whenv is nef, the same argument shows that
(A.2) holds wherw, 8 are nef and big.

Proof of Theorem A.3Assume that (i) holds, and pick big classes? € Hy'(X). By
Lemma A.4, it will be enough to establish (A.2). By definitiof positive intersection
numbers, there exists a sequence of modificatipns X, — X and Kahler classes
g, B, on Xy with

o, < pra(i.e. the difference is psef);

Bre < pp;

vol(ay) — vol(a);
vol(Bx) — vol(B);
(EB -l = B+ (an 1),
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As noted above, (A.2) holds when the classes are nef, angthenc

n—1
1/n _ 1/n (ak_ﬁk)'ak
VOl(ak) VOl(ﬂk) 2 VOl(Oék)l_l/n
o (o) = (B - o)
vol(ay)t—1/n
sincefy, < ;8 andey, is nef. In the limit ask — oo we infer

§ . 1 _ ﬂ . n—1
vol(a) /" — vol(8)1/" = ™ (Sgl(a)lit/yn >’

which is (A.2) sincevol(a) = a - (a™~1). This proves (i=(ii). Conversely, applying
(i) with v = « yields (i), as already observed in [BFJ09].

Assume now that (i) and (ii) hold. As observed in [BFJO09], kharse inequality (A.1)
holds for any two nef classes 3, because

1
volla — f3) — (") = —n/o B-{(a—tB)" " Ndt > —n(B-a™ ")

sincea — t5 < aandg is nef.

We next turn to the duality theorem. It is enough to show tingt@sef classy in the
interior of the closed convex cone generated by classeseofotim .. w™ ! is big. For
such a class, there exists a Kahler ctasm X such that

a- (") Zw- (8" (A.4)
for all big classe® € Hy'' (X). For eache > 0, a + ew is big, and (i) and (A.4) give
vol(a 4 ew) = (a4 ew) - {((a+ew)" ™ ™) > a- ((a+ew)" 1) > w- ((a+ew)™ 1),

and hence

1/n 1-1/n

vol(a + ew) > vol(w)

by the Khovanskii-Teissier inequality. This yieldsl(« + ew) > (w™) > 0 for anye > 0,
which proves thatv is big by [Bou02]. O

vol(a + ew)

Proof of Theorem A.2By Theorem A.3, it is enough to show that any big class=
Hy'' (X) satisfiesrol(a) = a-(a”~1). We do this by adapting the arguments of [BDPP13,
§4]. As above, we may choose a sequence of approximate Zdeskimpositiong; o =
wi + B wherepuy, : X, — X is a projective modificationyy, is Kahler, Ej, is (the
class of) an effective)-divisor, in such a way thata™) = lim(w}) and (") =
lim (g )« (w,’;—l). Property (i) is then equivalent to the asymptotic orthagiby prop-
erty (w,ff1 . Ek) — 0 (hence the chosen terminology!).

Let H be an ample divisor class oxi such thatd — a € Hﬂi’l(X) is nef. As observed
in [BDPP13,510], the class

pH—Ey=p"(H—a)+wg
is nef and rational. For eache [0, 1], we have
wi +tE, = (wi +tu"H) — t(u"H — Ey)
with wy + tp* H € Hy'' (X)) nef, and Theorem A.1 therefore yields
vol(a) > vol(wy, + tEy) > (wi + tu*H)" —nt(u*H — Ey) - (wp, + tu*H)"
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n n
— (ot + Y0 ()
- J

n—1
n—1 . )
—nt(p*H — Ey) - wp~ ! —nt (0 (H — @) +wy) - Ztﬂ <n . )wz Y (wrH).
: J
J=1
SinceH > « is nef, we haveu; H > pja > wy, and the monotonicity property of
intersection numbers of nef classes implies that

0<wj - (uH)"/ < (H")
and _
0<p*(H—a)-w - (W H)"" 177 < (H").
We thus get the existence of a uniform constant 0 such that
vol(a) — wp > nt(w) ™" - By) — Ct?
forall ¢ € [0, 1]. Choosing = n(“”?;lc'Ek
(wp™h - Bi)® < C' (vol(a) — (w})

proving as desired thaw) ' - E;) — 0.

) gives an estimate
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