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6 DUALITY BETWEEN THE PSEUDOEFFECTIVE AND THE MOVABLE CONE

ON A PROJECTIVE MANIFOLD

DAVID WITT NYSTRÖM

WITH AN APPENDIX BY ŚEBASTIEN BOUCKSOM

ABSTRACT. We prove a conjecture of Boucksom-Demailly-Păun-Peternell, namely that
on a projective manifoldX the cone of pseudoeffective classes inH

1,1

R
(X) is dual to

the cone of movable classes inHn−1,n−1

R
(X) via the Poincaré pairing. This is done by

establishing a conjectured transcendental Morse inequality for the volume of the difference
of two nef classes on a projective manifold. In an appendix byBoucksom it is shown that
the Morse inequality also implies that the volume function is differentiable on the big cone,
and one also gets a characterization of the prime divisors inthe non-Kähler locus of a big
class via intersection numbers.

1. INTRODUCTION

In [BDPP13] Boucksom-Demailly-Păun-Peternell proved that a line bundle on a pro-
jective manifold is pseudoeffective iff its degree along any member of a covering family of
curves is non-negative. As in explained in [BDPP13] this result should be understood in
terms of duality of cones.

Let X be a compact Kähler manifold. Recall that a class inH1,1
R

(X) is called pseu-
doeffective if it contains a closed positive current. The set of such classes form a closed
convex cone inH1,1

R
(X) called the pseudoeffective cone and is usually denoted byE . A

line bundleL is pseudoeffective iffc1(L) ∈ E .
In Hn−1,n−1

R
(X) there is a cone called the the movable coneM. It is defines as the

closure of the convex cone generated by classes of currents of the form

µ∗(ω̃1 ∧ ... ∧ ω̃n−1),

whereµ : X̃ → X is some modification andωi are Kähler forms oñX . The cohomology
class associated to a curve inX will lie in M iff it moves in an analytic family which
coversX : such a curve is called movable.

Furthermore, whenX is projective we letENS := E ∩NSR(X) where

NSR(X) := (H1,1
R

(X) ∩H2(X,Z)/tors)⊗Z R,

and similarlyMNS := M∩N1(X), where

N1(X) := (Hn−1,n−1
R

(X) ∩H2n−2(X,Z)/tors)⊗Z R.

One can now formulate the result of Boucksom-Demailly-Păun-Peternell in [BDPP13] in
the following way:

Theorem 1.1. On a projective manifoldX the conesENS andMNS are dual via the
Poincaŕe pairing ofNSR(X) withN1(X).

They also formulated a conjecture:
1
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Conjecture 1.1. On any compact Kähler manifoldX the conesE andM are dual via the
Poincaré pairing ofH1,1

R
(X) with Hn−1,n−1

R
(X).

More concretely the conjecture says that a classα ∈ H1,1
R

(X) contains a closed positive
current iff for all modificationsµ : X̃ → X ofX and Kähler classes̃βi onX̃ we have that

∫

X̃

µ∗(α) ∧ β̃1 ∧ ... ∧ β̃n−1 ≥ 0. (1.1)

The if part follows almost immediately from the fact that onecan pull back a closed positive
(1, 1)-current byµ to get a closed positive(1, 1)-current onX̃. The (very) hard part is
establishing the existence of a closed positive current using the numerical data (1.1).

Our main result confirms the conjecture whenX is projective.

Theorem A. WhenX is projective thenE andM are dual via the Poincaré pairing of
H1,1

R
(X) with Hn−1,n−1

R
(X).

It was observed already in [BDPP13] that to prove Conjecture1.1 it is enough to es-
tablish a certain lower bound on the volume of the differenceof two nef classesα andβ,
namely

vol(α− β) ≥ (αn)− n(αn−1 · β). (1.2)

This inequality is known as a transcendental Morse inequality. The case whenα andβ lies
inNSR(X) is well-known and not hard to prove (see [BDPP13]), and it is used in a crucial
way in the proof of Theorem 1.1. Indeed given the transcendental Morse inequality (1.2)
the rest of the proof of Theorem 1.1 in [BDPP13] extends to thegeneral case.

It was also recognized in [BDPP13] that to prove Conjecture 1.1 in the case whenX is
projective, it is enough to establish (1.2) for pairs of nef classesα, β whereβ ∈ NSR(X).
This is what we set out to do in this paper.

Theorem B. Let α andβ be two nef classes on a projective manifoldX and assume that
β ∈ NSR(X). Then

vol(α− β) ≥ (αn)− n(αn−1 · β).

In [BFJ09] Boucksom-Favre-Jonsson proved, using the estimate (1.2), the following
two theorems:

Theorem 1.2. The volume function isC1 onE◦
NS and the partial derivatives are given by

d

dt

∣

∣

∣

∣

t=0

vol(α+ tγ) = n〈αn−1〉 · γ.

Theorem 1.3. For any class big classα ∈ NSR we have that

vol(α) = 〈αn−1〉 · α.

In particular a prime divisorD will lie in the augmented base locus ofL iff

〈c1(L)
n−1〉 · c1(D) = 0.

Here〈αn−1〉 denotes a positive selfintersection ofα, which is equal toαn−1 whenα is
nef but not in general. This last result can be thought of as anorthogonality relation (see
[BFJ09]).

After learning of our results Boucksom produced a note [Bou16] in which he not only
explains how Theorem A is derived from Theorem B, but also proves that Theorem B
implies the analogues of Theorem 1.2 and Theorem 1.3:
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Theorem C. On a projective manifoldX the volume function is continuously differentible
on the big cone and

d

dt

∣

∣

∣

∣

t=0

vol(α+ tγ) = n〈αn−1〉 · γ.

Theorem D. For any classα ∈ E◦
NS on a projective manifoldX we have that

vol(α) = 〈αn−1〉n−1 · α.

In particular a prime divisorD will lie in the non-Kähler locus ofα iff

〈αn−1〉 · c1(D) = 0.

A striking consequence of Theorem C is that the estimate in Theorem B in fact holds
for all pairs of nef classesα andβ, irrespective ofβ lying in NSR(X) or not. We thus get:

Theorem B’. Letα andβ be two nef classes on a projective manifoldX . Then

vol(α− β) ≥ (αn)− n(αn−1 · β).

Boucksom’s note [Bou16] now forms an appendix to our paper (Appendix A).

1.1. Outline of proof of Theorem B. First we note that by continuity we can assumeα
to be nef and big andβ to Kähler and integral, i.e.β = c1(L) for some line bundleL. To
prove Theorem B in that case we will establish an infinitesimal version, which then easily
implies the theorem. The infinitesimal estimate we want to prove states that ifα is big and
β is Kähler and integral then

lim inf
t→0+

vol(α− tβ)− vol(α)
t

≥ −n〈αn−1〉 · β. (1.3)

Let θ be a smooth representative ofα and letω be a Kähler form inβ. Without loss
of generality we can assume thatβ = c1(L) whereL is effective. We call the associated
divisorY . There is anω-psh functiong such thatddcg = [Y ]−ω; g will have a logarithmic
singularity alongY .

Now we pick at > 0 such thatα− tβ is big. Addingtg turns any(θ− tω)-psh function
into aθ-psh function with logarithmic singularity of order at least t alongD.

One finds the volume ofα − tβ by integrating the Monge-Ampère measure of any
(θ − tω)-psh function with minimal singularities. This trick of adding tg does not change
the Monge-Ampère measure, so we see that we want to find aθ-psh function with the right
singularity alongD, whose total Monge-Ampère mass can be appropriately bounded from
below.

We create such a function by considering a family of upper envelopes. It is well-known
that a good way to constructθ-psh functions with minimal singularities is by envelopes:
i.e. we specify some functionf onX and then consider the envelope

φ := sup{ψ ≤ f : ψ θ-psh}.

So one way to get aθ-psh function with correct behavior alongD is to take

φ∞ := sup{ψ ≤ tg : ψ θ-psh}.

To estimate the Monge-Ampère mass ofφ∞ we will write it as the limit of a decreas-
ing sequence ofθ-psh functionsφR, all having minimal singularities. Since eachφR has
minimal singularities we know that for eachR,

∫

X

MAθ(φR) = vol(α).
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The Monge-Ampère measuresMAθ(φR) do not converge weakly toMAθ(φ∞) on the
whole ofX because thenα andα − tβ would have the same volume, which is not true.
By a crucial continuity property of the Monge-Ampère operator though we have weak
convergence on any open set on whichφ∞ is locally bounded. Thus we want to pick a
large open setU like that and see what happens to the measures1UMAθ(φR).

To be able to control these measures we first letφ := sup{ψ ≤ 0 : ψ θ-psh} and then
define

φR := sup{ψ ≤ φ+ tgR : ψ θ-psh},

wheregR is a certain regularization ofg which decreases tog asR tends to infinity. A deep
result of Berman-Demailly [BD12] says thatφ is particularly well-behaved:ddcφ hasL∞-
coefficients away from the non-Kähler locus, and the Monge-Ampère measure is simply
given by1Dθn whereD := {φ = 0}. We can use this to prove that the Monge-Ampère
measure of eachφR also is well-behaved, it is given by1DR

(θ + ddcφ+ tddcgR)
n where

DR := {φR = φ+ tgR}.
LetU be an open set at a given distance fromY . We choose our regularizationsgR such

that for any such setgR = g for R large enough. Thus onU the obstacleφ+ tgR does not
change for largeR which for one thing means that

1DR∩U (θ + ddcφ+ tddcgR)
n = 1DR∩U (θ + ddcφ+ tddcg)n,

but even more importantly makesDR ∩ U decrease withR. It follows that the measures
1UMAθ(φR) converge to1DR∩U (θ + ddcφ + tddcg)n. If we also assume thatφ∞ is
locally bounded onU then we get that

vol(α− tβ) =

∫

X

MAθ(φ∞) ≥

∫

DR∩U

(θ + ddcφ+ tddcg)n =

= lim
R→∞

∫

U

MAθ(φR) = vol(α)− lim
R→∞

∫

Uc

MAθ(φR).

Thus we need to estimate
∫

Uc MAθ(φR) from above. We again use thatMAθ(φR) is of
a nice form, and get, using the multilinearity of the non-pluripolar product, the following:

MAθ(φR) = 1DR
(θ + ddcφ+ tddcgR)

n ≤ 1DR
(θ + ddcφ+ t(ω + ddcgR))

n ≤

≤MAθ(φ) +

n
∑

k=1

tk
(

n

k

)

〈(θ + ddcφ)n−k〉 ∧ (ω + ddcgR)
k.

Finally integrating overU c yields
∫

Uc

MAθ(φR) ≤

≤

∫

Uc

MAθ(φ) +

n
∑

k=1

tk
(

n

k

)
∫

Uc

〈(θ + ddcφ)n−k〉 ∧ (ω + ddcgR)
k ≤

≤

∫

Uc

MAθ(φ) +
n
∑

k=1

tk
(

n

k

)

〈αn−k〉 · βk.

By enlargingU we can make
∫

Uc MAθ(φ) as small as we want. This then implies the
infinitesimal estimate (1.3).
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1.2. Related work. As has already been said Boucksom-Demailly-Păun-Peternell proved
the integral version of Conjecture 1.1 in [BDPP13]. They also settled the conjecture in
the case whenX is compact hyperkähler, or more generally, a limit by deformation of
projective manifolds with Picard numberρ = h1,1 (see [BDPP13], Corollary 10). In the
projective case they established a weaker version of Theorem B, namely that ifα is nef
andβ is nef and lies inNSR(X) then

vol(α− β) ≥ (αn)−
(n+ 1)2

4
(αn−1 · β).

Their proof is different from ours. As ours it uses a family ofθ-psh functions that converge
to something with a logarithmic singularity along the divisor of ω. But instead of being
envelopes these functions solve a Monge-Ampère equation,which concentrates the mass
along the divisor.

In [Xiao13] Xiao proved a kind of weaker qualitative versionof (1.2), namely given two
nef classesα andβ on a compact Kähler manifoldX then if

(αn) > 4n(αn−1 · β)

it follows thatα − β is big. Later, using the same kind of techniques as Xiao, Popovici
improved on this, showing that

(αn) > n(αn−1 · β)

impliesα− β to be big. Then Xiao refining the techniques further established in [Xiao14]
that ifα is big andβ movable then

vol(α) > n(〈αn−1〉 · β)

impliesα− β to be big.
The differentiability of the volume of big line bundles was proved independently and

at the same time as Boucksom-Favre-Jonsson by Lazarsfeld-Mustaţă [LM09] using the
theory of Okounkov bodies. They expressed the derivative interms of restricted volumes,
and as a consequence the restricted volume of a big line bundleL along a prime divisorsD
coincides with the pairing〈c1(L)n−1〉 ·c1(D). The restricted volume is only really defined
along subvarieties that are not contained in the augmented base locus, while the pairing
〈c1(L)n−1〉 · c1(D) always is defined and furthermore depend continuously onL. It thus
follows from Theorem 1.3 that if a prime divisorD is not contained in the augmented base
locus for small ample perturbationsL + ǫA of L and furthermore the restricted volume of
L + ǫA alongD remains bounded from below by some positive number thenD cannot
be contained in the augmented base locus ofL. A deep result of Ein-Lazarsfeld-Mustaţă-
Nakamaye-Popa [ELMNP09] states that the restricted volumecan be used to characterize
the whole augmented base locus. Whether the analogous result pertaining to the non-
Kähler locus of a big class is true is still non known, but we note that our Theorem D can
be seen as a partial result in that direction. The nef case though was recently completely
settled by Collins-Tosatti [CT15]. They prove that ifα is a nef and big class on a compact
Kähler manifold then the non-Kähler locus ofα is equal to the null-locus, i.e. union of all
irreducible analytic subspacesV such that

∫

V

αdimV = 0.

Apart from the pseudoeffective and the big cone inH1,1
R

(X) there are two other very
important cones, namely the Kähler coneK and its closure the nef coneN . In the deep
and important work [DP04] (indeed it is used in a crucial way in [BDPP13] and hence
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also in the proof of our results) Demailly-Păun proves thatthe nef coneN is dual to the
pseudoeffective cone inHn−1,n−1

R
(X) (i.e. those classes that contain a closed positive

(n− 1, n− 1)-current). See also the simpler proof by Chiose in the recent[Chi16].

Acknowledgment.I would like to thank Robert Berman, Bo Berndtsson, Jean-Pierre De-
mailly and Mihai Păun for fruitful discussions on this topic and their valuable comments
on an early draft of this paper. I am particularly grateful for Sébastien Boucksom writing
the appendix, providing the deriviation of Theorem A, B’, C and D from Theorem B.

2. PRELIMINARIES

2.1. θ-psh functions. Let (X,ω) be a compact Kähler manifold.
Letθ be a closed smooth real(1, 1)-form onX andα := [θ] ∈ H1,1

R
(X) its cohomology

class. We say that a functionu : X → [−∞,∞) is θ-psh if whenever locallyθ = ddcv for
some smooth functionv we have thatu+ v is plurisubharmonic and not identically equal
to −∞. Thusθ + ddcu is a closed positive(1, 1)-current. Conversely, ifT is a closed
positive(1, 1)-current inα then there exists aθ-psh functionu such thatT = θ + ddcu,
and thisu is unique up to a constant.

A functionu which isθ-psh for someθ is called almost psh.
If θ′ is another closed smooth real(1, 1)-form cohomologuous toθ, then by theddc-

lemma there exists a smooth functionf such thatθ′ = θ + ddcf . Thus one sees thatu is
θ-psh iff u− f is θ′-psh.

The set ofθ-psh functions is denoted byPSH(X, θ). The classα is called pseudoeffec-
tive if it contains a closed positive current and we note thatthis is equivalent toPSH(X, θ)
being nonempty. A class is said to be big if for someǫ > 0 and some Kähler classβ we
have thatα− ǫβ is pseudoeffective.

A θ-psh functionu is said to have analytic singularities if locally it can be written as
c ln(

∑

i |gi|
2) + f wherec > 0, gi is a finite collection of local holomorphic functions

andf is smooth. A deep regularization result of Demailly states that if α is big then there
exists aθ-psh function with analytic singularities.

A θ-psh functionu is said to have minimal singularities if for everyv ∈ PSH(X, θ)
we have thatu ≥ v+O(1). It is easy to show using envelopes that wheneverα is pseudo-
effective one can findθ-psh functions with minimal singularities. They are far from unique
though, in fact this is what we will exploit later in the proofof Theorem B.

2.2. Lelong numbers and the non-K̈ahler locus. Given aθ-psh functionu its Lelong
number at a pointx ∈ X , denoted byνx(u), is defined as the supremum of allλ such
thatu(z) ≤ λ ln |z|2 + O(1) locally nearx, wherezi are local holomorphic coordinates
centered atx. WhenY is an irreducible analytic subset we define the Lelong numberof
u alongY asνY (u) := infx∈Y νx(u). A fundamental result of Siu [Siu74] states that for
anyc the setEc(u) := {x : νx(u) ≥ c} is analytic. In particular this implies thatνY (u)
equals the Lelong number ofu at a generic point ofY .

If α is big we define the Lelong number ofα at a pointx asνx(α) := νx(u) whereu
is anyθ-psh function with minimal singularities. The setEnn(α) := {x : νx(α) > 0} is
called the non-nef locus ofα, and one can show that it is a countable union of analytic sets.
One also defines the non-Kähler locusEnK(α) as

⋂

ǫ>0

Enn([θ − ǫω]).

ClearlyEnn(α) ⊆ EnK(α), but the non-Kähler locus has the advantage of being a proper
analytic subset ofX (see [Bou02]).
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2.3. Non-pluripolar positive products and Monge-Ampère measures.A key tool will
be the notion of non-pluripolar positive products of closedpositive currents. This theory
was first developed in the local setting by Bedford-Taylor [BT82] and later in the geo-
metric setting of compact Kähler manifolds by Boucksom-Eyssidieux-Guedj-Zeriahi in
[BEGZ10].

If Ti, i = {1, ..., p} are closed positive(1, 1)-currents one defines a closed positive
(p, p)-current called the non-pluripolar positive product ofTi, denoted by〈T1 ∧ ... ∧ Tp〉
(see [BEGZ10] for the definition). To avoid some technical issues we will henceforth only
consider products when the cohomology classes of the currentsTi are all big. The product
is symmetric and multilinear, so in particular ifT1 andT2 are two closed positive(1, 1)-
currents then

〈(T1 + T2)
n〉 =

n
∑

k=0

(

n

k

)

〈T n−k1 ∧ T k2 〉.

Also if η is a closed semipositive(1, 1)-form then〈T1∧ ...∧Tp∧ηq〉 = 〈T1∧ ...∧Tp〉∧ηq.
An important property of non-pluripolar products (which also explains the name) is that
they never put any mass on pluripolar sets, which includes proper analytic subsets.

Whenp = n = dimCX , 〈T1 ∧ ... ∧ Tn〉 is a positive measure, and when then currents
are all equalTi = θ+ ddcψ, then〈(θ+ ddcψ)n〉 is known as the (non-pluripolar) Monge-
Ampère measure ofψ, which we also denote byMAθ(ψ). A basic fact is that if on some
upen setU we have thatψ is locally bounded andddcψ has coefficients inL∞ then

1UMAθ(ψ) = 1U (θ + ddcu)n.

Here the right hand side simply denotes the measure one gets by taking the appropriate de-
terminant of the coefficient functions (typically this onlymakes sense when the coefficients
areL∞-functions, since in general one cannot multiply measures).

An absolutely fundamental role in this theory is played by the following convergence
result for Monge-Ampère measures, proved by Bedford-Taylor in [BT82].

Theorem 2.1. LetU be an open set anduk be a decreasing sequence ofθ-psh functions
such thatu := limk→∞ uk is locally bounded onU (u will then automatically byθ-psh on
U ). Then the measures1UMAθ(uk) converge weakly to1UMAθ(u).

Remark 2.1. One can also allowuk to increase a.e. to their limitu and the convergence
still holds, and one is also allowed to restrict to a plurifineopen set (see [BT82]) but we
will not need that here. One should note that the assumption on u being locally bounded is
absolutely vital, without it the statement would be blatantly false.

We cite the following important result from [BEGZ10].

Theorem 2.2. Assume we have twop-tuples of currentsTi = θi + ddcψi and T ′
i =

θi + ddcψ′
i such that for eachi, ψi ≤ ψ′

i + O(1) and furthermore eachψi is bounded
from below by some almost psh function with analytic singularities (or more generally
with small unbouded locus). Then the cohomology class of〈T1 ∧ ...∧ Tp〉 is bounded from
above by the cohomology class of〈T ′

1 ∧ ... ∧ T
′
p〉.

This result implies that ifTi = θi+dd
cψi, i ∈ {1, ..., p} whereψi ∈ PSH(γi) all have

minimal singularities, then the cohomology class of

〈T1 ∧ ... ∧ Tp〉

only depends on the cohomology classesαi := [γi] and not on the particularTi. This class
is called the positive intersection ofαi and denoted by

〈α1 ∧ ... ∧ αp〉.
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It is important to note that it does not in general depend multilinearly on the cohomology
classes. But it is naturally homogeneous in each variable and it is also monotone in the
following sense:

〈αi ∧ ... ∧ αp〉 ≤ 〈α′
1 ∧ ... ∧ α

′
p〉

if each differenceα′
i−αi is pseudoeffective. This again follows from Theorem 2.2. These

properties together imply that〈α1 ∧ ... ∧ αp〉 at least depends continuously on the classes
αi (see [BEGZ10]).

In particular we see that the number
∫

X
MAθ(u) = 〈(θ + ddcu)n〉 only depends on

α as long asu has minimal singularities. This number is called the volumeof α, and is
written as vol(α). We also see from Theorem 2.2 that ifv ∈ PSH(X, θ) is bounded from
below by some almost psh function with analytic singularities then

∫

X

MAθ(v) ≤ vol(α).

The following is a deep result of Boucksom in [Bou02] building on work of Demailly-
Păun in [DP04] (see also [Chi16]).

Theorem 2.3. Let αk be a sequence of big classes that converge to a classα. Then if
lim supk→∞ vol(αk) > 0 it follows thatα is big.

From this we see that letting vol(α) := 0 for α not big gives a continuous extension of
the volume function to the whole ofH1,1

R
(X).

3. REGULARITY OF ENVELOPES

In our proof of Theorem B a key role will be played by a family ofenvelopes. The proof
will rely on us being able to control the behaviour of their Monge-Ampère measures. For
this we need a deep result of Berman-Demailly [BD12].

Theorem 3.1. Let θ be a smooth closed real(1, 1)-form on a compact K̈ahler manifold
(X,ω). Assume that the classα := [θ] is big and letψ0 be a strictlyθ-psh function with
analytic singularities. Letφ be defined as

φ := sup{ψ ≤ 0 : ψ ∈ PSH(X, θ)},

and letD := {φ = 0}. Thenφ ∈ PSH(X, θ) has minimal singularities and for some
constantsC andB we have that

|ddcφ|ω ≤ C(|ψ0|+ 1)2eB|ψ0|.

It follows that
MAθ(φ) = 1Dθ

n

and hence

vol(α) =
∫

X

MAθ(φ) =

∫

D

θn.

Remark 3.1. It was remarked in [BD12] thatθ in Theorem 3.1 is allowed to have coeffi-
cients inL∞.

This theorem deals with one particular envelope. For our purposes we will need a vari-
ation of it where we are allowed to consider more general obstacle functions. For technical
reasons we want to use functions of the formφ+ f as obstacles for the envelope, whereφ
is the envelope from Theorem 3.1 andf is smooth. It turns out that we can use Theorem
3.1 combined with the continuity property of the Monge-Amp`ere operator Theorem 2.1 to
get basic control of the Monge-Ampère measures of these particular envelopes.
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Proposition3.2. Let θ andφ be as in Theorem 3.1, letf be a smooth function onX , and
let

φf := sup{ψ ≤ φ+ f : ψ ∈ PSH(θ)}.

Thenφf ∈ PSH(θ) has minimal singularities and

MAθ(φf ) = 1Df\Z(θ + ddcφ+ ddcf)n,

whereDf := {φf = φ+ f} andZ := {ψ0 = −∞}. We thus get that

vol(α) =
∫

Df\Z

(θ + ddcφ+ ddcf)n.

Proof. Note thatφ+minX f is a candidate for the envelope, showing thatφ+minX f ≤
φf and henceφf has minimal singularities.

Let | · |reg be a smooth convex function onR which coincides with| · | for |x| ≥ 1 and

max
reg

(x, y) :=
x+ y + |x− y|reg

2

be the corresponding regularized max function. Let

φk := max
reg

(φ,−k −max
reg

(ψ0,−k − 1)).

Thenφk decreases down toφ andθk := θ + ddcφk + ddcf hasL∞-coefficients. Let

uk := sup{v ≤ 0 : v ∈ PSH(θk)}

andDk := {u = 0}. By Theorem 3.1 (withL∞-coefficients, see Remark 3.1)

MAθk(uk) = 1Dk
θnk . (3.1)

It is easy to see that

uk + φk + f = sup{ψ ≤ φk + f : ψ ∈ PSH(θ)} =: ψk,

and soDk = {ψk = φk + f} and by (3.1)

MAθ(ψk) = 1Dk
(θ + ddcφk + ddcf)n.

Sinceφk decreases down toφ we get thatψk decreases down toφf .
Without loss of generality we can assume thatψ0 ≤ 0 which then implies thatψ0 ≤ φ.

Let UC := {ψ0 > −C}, then untangling the definition shows thatφk = φ onUC as long
ask ≥ 2C. Thus for largek,

1UC
MAθ(ψk) = 1Dk∩UC

(θ + ddcφ+ ddcf)n.

We now claim that fork > 2C,Dk ∩ UC decreases withk and

(
⋂

k>2C

Dk) ∩ UC = Df ∩ UC .

For the first statement,x ∈ Dk ∩UC iff ψk(x) = φk(x) + f(x) = φ(x) + f(x), but since
ψk(x) decreases ink we must have thatDk ∩ UC decreases withk. On the other hand,
x ∈ Df ∩ UC iff φf (x) = φ(x) + f(x) iff ψk(x) = φ(x) + f(x) for all k > 2C.

If µ is a finite measure andAk is a decreasing sequence of measurable sets withA :=
∩kAk then the basic continuity of measures implies that1Ak

µ converge (strongly) to1Aµ.
Thus we see that1UC

MAθ(ψk) converges to1Df∩UC
(θ + ddcφ+ ddcf)n.

We also note thatφf ≥ ψ0 − C′ for some constantC′, so φf is bounded onUC .
By Theorem 2.1 we thus get that1UC

MAθ(ψk) converges weakly to1UC
MAθ(φf ) and

hence
1UC

MAθ(φf ) = 1Df∩UC
(θ + ddcφ+ ddcf).
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Letting C tend to infinity proves the proposition since(∪CUC)c = Z being pluripolar
cannot support any part ofMAθ(φf ). �

4. PROOF OFTHEOREM B

Our goal is to establish the fundamental volume bound (1.2) for α nef andβ nef and
lying in NSR(X). To do this we will prove the following

Theorem 4.1. LetX be projective, letα be a big class (so non necessarily Kähler) andβ
an integral K̈ahler class. Then we have that

lim inf
t→0+

vol(α− tβ)− vol(α)
t

≥ −n〈αn−1〉 · β.

This is the appropriate infinitesimal version of (1.2) extended to arbitrary big classesα.
Before turning to the proof of Theorem 4.1 let us explain how it implies Theorem B.
We use the following elementary lemma:

Lemma 4.2. Let f, g : [a, b] → R be two continuous functions such that for allt ∈ [a, b)
we have that

lim inf
h→0+

f(t+ h)− f(t)

h
≥ g(t).

Thenf(b)− f(a) ≥
∫ b

a g(t)dt.

Proof. By consideringf(t)−
∫ t

a
g(s)ds we can assume thatg ≡ 0 and hence we want to

show that this impliesf(b) ≥ f(a). Pickǫ > 0. Let t0 := sup{t ∈ [a, b] : f(s)− f(a) ≥

−ǫs for all s ∈ [a, t]}. If t0 6= b then it would follow thatlim infh→0+
f(t0+h)−f(t0)

h ≤ −ǫ
which is a contradiction. Hencet0 = b sof(b)− f(a) ≥ −ǫ and thusf(b) ≥ f(a). �

4.1. Proof of Theorem B given Theorem 4.1.

Proof. By continuity and the scaling properties of the volume and the intersection numbers
we can assume thatα is Kähler whileβ is Kähler and integral (i.e.β = c1(L) for some
holomorphic line bundleL).

Let
t0 := sup{t ∈ [0, 1] : α− tβ ∈ E0},

f(t) := vol(α − tβ) andg(t) := −n〈(α − tβ)n−1〉 · β. Bothf andg are continuous on
[0, t0) (see Section 2) and it is also easy to show thatg is increasing. Theorem 4.1 now
exactly says that

lim inf
h→0+

f(t+ h)− f(t)

h
≥ g(t),

thus by the lemma above we get that for anyt ∈ [0, t0)

vol(α− tβ) ≥ vol(α) − n

∫ t

s=0

(

〈(α− sβ)n−1〉 · β
)

ds ≥

≥ vol(α)− nt〈αn−1〉 · β = (αn)− nt(αn−1 · β).

Assume that
(αn)− nt(αn−1 · β) > 0

because otherwise the volume estimate is trivially true. Wethen get that for anyt ∈ [0, t0)

vol(α− tβ) ≥ (αn)− nt(αn−1 · β) ≥ (αn)− n(αn−1 · β) > 0. (4.1)

By Theorem 2.3 which as we recall says that the volume tends tozero as one approaches
the boundary of the big cone we see that (4.1) implies thatα− t0β is big and hencet0 = 1.
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The continuity of the volume function in the big cone combined with (4.1) then establishes
the desired volume estimate.

�

4.2. Proof of Theorem 4.1.

Proof. Let θ be a smooth representative ofα and letω be a Kähler form inβ.
Pick t > 0 such thatα− tβ is big (which is always possible sinceE0 is an open cone).

By the homogeneity of the positive intersection we are allowed to multiply bothα andθ
with the same positive constant. Thus without loss of generality we may assume thatL is
effective. Lets be a nontrivial holomorphic section ofL. There is a positive metrich of L
whose curvature form isω, and we let

g := ln |s|2h,

where we normalizeh so thatmax g = 0. We thus haveddcg = [Y ] − ω whereY is the
effective divisor defined bys. For anyR > 0 we let

gR := max
reg

(g,−R).

Let as in Theorem 3.1

φ := sup{ψ ≤ 0 : ψ ∈ PSH(θ)}.

Let also
φR := sup{ψ ≤ φ+ tgR : ψ ∈ PSH(θ)}

and
DR := {φR = φ+ tgR}.

From Proposition 3.2φR ∈ PSH(θ) has minimal singularities, and hence

vol(α) =
∫

X

MAθ(φR). (4.2)

We also get from Theorem 3.1 and Proposition 3.2 that

MAθ(φR) = 1DR\Z(θ + ddcφ+ tddcgR)
n, (4.3)

the measure being locallyL∞ onX \ Z whereZ is the singular set of some strictlyθ-psh
functionψ0 with analytic singularities.

Let also
φ∞ := sup{ψ ≤ φ+ tg : ψ ∈ PSH(θ)}

and
D∞ := {φ∞ = φ+ tg}.

We claim thatφ∞ − tg ∈ PSH(θ − tω) and that in fact

φ∞ − tg = sup{ψ ≤ 0 : ψ ∈ PSH(θ − tω)}. (4.4)

Namely, we note that sinceddcg = [Y ] − ω we have thatddc(φ∞ − tg) ≥ −θ + tω on
X \ Y . On the other handφ∞ − tg ≤ φ ≤ 0 so it extends as an(θ − tω)-psh function
acrossY . If ψ is any other(θ− tω)-psh function withψ ≤ 0, then it is alsoθ-psh (sincetω
is Kähler) and thusψ ≤ φ (φ being defined as the supremum of all such functions). Since
ψ + tg clearly lies inPSH(θ) it follows thatψ + tg ≤ φ∞ which shows the validity of
(4.4). In particularφ∞ − tg has minimal singularities and so

vol(α− tβ) =

∫

X

MAθ−tω(φ∞ − tg) =

∫

X

MAθ(φ∞). (4.5)
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Sinceα− tβ was assumed to be big we also get thatφ∞ ≥ ψ1 for some quasi-psh function
ψ1 with analytic singularities.

The obstaclesφ + tgR decreases toφ + tg and therefore the envelopesφR decreases
to φ∞. Let UC := {ψ1 > −C} ∩ {g > −C}. Note that forR > C + 1, gR =
maxreg(g,−R) = g onUC and so by (4.3)

1UC
MAθ(φR) = 1DR∩UC\Z(θ + ddcφ− tω)n.

We now claim that forR > C + 1,DR ∩ UC decreases withR and

(
⋂

R>C

DR) ∩ UC = D∞ ∩ UC .

It is exactly the same situation as in the proof of Proposition 3.2. For the first statement,
x ∈ DR ∩ UC (R > C + 1) iff φR(x) = φ(x) + tgR(x) = φ(x) + tg(x), but since
φR(x) decreases inR we must have thatDR ∩ UC decreases withR. On the other hand,
x ∈ D∞ ∩ UC iff φ∞(x) = φ(x) + tg(x) iff φR(x) = φ(x) + tg(x) for all R > C + 1.

We also note as in Proposition 3.2 that this implies that1DR∩UC\Z(θ + ddcφ − tω)n

converge (strongly) to1D∞∩UC\Z(θ+ ddcφ− tω)n. But sinceφ∞ ≥ ψ1 we have thatφ∞
is bounded onUC and thus Theorem 2.1 implies that1UC

MAθ(φR) converge weakly to
1UC

MAθ(φ∞). Put together this shows that

1UC
MAθ(φ∞) = 1D∞∩UC\Z(θ + ddcφ− tω)n

and hence

lim
R→∞

∫

UC

MAθ(φR) =

∫

UC

MAθ(φ∞). (4.6)

Combining (4.2),(4.5) and (4.6) we get that

vol(α − tβ) =

∫

X

MAθ(φ∞) ≥

∫

UC

MAθ(φ∞)n =

= lim
R→∞

∫

UC

MAθ(φR) = vol(θ)− lim
R→∞

∫

Uc
C

MAθ(φR).
(4.7)

We thus need to estimate
∫

Uc
C

MAθ(φR) from above. But using (4.3) we clearly have
that

MAθ(φR) = 1DR\Z(θ + ddcφ+ tddcgR)
n ≤

≤ 1DR\Z(θ + ddcφ+ t(ω + ddcgR))
n ≤

≤ 1X\Z(θ + ddcφ+ t(ω + ddcgR))
n =MAθ+tω(φ+ tgR).

(4.8)

Here we used that addingtω only increases the mass onDR \Z (it being Kähler), and then
thatgR is ω-psh, makingMAθ+tω(φ+ tgR) a well-defined positive measure onX .

Since bothθ + ddcφ andt(ω + ddcgR) are closed positive(1, 1)-currents we get that

MAθ+tω(φ+ tgR) = 〈(θ + ddcφ+ t(ω + ddcgR))
n〉 =

=

n
∑

k=0

tk
(

n

k

)

〈(θ + ddcφ)n−k ∧ (ω + ddcgR)
k〉 =

=MAθ(φ) +
n
∑

k=1

tk
(

n

k

)

〈(θ + ddcφ)n−k〉 ∧ (ω + ddcgR)
k,

(4.9)

simply using the multilinearity of the non-pluripolar product (see Section 2).
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We can now use (4.8) and (4.9) to estimate
∫

Uc
C

MAθ(φR), namely
∫

Uc
C

MAθ(φR) ≤

∫

Uc
C

MAθ+tω(φ+ tgR) =

=

∫

Uc
C

(

MAθ(φ) +

n
∑

k=1

tk
(

n

k

)

〈(θ + ddcφ)n−k〉 ∧ (ω + ddcgR)
k

)

≤

≤

∫

Uc
C

MAθ(φ) +

n
∑

k=1

tk
(

n

k

)
∫

X

〈(θ + ddcφ)n−k〉 ∧ (ω + ddcgR)
k =

=

∫

Uc
C

MAθ(φ) +

n
∑

k=1

tk
(

n

k

)

〈αn−k〉 · βk,

where we in the last step used that bothφ andgR have minimal singularities (see Section
2).

Since this estimate is independent ofR we conclude from (4.7) that

vol(α− tβ) ≥ vol(α) −
∫

Uc
C

MAθ(φ)−
n
∑

k=1

tk
(

n

k

)

〈αn−k〉 · βk

while lettingC tend to infinity yields

vol(α− tβ) ≥ vol(α) −
n
∑

k=1

tk
(

n

k

)

〈αn−k〉 · βk.

In particular

lim inf
t→0+

vol(α− tβ)− vol(α)
t

≥ −n〈αn−1〉 · β,

which was to be proved.
�

APPENDIX A. REMARKS ON ORTHOGONALITY, DIFFERENTIABILTITY AND DUALITY

– S. BOUCKSOM

A.1. Differentiability and duality in the projective case. Demailly conjectures that the
following ’transcendental Morse inequality’

vol(α − β) ≥ (αn)− n(αn−1 · β) (A.1)

holds for any two nef classesα, β ∈ H1,1
R

(X) on a compact Kähler manifoldX of complex
dimensionn.

In the main paper the following was proved:

Theorem A.1. The Morse inequality (A.1) holds whenX is projective andβ ∈ NSR(X).

As we shall see, this result implies the following general statements.

Theorem A.2. LetX be a projective manifold.

(ii) The Morse inequality (A.1) holds for arbitrary nef(1, 1)-classes.
(ii) The differentiability theorem of[BFJ09] holds for all (1, 1)-classes: for each

α, γ ∈ H1,1
R

(X) with α big, we have

d

dt

∣

∣

∣

∣

t=0

vol(α+ tγ) = n γ · 〈αn−1〉.
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(iii) The duality theorem of[BDPP13]holds for all(1, 1)-classes: a classα ∈ H1,1
R

(X)
is psef iff

α · µ∗(ω
n−1) ≥ 0

for any modificationµ : X ′ → X and any K̈ahler classω onX ′.

A.2. From orthogonality to differentiability. As we next show, the orthogonality prop-
erty of [BDPP13] is equivalent to the differentiability property of [BFJ09]. Our argument
is inspired by the simplified proof of [BB10, Theorem B] provided in [LN, Lemma 6.13]
(see also [Xiao14, Proposition 1.1] for a related result).

Theorem A.3. For a given compact K̈ahler manifoldX , the following properties are
equivalent:

(i) Orthogonality: each big classα ∈ H1,1
R

(X) satisfies

vol(α) = α · 〈αn−1〉.

(ii) Differentiability: for eachα, γ ∈ H1,1
R

(X) withα big, we have

d

dt

∣

∣

∣

∣

t=0

vol(α+ tγ) = n γ · 〈αn−1〉.

Further, these properties imply the transcendental Morse inequality (A.1) for all nef classes,
as well as the duality theorem.

Lemma A.4. The differentiability property (ii) holds if and only if

vol(α)1/n − vol(β)1/n ≥
(α− β) · 〈αn−1〉

vol(α)1−1/n
(A.2)

for any two big classesα, β ∈ H1,1
R

(X).

Proof. Sincevol is positive on the big cone, (ii) is equivalent to

d

dt

∣

∣

∣

∣

t=0

vol(α+ tγ)1/n =
γ · 〈αn−1〉

vol(α)1−1/n
. (A.3)

By concavity ofvol1/n on the big cone [Bou02], we thus see that (ii) implies (A.2). As-
sume conversely that the latter holds. Then

tγ · 〈αn−1〉

vol(α)1−1/n
≥ vol(α+ tγ)1/n − vol(α)1/n ≥

tγ · 〈(α + tγ)n−1〉

vol(α+ tγ)1−1/n
,

for |t| ≪ 1, which yields (A.3) by continuity of positive intersectionproducts on the big
cone [BFJ09]. �

Sincevol(α) = (αn) is differentiable whenα is nef, the same argument shows that
(A.2) holds whenα, β are nef and big.

Proof of Theorem A.3.Assume that (i) holds, and pick big classesα, β ∈ H1,1
R

(X). By
Lemma A.4, it will be enough to establish (A.2). By definitionof positive intersection
numbers, there exists a sequence of modificationsµk : Xk → X and Kähler classes
αk, βk onXk with

• αk ≤ µ∗
kα (i.e. the difference is psef);

• βk ≤ µ∗
kβ;

• vol(αk) → vol(α);
• vol(βk) → vol(β);
• (µ∗

kβ · αn−1
k ) → β · 〈αn−1〉.
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As noted above, (A.2) holds when the classes are nef, and hence

vol(αk)
1/n − vol(βk)

1/n ≥
(αk − βk) · α

n−1
k

vol(αk)1−1/n

≥
(αnk )− (µ∗

kβ · αn−1
k )

vol(αk)1−1/n

sinceβk ≤ µ∗
kβ andαk is nef. In the limit ask → ∞ we infer

vol(α)1/n − vol(β)1/n ≥
vol(α) − β · 〈αn−1〉

vol(α)1−1/n
,

which is (A.2) sincevol(α) = α · 〈αn−1〉. This proves (i)=⇒(ii). Conversely, applying
(ii) with γ = α yields (i), as already observed in [BFJ09].

Assume now that (i) and (ii) hold. As observed in [BFJ09], theMorse inequality (A.1)
holds for any two nef classesα, β, because

vol(α− β)− (αn) = −n

∫ 1

0

β · 〈(α − tβ)n−1〉dt ≥ −n(β · αn−1)

sinceα− tβ ≤ α andβ is nef.
We next turn to the duality theorem. It is enough to show that any psef classα in the

interior of the closed convex cone generated by classes of the formµ∗ω
n−1 is big. For

such a class, there exists a Kähler classω onX such that

α · 〈βn−1〉 ≥ ω · 〈βn−1〉 (A.4)

for all big classesβ ∈ H1,1
R

(X). For eachε > 0, α+ εω is big, and (i) and (A.4) give

vol(α+ εω) = (α+ εω) · 〈(α+ εω)n−1〉 ≥ α · 〈(α + εω)n−1〉 ≥ ω · 〈(α + εω)n−1〉,

and hence
vol(α + εω) ≥ vol(ω)1/n vol(α+ εω)1−1/n

by the Khovanskii-Teissier inequality. This yieldsvol(α+ εω) ≥ (ωn) > 0 for anyε > 0,
which proves thatα is big by [Bou02]. �

Proof of Theorem A.2.By Theorem A.3, it is enough to show that any big classα ∈
H1,1

R
(X) satisfiesvol(α) = α·〈αn−1〉. We do this by adapting the arguments of [BDPP13,

§4]. As above, we may choose a sequence of approximate Zariskidecompositionsµ∗
kα =

ωk + Ek whereµk : Xk → X is a projective modification,ωk is Kähler,Ek is (the
class of) an effectiveQ-divisor, in such a way that〈αn〉 = lim(ωnk ) and 〈αn−1〉 =

lim(µk)∗
(

ωn−1
k

)

. Property (i) is then equivalent to the asymptotic orthogonality prop-
erty

(

ωn−1
k ·Ek

)

→ 0 (hence the chosen terminology!).
LetH be an ample divisor class onX such thatH − α ∈ H1,1

R
(X) is nef. As observed

in [BDPP13,§10], the class

µ∗H − Ek = µ∗(H − α) + ωk

is nef and rational. For eacht ∈ [0, 1], we have

ωk + tEk = (ωk + tµ∗H)− t(µ∗H − Ek)

with ωk + tµ∗H ∈ H1,1
R

(Xk) nef, and Theorem A.1 therefore yields

vol(α) ≥ vol(ωk + tEk) ≥ (ωk + tµ∗H)n − nt(µ∗H − Ek) · (ωk + tµ∗H)n−1
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= (ωk)
n + nt(ωn−1

k · µ∗H) +

n
∑

j=2

tj
(

n

j

)

ωn−jk · (µ∗H)j

−nt(µ∗H − Ek) · ω
n−1
k − nt (µ∗(H − α) + ωk) ·

n−1
∑

j=1

tj
(

n− 1

j

)

ωn−1−j
k · (µ∗H)j .

SinceH ≥ α is nef, we haveµ∗
kH ≥ µ∗

kα ≥ ωk, and the monotonicity property of
intersection numbers of nef classes implies that

0 ≤ ωjk · (µ
∗H)n−j ≤ (Hn)

and
0 ≤ µ∗(H − α) · ωjk · (µ

∗H)n−1−j ≤ (Hn).

We thus get the existence of a uniform constantC > 0 such that

vol(α) − ωnk ≥ nt(ωn−1
k ·Ek)− Ct2

for all t ∈ [0, 1]. Choosingt = n
(ωn−1

k
·Ek)

2C gives an estimate

(ωn−1
k ·Ek)

2 ≤ C′ (vol(α)− (ωnk )) ,

proving as desired that(ωn−1
k ·Ek) → 0.

�
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