
VALUATION SPACES AND MULTIPLIER IDEALS ON SINGULAR

VARIETIES
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Abstract. We generalize to all normal complex algebraic varieties the valuative character-
ization of multiplier ideals due to Boucksom-Favre-Jonsson in the smooth case. To that end,
we extend the log discrepancy function to the space of all real valuations, and prove that it
satisfies an adequate properness property, building upon previous work by Jonsson-Mustaţă.
We next give an alternative definition of the concept of numerically Cartier divisors previ-
ously introduced by the first three authors, and prove that numerically Q-Cartier divisors
coincide with Q-Cartier divisors for rational singularities. These ideas naturally lead to
the notion of numerically Q-Gorenstein varieties, for which our valuative characterization of
multiplier ideals takes a particularly simple form.
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1. Introduction

Multiplier ideal sheaves are a fundamental tool both in complex algebraic and complex
analytic geometry. They provide a way to approximate a ’singularity data’, which can take
the form of a (coherent) ideal sheaf, a graded sequence of ideal sheaves, a plurisubharmonic
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function, a nef b-divisor, etc..., by a coherent ideal sheaf satisfying a powerful cohomology
vanishing theorem. For the sake of simplicity, we will focus on the case of ideals and graded
sequences of ideals in the present paper.

On a smooth (complex) algebraic variety X, the very definition of the multiplier ideal
sheaf J (X, ac) of an ideal sheaf a ⊂ OX with exponent c > 0 is valuative in nature: a germ
f ∈ OX belongs to J (X, ac) iff it satisfies

ν(f) > cν(a)−AX(ν)

for all divisorial valuations ν, i.e. all valuations of the form ν = ordE (up to a multiplicative
constant) with E a prime divisor on a birational model X ′, proper over X. Further, it is
enough to test these conditions with X ′ a fixed log resolution of a (which shows that J (X, ac)
is coherent, as the direct image of a certain coherent fractional ideal sheaf on X ′). Here we
have set as usual ν(a) := minf∈ax ν(f) with x = cX(ν) the center of ν in X, and

AX(ν) := 1 + ordE
(
KX′/X

)
is the log discrepancy (with respect to X) of the divisorial valuation ν.

The multiplier ideal sheaf J (X, ac•) of a graded sequence of ideal sheaves a• = (am)m∈N is

defined as the stationary value of J (X, a
c/m
m ) for m large and divisible, but a direct valuative

characterization was provided in [FJ05b] in the 2-dimensional case, in [BFJ08] for all non-
singular varieties, and in [JM10, JM12] for the general case of regular excellent noetherian
Q-schemes. More specifically, for each divisorial valuation ν, subadditivity of m 7→ ν(am)
allows to define

ν(a•) := lim
m→∞

m−1ν(am) = inf
m≥1

m−1am

in [0,+∞). By [BFJ08], a germ f ∈ OX belongs to J (X, ac•) iff there exists 0 < ε� 1 such
that

ν(f) ≥ (c+ ε)ν(a•)−AX(ν)

for all divisorial valuations ν.1 In other words, the latter condition is shown to imply the
existence of m� 1 such that ν(f) > cm−1ν(am)−AX(ν) for all divisorial valuations ν.

The definition of multiplier ideals was extended to the case of an arbitrary normal algebraic
variety X in [dFH09]. If ∆ is an effective Q-Weil divisor on X such that KX +∆ is Q-Cartier
(i.e. an effective Q-boundary in MMP terminology), the log discrepancy function A(X,∆) is a
by now classical object (see for instance [Kol97]). It allows to define the multiplier ideal sheaf
J ((X,∆); ac) just as before for an ideal sheaf a ⊂ OX , and then J ((X,∆); ac•) for a graded

sequence of ideals a• as the largest element in the family J ((X,∆); a
c/m
m ). It is proven in

[dFH09] that there is a unique element in the family of ideals J ((X,∆); ac) with ∆ ranging
over all effective Q-boundaries, which coincides with the multiplier ideal J (X, ac) as defined
in [dFH09].

Note in particular that J (X,OX) = OX iff there exists an effective Q-boundary ∆ such
that the pair (X,∆) is klt - which simply means that X itself is log terminal when X is
already Q-Gorenstein (i.e. when KX is Q-Cartier).

In order to give a direct valuative description of these generalized multiplier ideals, one
first needs to provide an adequate notion of log discrepancy for a divisorial valuation. As in

1In statements of this kind, if f is a germ at x ∈ X, it is implicitely understood that we are only considering

those ν such that x ∈ {cX(ν)}, so that we can make sense of ν(f).
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[dFH09], this is done by setting for ν = ordE with E a prime divisor on a birational model
X ′ proper over X

AX(ν) := 1 + ordE(KX′)− lim
m→∞

m−1 ordE OX (−mKX) ,

where KX is now an actual canonical Weil divisor on X (as opposed to a linear equivalence
class), KX′ is the corresponding canonical Weil divisor on X ′, and OX (−mKX) is viewed as
a fractional ideal sheaf on X. The definition is easily seen to be independent of the choices
made.

Our first main result is as follows.

Theorem 1.1. Let a• be a graded sequence of ideal sheaves on a normal algebraic variety,
and pick c > 0. For every closed subscheme N ⊂ X containing both Sing(X) and the zero
locus of a1 (and hence of am for all m) and every 0 < ε� 1, we have

J (X, ac•) = {f ∈ OX | ν(f) ≥ ν(a•)−AX(ν) + εν(IN ) for all divisorial valuations ν} ,

with IN ⊂ OX denoting the ideal sheaf defining N .

The key point in our approach is to construct an appropriate extension of AX to the
space ValX of all real valuations on X, and to prove that it satisfies an adequate properness
property, building upon [JM10]. Once this is done, the last ingredient is a variant of Dini’s
lemma. The argument will also prove:

Theorem 1.2. Let a• be a graded sequence of ideal sheaves on a normal algebraic variety,
and pick c > 0. Then

J (X, ac•) = {f ∈ OX | ν(f) > cν(a•)−AX(ν) for all real valuations ν} .

In the special case a• = OX , this last result show that there exists an effective Q-boundary
∆ with (X,∆) klt iff AX(ν) > 0 for all real valuations ν. When X admits an effective Q-
boundary ∆ with (X,∆) log canonical, one easily sees that AX ≥ 0. However, in that case
the converse already fails in dimension three, as was recently shown by Y. Zhang for a normal
isolated cone singularity [Zha13].

In the last part of the paper, we provide an alternative approach to the notion of numeri-
cally Cartier divisors introduced in [BdFF12]. A Weil divisor on X is said to be numerically
(Q-)Cartier if it is the push-forward of a π-numerically trivial (Q-)divisor for some (equiva-
lently, any) resolution of singularities π : X ′ → X. This naturally leads to the definition of
a group of numerical divisor classes Clnum(X), defined as the quotient of the group of Weil
divisors by numerically Cartier divisors. We prove that the abelian group Clnum(X) is always
finitely generated. The Q-vector space Clnum(X)Q is trivial when X is either Q-factorial or
has dimension 2, thanks to Mumford’s numerical pull-back. Building on an argument of
Kawamata, we further prove that every numerically Q-Cartier divisor is already Q-Cartier
when X has rational singularities.

We say that X is numerically Q-Gorenstein when KX is numerically Q-Cartier. This
means that for some (equivalently, any) resolution of singularities π : X ′ → X, KX′ is π-
numerically equivalent to a π-exceptional Q-divisor, which is necessarily unique, and denoted
by Knum

X′/X . It relates to the log discrepancy function by

AX(ordE) = 1 + ordE

(
Knum
X′/X

)
for all prime divisors E ⊂ X ′. As a consequence of Theorem 1.1, we show:
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Theorem 1.3. Assume that X is numerically Q-Gorenstein, and let a ⊂ OX be an ideal
sheaf. Let also π : X ′ → X be a log resolution of (X, a), so that π−1a · OX′ = OX′(−D) with
D an effective Cartier divisor. For each exponent c > 0 we then have

J (ac) = π∗OX′

(
dKnum

X′/X − cDe
)
.

In dimension two, this result says that the multiplier ideals introduced in [dFH09] agree
with the numerical multiplier ideals defined using Mumford’s numerical pull-back.

Since the underlying variety of any klt pair has rational singularities, Theorem 1.3 applied
to a = OX yields:

Corollary 1.4. Let X be a normal algebraic variety. The following conditions are equivalent:

(a) X is Q-Gorenstein and log terminal;
(b) X is numerically Q-Gorenstein and AX(ordE) > 0 for all prime divisors E on some

(equivalently, any) log resolution X ′ of X.

Acknowledgments. We are very grateful to Claire Voisin for providing a proof of Lemma 5.13.
We would also like to thank Mattias Jonsson for a key observation that helped us simplify
the statements of the main results.

2. Valuation spaces

Throughout the paper we work over the field C of complex numbers. In this section we
review some properties of valuation spaces, mostly following [JM10].

2.1. The space of real valuations. Let X be an algebraic variety. By a valuation on X,
we will mean a real-valued valuation ν on the function field of X that is trivial on the base
field and admits a center on X. Recall that the latter is characterized as the unique scheme
point cX(ν) = ξ ∈ X such that ν > 0 on the maximal ideal of OX,ξ. We denote by ValX the
space of valuations on X, endowed with the topology of pointwise convergence. Mapping a
valuation to its center defines an anticontinuous2 map

cX : ValX → X.

Every prime divisor E over X (i.e. in a normal birational model X ′, proper over X) deter-
mines a valuation ordE ∈ ValX given by the order of vanishing at the generic point of E. A
divisorial valuation is a valuation of the form ν = c ordE for some prime divisor E over X
and some c ∈ R∗+. We denote by

DivValX ⊂ ValX

the set of divisorial valuations.

2.2. Normalized valuation spaces. For every (coherent) ideal sheaf a ⊂ OX and every
ν ∈ ValX , we set as usual

ν(a) := min
{
ν(f) | f ∈ acX(ν)

}
∈ [0,+∞).

Definition 2.1. A normalizing subscheme is a (non-trivial) closed subscheme of X containing
Sing(X). The normalized valuation space defined by N is

ValNX := {ν ∈ ValX | ν(IN ) = 1} ,
with IN denoting the ideal sheaf defining N .

2i.e. the inverse image of an open subset is closed
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Note that

R∗+ ·ValNX = {ν ∈ ValX | ν(IN ) > 0} = c−1
X (N),

which is thus open in ValX and only depends on the Zariski closed set Nred. We also clearly
have

(2.1) ValX =
⋃
N⊂X

R∗+ ·ValNX ,

with N ranging over all normalizing subschemes.
The point of introducing this terminology is that the normalized valuation space ValNX

admits a simple description as a limit of simplicial complexes.

Definition 2.2. A good resolution of a normalizing subscheme N ⊂ X is a proper birational
morphism π : Xπ → X such that

• Xπ smooth;
• π is an isomorphism over X \N ;
• π−1(N) ⊃ Exc(π) both have pure codimension one, and π−1(N)red is a simple normal

crossing divisor
∑

i∈I Ei such that EJ :=
⋂
j∈J Ej is irreducible (or empty) for all

J ⊂ I.

Let π be a good resolution of N , and assume that EJ as above is non-empty. At its
generic point ηJ , the normal crossing condition guarantees that any choice of local equations
zj ∈ OXπ ,ηJ for Ej , j ∈ J yields a regular system of parameters. By Cohen’s theorem we

thus have ÔXπ ,ηJ ∼= C[[zj , j ∈ J ]]. To every weight w = (wj)j∈J ∈ RJ+, we associate the
monomial valuation νw defined by

(2.2) νw

∑
α∈NJ

aαz
α

 := min

{∑
i

wiαi | aα 6= 0

}
.

Viewed as a valuation onX, νw is called a quasi-monomial valuation and belongs to ValNX . The
construction is independent of the choice of the local equations zj , j ∈ J (see [JM10, Sections
3–4] for more details).

Note that νw ∈ ValNX if and only if
∑

j∈J wj ordEj (N) = 1. If we denote by ∆N
π ⊂ ValNX

the set of all normalized quasi-monomial valuations so obtained, then ∆N
π is a geometric

realization of the dual complex of
∑

iEi, i.e. the simplicial complex whose vertices are in
bijection with I and contains one simplicial face σJ joining all vertices j ∈ J for any subset
J ⊂ I such that EJ 6= ∅.

Further, there is a natural continuous retraction

rNπ : ValNX → ∆N
π ,

defined by letting rNπ (ν) be the unique monomial valuation taking the value ν(Ej) on Ej .
Note that rNπ (ν) belongs to the relative interior of the face σJ , with

J := {j ∈ I | cXπ(ν) ∈ Ej} .
If π′ factors through π (in which case we write π′ ≥ π), then there is a natural inclusion
∆N
π ↪→ ∆N

π′ . We then have:

Theorem 2.3 ([Ber90,Thu07]).

ValNX =
⋃
π

∆N
π ,
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where π runs over all good resolutions of N . More precisely, limπ r
N
π (ν) = ν for each ν ∈

ValX .

A subset σ ⊂ ValNX is said to be a face if σ is a face of ∆N
π for some π. A face of ∆N

π is
also called a π-face, and it can be endowed with a canonical affine structure induced from
∆N
π . A real valued function on ValNX is said to be affine (resp., convex ) on a face if it is so

in terms of the variable w as in (2.2). We say that a property holds on small faces if there
exists π such that the property holds on the faces of ∆π′ for all π′ ≥ π.

2.3. Functions defined by ideals.

Proposition 2.4. Let N ⊂ X be a normalizing subscheme and a ⊂ OX be a coherent ideal
sheaf. Then:

(a) ν 7→ ν(a) is a continuous function ValX → [0,+∞), and concave on each face of
ValNX ;

(b) for each good resolution π of N we have rNπ (ν)(a) ≥ ν(a) on ValNX .

If N further contains the zero locus of a, and π is a good resolution of N dominating the
blow-up of a, then ν 7→ ν(a) is affine on the faces of ∆N

π and rNπ (ν)(a) = ν(a) on ValNX . In
particular, ν 7→ ν(a) is bounded on ValNX .

Proof. The proof is similar to [BFJ08], we briefly recall the argument. Using the same
notation introduced in Section 2, a valuation corresponding to a point in a face σ of some
∆N
π is parametrized by w = (wj)j∈J with wj ≥ 0 and

∑
j∈J wj ordEj (N) = 1. For every

local function f on X we have νw(f) = min {
∑

iwiαi | aα 6= 0} with f ◦ π =
∑

α aαz
α. Since

w 7→ νw(h) is the minimum of a collection of affine functions, it is concave. It follows that
ν(a) = min {ν(f) | f ∈ a} is convex on σ. Moreover, if N contains the zero locus of a and π
dominates the blow-up of a, then this function is affine on σ. This proves (a) and the first
half of the last assertion.

Still bearing in mind the above interpretation of valuations in terms of points on σ, consider
any valuation ν on C[z1, . . . , zn], and suppose wi = ν(zi) ≥ 0. Then ν(f) ≥ νw(f) for all
f ∈ C[z1, . . . , zn], and equality holds when f is a monomial. This yields the second half of
the last assertion. �

More generally, recall that a graded sequence of ideals a• = (am)m≥0 is a sequence of
coherent ideal sheaves such that am · an ⊂ am+n for all m,n. This implies that ν(am) is a
subadditive sequence for each ν ∈ ValX , so that we can set

ν(a•) = lim
m→∞

m−1ν(am) = inf
m≥1

m−1ν(am).

Proposition 2.4 generalizes to:

Proposition 2.5. Let N ⊂ X be a normalizing subscheme and let π be a good resolution
of N . For any graded sequence of ideal sheaves a• = (am)m≥0, ν 7→ ν(a•) defines an upper
semicontinuous function ValX → [0,+∞) such that

(a) ν 7→ ν(a•) is concave and continuous on each face of ValNX ;
(b) rNπ (ν)(a•) ≥ ν(a•) on ValNX for each good resolution π of N .

Furthermore, if N contains the zero locus of a1 (or, equivalently, of am for all m), then
ν 7→ ν(a•) is also bounded on ValNX .

Proof. Only the continuity on the faces is not a direct consequence of Proposition 2.4. But
since each face σ of ValNX is a simplex, it follows from an elementary fact in convex analysis
that ν 7→ ν(a), being concave and lsc, is automatically continuous on σ. �
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Remark 2.6. As a consequence of [BFJ12, Theorem B], one can show the following uniform
Lipschitz property: assume that a given face σ of ValNX has the property that the closure
Z ⊂ X of the center of some (equivalently, any) valuation of the relative interior of σ is
proper over C. Then there exists C > 0 such that for any graded sequence of ideal sheaves a•
the function ν 7→ ν(a•) is Lipschitz continuous on σ with Lipschitz constant ≤ C ordZ(a•).

3. The log discrepancy function

Throughout this section, X denotes a normal algebraic variety.

3.1. The log discrepancy of a divisorial valuation. Let KX be a canonical Weil divisor
on X, i.e. the closure in X of the divisor of a given rational form of top degree on Xreg.
The choice of KX induces on the one hand a graded sequence of fractional ideal sheaves
(OX(−mKX))m∈N, and on the other hand a canonical Weil divisor KX′ for each birational
model X ′ of X.

Following [dFH09,BdFF12], we define for all m ≥ 1 the m-limiting log discrepancy function

as the unique homogeneous function A
(m)
X : DivValX → R such that

A
(m)
X (ordE) = 1 + ordE(KX′)−m−1 ordE OX(−mKX)

for each prime divisor E on a birational model X ′. The definition is independent of the

choices made, and the subadditivity of the sequence ordE OX(−mKX) shows that A
(m)
X

converges pointwise to a function AX : DivValX → R, the log discrepancy function, with

AX = supm≥1A
(m)
X .

3.2. The log discrepancy of a real valuation.

Theorem 3.1. There is a unique way to extend AX and A
(m)
X (m ≥ 1) to homogeneous,

lower semicontinuous functions ValX → R ∪ {+∞} such that the following properties hold
for each normalizing subscheme N ⊂ X:

(i) A
(m)
X and AX are convex and continuous on all faces of ValNX , and A

(m)
X is even affine

on small faces;
(ii) on ValNX we have

A
(m)
X = sup

π
A

(m)
X ◦ rNπ and AX = lim

π
AX ◦ rNπ ,

where π runs over all good resolutions of N and rNπ : ValNX → ∆N
π is the corresponding

retraction;

(iii) for each a ∈ R,
{
A

(1)
X ≤ a

}
∩ ValNX is compact, and A

(m)
X converges uniformly to AX

on this set.

Further, we have AX = supm≥1A
(m)
X on ValX .

Remark 3.2. Combined with Remark 2.6, our proof will show that AX is in fact Lipschitz
continuous on any face of ValNX containing valuations with proper center in X.

Remark 3.3. We do not know whether AX ≥ AX ◦ rNπ holds on ValNX for π large enough in
general.

Theorem 3.1 will be proved by reduction to the smooth case. The next result summarizes
the required properties for X smooth, all of which are contained in [JM10].
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Lemma 3.4. Assume that X is smooth. Then Theorem 3.1 holds; further, if a• is a graded
sequence of ideal sheaves on X and N is a normalizing subscheme containing the zero locus
of a1 (and hence of am for all m), m−1ν(am) → ν(a•) uniformly for ν ∈ {AX ≤ a} ∩ ValNX ,
for each a ∈ R.

Proof. When X is smooth, properties (i) and (ii) of Theorem 3.1 follow from [JM10, Propo-
sition 5.1, Corollary 5.8]. The compactness of {AX ≤ a} ∩ ValNX is a consequence of the
Skoda-Izumi inequality, just as in the proof of [JM10, Proposition 5.9]. By Dini’s lemma and
the subadditivity of (ν(am))m∈N, the uniform convergence is equivalent to the continuity of
ν 7→ ν(a•) on {AX ≤ a}∩ValNX . This is proved exactly as in [JM10, Section 6.1] (itself build-
ing on [BFJ08, Theorem 3.9]), by exploiting the superadditivity property of the sequence of
(classical) multiplier ideals J (X, am• ) (m ∈ N) on the smooth variety X. �

Proof of Theorem 3.1. Uniqueness is clear: since the rational points of each dual complex

∆N
π consist of divisorial valuations, AX and A

(m)
X are uniquely determined on ∆N

π by (i), and

hence on ValNX by (ii). By homogeneity, they are also uniquely determined on

ValX =
⋃
N

R∗+ ·ValNX .

In order to prove existence, we fix the choice of a projective birational morphism µ : X ′ → X
such that X ′ is smooth and µ is an isomorphism over Xreg.

We claim that there exists a µ-exceptional effective divisor D on X ′ such that the graded
sequence of fractional ideal sheaves

am := µ−1OX(−mKX) · OX′(mKX′) · OX′(−mD)

is a sequence of actual ideal sheaves. To see this, it is enough to choose D such that a1 ⊂ OX′ .
But we may add a Cartier divisor Z to KX so that KX + Z is effective. The divisorial part
of the ideal sheaf

µ−1OX(−KX − Z) · OX′

coincides with OX′(−KX′ − µ∗Z) up to a µ-exceptional divisor D, and we get a1 ⊂ OX′ as
desired for this choice of D.

Note that we have by definition

A
(m)
X (ν) = AX′(ν) + ν(D)−m−1ν(am)

and
AX(ν) = AX′(ν) + ν(D)− ν(a•)

for all ν ∈ DivValX ' DivValX′ . Using the canonical homeomorphism ValX ' ValX′ , we can

now use these formulas to define AX and A
(m)
X on ValX . Propositions 2.4 and 2.5 already

show that AX and A
(m)
X are homogeneous and lsc on ValX . It remains to see that they satisfy

(i), (ii) and (iii) of Theorem 3.1.
Let N ⊂ X be a given normalizing subscheme. Each good resolution π′ : X ′π′ → X ′

of N ′ := µ−1(N) induces a good resolution π := µ ◦ π′ of N such that ∆N ′
π′ = ∆N

π , and

the retractions rNπ : ValNX → ∆N
π i

N and rN
′

π′ : ValN
′

X′ → ∆N ′
π′ identify modulo the canonical

homeomorphism ValX′ ' ValX .
Since N ′ contains the support of D and the zero locus of a1, Proposition 2.4 shows that

ν 7→ ν(D)−ν(a•) is bounded and lower semicontinuous on ValN
′

X′ , and continuous and convex

on the faces of ValN
′

X′ , while ν 7→ ν(D) −m−1ν(am) is affine on small faces. It follows that

AX and A
(m)
X satisfy (i).
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Now pick a ∈ R, and set for simplicity

K := {A(1)
X ≤ a} ∩ValNX .

Since ν(D)− ν(a1) is bounded for ν ∈ ValNX , K is contained in {AX′ ≤ a′} ∩ValN
′

X′ for some

a′ ∈ R, and hence is compact by Lemma 3.4 and the lower semicontinuity of A
(1)
X . Lemma

3.4 also shows that m−1ν(am)→ ν(a•) uniformly for ν ∈ K, which proves (iii).

Let ν ∈ ValNX . If AX(ν) is finite, then so is AX′(ν), and rN
′

π′ (ν) stays in the compact set

{AX′ ≤ AX′(ν)} ∩ValN
′

X′

since AX′ ≥ AX′ ◦ rN ′
π′ . For each m fixed we have by Proposition 2.4

ν(am) = rN
′

π′ (ν)(am)

for π′ large enough, which proves thatA
(m)
X satisfies (ii). By uniform convergence ofm−1ν ′(am)

to ν ′(a•) for ν ′ ∈ {AX′ ≤ AX′(ν)} ∩ValN
′

X′ , we infer

ν(a•) = lim
π′
rN

′
π′ (ν)(a•),

so that AX satisfies (ii) on the locus of ValNX where it is finite. If now ν ∈ ValNX has
AX(ν) = +∞, then

lim
π′
AX′(rN

′
π′ (ν)) = AX′(ν) = +∞,

while rN
′

π′ (ν)(a•) remains bounded, and we thus get (ii) at ν as well. The same argument also
proves the last assertion of Theorem 3.1. �

4. Valuative characterization of multiplier ideals

4.1. Multiplier ideal sheaves. We briefly recall the definition of multiplier ideals in the
context of a normal variety, as introduced in [dFH09]. We follow the presentation of [BdFF12,
Section 3], which is phrased in the language of b-divisors, and therefore closer to our present
valuative point of view. Indeed, it suffices to recall that a b-divisor is nothing but a homoge-
neous function on DivValX , with the extra property that it is non-zero on only finitely many
prime divisors of X.

If a ⊂ OX is a coherent ideal sheaf and c is a positive real number, the m-limiting multiplier
ideal sheaf of ac is defined as

Jm(X, ac) :=
{
f ∈ OX | ν(f) > cν(a)−A(m)

X (ν) for all ν ∈ DivValX

}
,

where A
(m)
X is the m-limiting log discrepancy function from Section 3. This is a reformulation

of [BdFF12, Definition 3.7], which is phrased in the equivalent language of b-divisors. It is
proved in op.cit. that Jm(X, ac) is actually coherent.

We have Jm(X, ac) ⊂ Jl(X, ac) whenever m divides l, and the multiplier ideal sheaf
J (X, ac) can thus be defined as the unique maximal element of the family (Jm(X, ac))m∈N.
By [BdFF12, Theorem 3.8], J (X, ac) is also the largest element in the family of ’classical’
multiplier ideals J ((X,∆); ac), where ∆ runs over all effective Q-Weil divisors on X such
that KX + ∆ is Q-Cartier (so that (X,∆) is a pair in the sense of Mori theory).

More generally, when a• = (am)m∈N is a graded sequence of (coherent) ideal sheaves,

the multiplier ideal J (X, ac•) is defined as the maximal element of the family J (X, a
c/m
m )

[BdFF12, Definition 3.12]. Equivalently, J (X, ac•) is also the largest element in the family

Jm
(
X, a

c/m
m

)
, cf. [BdFF12, Lemma 3.13].
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4.2. Valuative characterization. Theorems 1.1 and 1.2 from the introduction are restated
together in the following result.

Theorem 4.1. Let X be a normal variety. Let a• be a graded sequence of (coherent) ideal
sheaves on X, and let c > 0 be a real number. Then the following two characterizations of
the multiplier ideal sheaf J (X, ac•) ⊂ OX hold:

(a)
J (X, ac•) = {f ∈ OX | ν(f) > cν(a•)−AX(ν) for all ν ∈ ValX} .

(b) For every normalizing subscheme N ⊂ X containing the zero locus of a1 (and hence
of am for all m) and every 0 < ε� 1 we have

J (X, ac•) = {f ∈ OX | ν(f) ≥ cν(a•)−AX(ν) + εν(IN ) for all ν ∈ DivValX} .

A key ingredient in the proof is the following simple variant of Dini’s lemma.

Lemma 4.2. Let Z be a Hausdorff topological space, and let φm : Z → R ∪ {+∞} be a
non-decreasing sequence of lower semicontinuous functions converging to φ. Assume also
that each sublevel set {φ1 ≤ a} with a ∈ R is compact. Then infZ φm → infZ φ.

Proof. Assume first that infZ φ < +∞ (which is the only case we shall actually use), and let
ε > 0. Setting

Km :=

{
φm ≤ inf

Z
φ− ε

}
defines a decreasing sequence of compact sets, by lower semicontinuity of φm and the com-
pactness of sublevel sets of φ1. Since⋂

m∈N
Km =

{
φ ≤ inf

Z
φ− ε

}
= ∅,

it follows that Km = ∅ for all m � 1, i.e. infZ φm > infZ φ − ε for all m � 1. In case
φ ≡ +∞, the same argument applies, fixing A > 0 instead of ε and replacing Km with
K ′m := {φm ≤ A}. �

Proof of Theorem 4.1. Let N ⊂ X be a normalizing subscheme containing the zero locus of
a1. Let also U ⊂ X be an affine open set and pick f ∈ O(U). The theorem will follow from
the equivalence between the following properties:

(i) f ∈ J (X, ac•)(U).

(ii) ν(f) > cm−1ν(am)−A(m)
X (ν) on DivValNU for all m large and divisible.

(iii) ν(f) > cm−1ν(am)−A(m)
X (ν) on ValNU for all m large and divisible.

(iv) ν(f) > cν(a•)−AX(ν) on ValNU .
(v) ν(f) ≥ cν(a•)−AX(ν) + ε on ValNU for some 0 < ε� 1.
(vi) ν(f) ≥ cν(a•)−AX(ν) + ε on DivValNU for some 0 < ε� 1.

(vii) ν(f) ≥ cν(a•)−AX(ν) + εν(IN ) on DivValU for some 0 < ε� 1.

Let us first check (i)⇐⇒(ii). Since U is affine, J (X, ac•)(U) is the largest element in the family

of ideals Jm(X, a
c/m
m )(U) of O(U), and (i) thus amounts to ν(f) > cm−1ν(am)−A(m)

X (ν) on
DivValU for all m large and divisible, which implies (ii). Conversely, (ii) implies (i) since for

any ν ∈ DivValU centered outside N ⊃ Sing(X) we have A
(m)
X (ν) = AX(ν) > 0 (since U is

smooth at the center of ν) while ν(am) = 0.
Next, consider the functions φ, φm : ValNU → R ∪ {+∞} defined by

φ(ν) := ν(f)− cν(a•) +AX(ν)



VALUATION SPACES AND MULTIPLIER IDEALS ON SINGULAR VARIETIES 11

and

φm(ν) := ν(f)− cm−1ν(am) +A
(m)
X (ν)

For each m fixed, Proposition 2.4 and Theorem 3.1 show that φm is lower semicontinuous,
affine on small faces of ValNU and satisfies φm ≥ φm ◦ rNπ for all π large enough. This shows
that φm > 0 on DivValNU iff φm > 0 on ValNU , i.e. (ii)⇐⇒(iii).

Further, each sublevel set {φ1 ≤ a} with a ∈ R is compact by Theorem 3.1, and Lemma

4.2 thus yields (iv)⇒(iii), while the converse follows from AX ≥ A(m)
X .

Since φ is lower semicontinuous and has compact sublevel sets, it achieves its infimum on
ValNU , which proves (iv)⇐⇒(v). Next, (v) trivially implies (vi), while the converse holds since
φ is continuous on each dual complex ∆N

π and satisfies φ = limπ φ ◦ rNπ on ValNU , again by
Theorem 3.1.

As to (vi)⇐⇒(vii), it holds because ν(IN ) = −1 on ValNU by definition of the latter, while
we have just as above ν(f) − cν(a•) + AX(ν) − εν(IN ) ≥ AX(ν) ≥ 0 on any ν ∈ DivValU
centered outside N .

To get (b) in Theorem 4.1 from (vii), note that the ideals

{f ∈ O(U) | ν(f) ≥ cν(a•)−AX(ν) + εν(IN ) on DivValU}

are independent of 0 < ε� 1, by the Noetherian property of O(U). �

5. Numerically Cartier divisors

5.1. The group of numerical divisor classes. In this section, we provide an alterna-
tive and more concrete approach to the notion of numerically Cartier divisors introduced in
[BdFF12, Section 2].

As a matter of notation, we respectively denote by Car(X) and Z1(X) the groups of Cartier
and Weil divisors of a normal variety X. We define the local class group of X as

Clloc(X) := Z1(X)/Car(X).

By definition, Clloc(X) is trivial iff X is (locally) factorial. Since the usual divisor class group
Cl(X) is defined as the quotient of Z1(X) by the subgroup of principal divisors, we have an
exact sequence

0→ Pic(X)→ Cl(X)→ Clloc(X)→ 0.

Remark 5.1. When X only has an isolated singularity at 0 ∈ X, Clloc(X) coincides with the
divisor class group of the local ring OX,0.

Definition 5.2. Let X be a normal variety.

(i) A Weil divisor D ∈ Z1(X) is numerically Cartier if there exists a resolution of sin-
gularities µ : X ′ → X (i.e. a projective birational morphism with X ′ smooth) and a
µ-numerically trivial Cartier divisor D′ on X ′ such that D = µ∗D

′.
(ii) We denote by NumCar(X) ⊂ Z1(X) the subgroup of numerically Cartier divisors,

and elements of NumCar(X)Q ⊂ Z1(X ′)Q are called numerically Q-Cartier.
(iii) The group of numerical divisor classes of X is defined as the quotient

Clnum(X) := Z1(X)/NumCar(X).

(iv) We say thatX is numerically factorial (resp. numerically Q-factorial) if Clnum(X) = 0
(resp. Clnum(X)Q = 0).
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By definition, Clnum(X) is a quotient of Clloc(X), and it is in fact much smaller in general.
Indeed, as we shall shortly see, Clnum(X) is always finitely generated as an abelian group.

In order to further analyze numerically Cartier divisors, we first show that it is enough to
work with a fixed resolution of singularities.

Proposition 5.3. Let µ : X ′ → X be projective birational morphism.

(i) If X ′ is factorial, every D ∈ NumCar(X) writes D = µ∗D
′ for a unique µ-numerically

trivial D′ ∈ Car(X ′).
(ii) If X ′ is Q-factorial, every D ∈ NumCar(X)Q is of the form D = µ∗D

′ for a unique
µ-numerically trivial D′ ∈ Car(X ′)Q.

In both cases, we set µ∗numD := D′ and call it the numerical pull-back of D.

Proof. The kernel of µ∗ : Z1(X ′)→ Z1(X) is exactly the space of µ-exceptional divisors. By
the negativity lemma, there is no non-trivial divisor on X ′ that is both µ-numerically trivial
and µ-exceptional, which proves the uniqueness part in both cases.

Now pick D ∈ NumCar(X). By definition, there exists a resolution µ′′ : X ′′ → X such
that D = µ′′∗D

′′ for some µ′′-numerically trivial D′′ ∈ Car(X ′′). Since the pull-back of D′′ to
a higher resolution remains relatively numerically trivial, we may assume that µ′′ dominates
µ, i.e. µ′′ = µ ◦ ρ for a birational morphism ρ : X ′′ → X ′. Since X ′ is factorial (resp.
Q-factorial), D′ := ρ∗D

′′ belongs to Car(X ′) (resp. Car(X ′)Q), and D′′ − ρ∗D′ is both ρ-
exceptional and ρ-numerically trivial, hence trivial. By the projection formula, it follows that
D′ is µ′-numerically trivial and D = µ′∗D

′. �

Corollary 5.4. With the same assumption as in Proposition 5.3, µ∗ : Z1(X ′) → Z1(X)
induces:

(i) an exact sequence of abelian groups

0→ Exc1(µ)→ N1(X ′/X)→ Clnum(X)→ 0

if X ′ is factorial, where Exc1(µ) is the (free abelian) group of µ-exceptional divisors
and N1(X ′/X) is the group of µ-numerical equivalence classes.

(ii) an exact sequence of Q-vector spaces

0→ Exc1(µ)Q → N1(X ′/X)Q → Clnum(X)Q → 0

if X ′ is Q-factorial.

In particular, Clnum(X) is a finitely generated abelian group.

Proof. The exact sequences in (i) and (ii) follow immediately from Proposition 5.3. The last
assertion is a consequence of the relative version of the theorem of the base [Kle66, p.334,
Proposition 3], which guarantees that N1(X ′/X) is finitely generated. �

Remark 5.5. As a special case of (ii) above, if X ′ is Q-factorial and (Ei) denotes the µ-
exceptional prime divisors, then X is numerically Q-factorial iff for every D′ ∈ Car(X ′) there
exists ai ∈ Q such that

(5.1)

(
D′ +

∑
i

aiEi

)
· C = 0

holds for all curves C ⊂ X ′ contained in a µ-fiber.
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Example 5.6. If X is an affine cone over a smooth projective polarized variety (Y,L), then

Clloc(X) ' Pic(Y )/ZL
and

Clnum(X) ' NS(Y )/Zc1(L).

In particular, X is numerically Q-factorial iff ρ(Y ) = 1.

Example 5.7. Every surface is numerically Q-factorial. This is directly related to the ex-
istence of Mumford’s numerical pull-back. Indeed, let µ : X ′ → X be a resolution of singu-
larities, with exceptional divisor

∑
iEi. Since the intersection matrix (Ei · Ej) is negative

definite, for D′ ∈ Car(X ′) we can find ai ∈ Q such that (5.3) holds for each curve C = Ej .
Note that Clnum(X) is however non trivial in general, even for a surface. For instance, it

follows from Example 5.6 that Clnum(X) = Z/2Z for an A1-singularity.

Example 5.8. If X is log terminal in the sense of [dFH09], i.e. if (X,∆) is klt for some
effective Q-Weil divisor ∆, it follows from the current knowledge in the Minimal Model
Program that there exists a small projective birational morphism µ : X ′ → X such that X ′

is Q-factorial. By (ii) of Corollary 5.4, we then have N1(X ′/X)Q ' Clnum(X)Q, which is
thus trivial iff µ is an isomorphism. In other words, X is numerically Q-factorial iff X is
Q-factorial. Since X has rational singularities, the previous conclusion will also follow from
Theorem 5.11 below.

Let us now check that Definition 5.2 is indeed compatible with [BdFF12, Definition 2.26,
Remark 2.27].3

Proposition 5.9. A Weil divisor D on X is numerically Q-Cartier in the sense of Definition
5.2 iff

(5.2) ν (OX(−mD)) = −ν (OX(mD)) + o(m)

for all ν ∈ DivValX .
For each projective birational morphism µ : X ′ → X with X ′ Q-factorial, we then have

(5.3) lim
m→∞

m−1ν (OX(−mD)) = ν (µ∗numD)

for all ν ∈ DivValX . In particular, the limit in the right-hand side is rational.

Proof. In the terminology of [BdFF12, Section 2], (5.2) reads

EnvX(−D) = −EnvX(D),

where EnvX(D) is the nef envelope of D, i.e. the b-divisor over X characterized by

ν (EnvX(D)) = lim
m→∞

m−1ν (OX(mD))

for all ν ∈ DivValX . Assume first that D ∈ Z1(X) is numerically Q-Cartier. Let µ : X ′ → X
be a projective birational morphism with X ′ Q-factorial and set D′ := µ∗numD. The Cartier

b-divisor D
′

induced by pulling-back D′ is then relatively nef over X and satisfies D
′
X = D,

and hence
D
′ ≤ EnvX(D)

by [BdFF12, Proposition 2.12]. Since −D′ is also relatively nef, we similarly get

−D′ ≤ EnvX(−D).

3More precisely, numerically Q-Cartier divisors in the present sense correspond to numerically Cartier
divisors in the sense of [BdFF12].



14 SÉBASTIEN BOUCKSOM, TOMMASO DE FERNEX, CHARLES FAVRE, AND STEFANO URBINATI

Summing up these two inequalities and using the trivial inequality

EnvX(D) + EnvX(−D) ≤ EnvX(D −D) = 0,

we infer
EnvX(D) = D

′
,

which proves (5.2) and (5.3).
Conversely, assume that D ∈ Z1(X) satisfies EnvX(−D) = −EnvX(D). By [BdFF12,

Lemma 2.10], it follows that D′ := EnvX(D)X′ ∈ Car(X ′)R is µ-numerically trivial. Since
µ∗D

′ = D belongs to Z1(X)Q and µ∗ is defined over Q, the injectivity of µ∗ on µ-numerically
trivial divisors implies that D′ is in fact a Q-divisor, and hence that D is numerically Q-
Cartier with D′ = µ∗numD. �

Remark 5.10. In particular, this result shows that the envelope EnvX(D) of a Weil divisor
D ∈ Z1(X) such that EnvX(−D) = −EnvX(D) is a Q-Cartier b-divisor (the rationality of
the coefficients being in particular not obvious from the definition). In fact, the whole point
of the present point of view is to highlight the fact that the R-vector space of R-Weil divisors
D ∈ Z1(X)R with EnvX(−D) = −EnvX(D) is in fact defined over Q.

5.2. The case of rational singularities. In this section we prove:

Theorem 5.11. Let X be a normal variety with at most rational singularities. Then

NumCar(X)Q = Car(X)Q,

i.e. a Weil divisor is numerically Q-Cartier iff it is Q-Cartier. In particular, X is numerically
Q-factorial iff X is Q-factorial.

The proof is inspired from that of [Kaw88, Lemma 1.1], which states that the Q-vector
space Z1(X)Q/Car(X)Q is finite dimensional when X has rational singularities. We will need
the following two results.

Lemma 5.12. [Sam61, Proposition 1] A Weil divisor D on X is Cartier iff its restriction
to the formal completion of X at each (closed) point x ∈ X is Cartier.

Lemma 5.13. If Y is a (possibly reducible) projective complex variety, a line bundle L on
Y is numerically trivial, i.e. L · C = 0 for all curves C ⊂ Y , iff c1(L) = 0 in H2(Y,Q).

Proof. When Y is non-singular, the result is well-known, and amounts to the Hodge conjecture
for 1-dimensional cycles (which follows from the 1-codimensional case via the Hard Lefschetz
theorem). However, we haven’t been able to locate a reference in the literature in the general
singular case; we are very grateful to Claire Voisin for having shown us the following argument.
Let π : Y ′ → Y be a resolution of singularities. Since π∗L is also numerically trivial, we have
π∗c1(L) = 0 in H2(Y ′,Q), by the result in the smooth case. By [PS08, Corollary 5.42], this
means that c1(L) ∈W1H

2(Y,Q), where W• denotes the weight filtration of the mixed Hodge
structure. The problem is thus to show that W1H

2(Y,Q) only meets the image of Pic(Y ) at
0.

To see this, note that there exists a morphism f : Y → Z to a smooth projective variety
Z such that L = f∗M for some line bundle M on Z; indeed, this is true with Z a projective
space when L is very ample, and writing L as a difference of very ample line bundles gives
the general case, with Z a product of two projective spaces.

Since f∗ : H2(Z,Q)→ H2(Y,Q) is a morphism of mixed Hodge structures, it is strict with
respect to weight filtrations, and we get

c1(L) ∈ f∗H2(Z,Q) ∩W1H
2(Y,Q) = f∗

(
W1H

2(Z,Q)
)
,
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which is zero since Z is smooth. �

Proof of Theoren 5.11. Let µ : X ′ → X be a resolution of singularities and let D′ ∈ Car(X ′)
be µ-numerically trivial. Our goal is to show that D := µ∗D

′ is Q-Cartier. By Lemma 5.12,
it is enough to show that every (closed) point x ∈ X has an analytic neighborhood U on
which Dan is Q-Cartier.

The exponential exact sequence on the associated complex analytic variety X ′an yields an
exact sequence

R1µan
∗ O → R1µan

∗ O∗ → R2µ∗Z→ R2µan
∗ O

of sheaves on Xan, where the two extreme term coincide by GAGA with the analytifications
of Rqµ∗O for q = 1, 2, and hence vanish since X has rational singularities. We thus have an
isomorphism (

R1µan
∗ O∗

)
x
'
(
R2µan

∗ Z
)
x

= H2
(
µ−1(x),Z

)
,

where the right-hand equality holds by properness of µan (which again follows from GAGA).
Since D′ has degree 0 on each projective curve C ⊂ µ−1(x), its image in H2

(
µ−1(x),Q

)
is

trivial by Lemma 5.13. By the above isomorphism, the image of D′an in
(
R1µan

∗ O∗
)
x
⊗Q is

also trivial, which means that D′an is Q-linearly equivalent to 0 on (µan)−1(U) for a small
enough analytic neighborhood U of x. Since the morphism (µan)−1(U) → U is a proper
modification, it follows as desired that Dan is Q-Cartier on U . �

5.3. Multiplier ideals in the numerically Q-Gorenstein case.

Definition 5.14. A normal variety X is numerically Q-Gorenstein if KX is numerically
Q-Cartier.

Given a resolution of singularities µ : X ′ → X, Corollary 5.4 shows that X is numerically
Q-Gorenstein iff KX′ is µ-numerically equivalent to a µ-exceptional Q-divisor, which is then
uniquely determined and denoted by Knum

X′/X . In other words, we set

Knum
X′/X := KX′ − µ∗numKX .

By Proposition 5.9, for each prime divisor E ⊂ X ′ we then have

(5.4) AX(ordE) = 1 + ordE

(
Knum
X′/X

)
.

Lemma 5.15. Assume that X is numerically Q-Gorenstein, and let N ⊂ X be a normalizing
subscheme. For each good resolution π of N , the log discrepancy function A : ValX →
R ∪ {+∞} is then affine on the faces of the dual complex ∆N

π , and

AX = sup
π
AX ◦ rNπ

on ValNX , where π ranges over all good resolution of N .

Proof. Write

Knum
X′/X = KX′ − π∗numKX =

∑
i

aiEi

with ai ∈ Q and Ei π-exceptional and prime. Modulo the canonical homeomorphism ValX′ '
ValX , (5.4) yields

AX(ν) = AX′(ν) +
∑
i

aiν(Ei)
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on ValX . Since X ′ is smooth, AX′ is affine on the faces of ∆N
π and satisfies AX′ ≥ AX′ ≥ rNπ .

On the other hand, Proposition 2.4 shows that ν 7→ ν(Ei) is also affine on the faces ∆N
π , and

satisfies rNπ (ν)(Ei) = ν(Ei). The result follows. �

The next result is Theorem 1.3 from the introduction:

Theorem 5.16. Assume that X is numerically Q-Gorenstein, and let a ⊂ OX be an ideal
sheaf. Let also µ : X ′ → X be a log resolution of (X, a), so that µ−1a · OX′ = OX′(−D) with
D an effective Cartier divisor. For each exponent c > 0 we then have

J (X, ac) = µ∗OX′

(
dKnum

X′/X − cDe
)
.

Proof. Let N be a normalizing subscheme containing the zero locus of a, and pick a good
resolution π of N factoring as π = µ ◦ ρ. Using Lemma 5.15 and arguing as in the proof of
Theorem 4.1, we easily get

J (X, ac) = π∗OXπ
(
dKnum

Xπ/X
− cDe

)
.

On the other hand, we have

Knum
Xπ/X

= ρ∗Knum
X′/X +KXπ/X′ ,

since both sides of the equality are π-exceptional and π-numerically equivalent to KXπ . Since
KXπ/X′ is effective and π-exceptional, we obtain as desired

π∗OXπ
(
dKnum

Xπ/X
− cDe

)
= µ∗OX′

(
dKnum

X′/X − cDe
)
.

�

Corollary 5.17. Assume that X is numerically Q-Gorenstein. Then X has log terminal
singularities (in the usual sense, i.e. with KX is Q-Cartier) iff AX > 0 on DivValX .

Proof. By Theorem 5.16, we have AX > 0 on DivValX iff J (X,OX) = OX , which is the case
iff there exists an effective Q-Weil divisor ∆ such that the pair (X,∆) is klt [dFH09] (see also
[BdFF12]). But this implies that X has rational singularities, and Theorem 5.11 thus shows
that KX is Q-Cartier. Since (X,∆) is klt, so is (X, 0), which means that X is log terminal
in the classical sense. �
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