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Abstract
We introduce a notion of volume of a normal isolated singularity that generalizes
Wahl’s characteristic number of surface singularities to arbitrary dimensions. We
prove a basic monotonicity property of this volume under finite morphisms. We draw
several consequences regarding the existence of noninvertible finite endomorphisms
fixing an isolated singularity. Using a cone construction, we deduce that the anti-
canonical divisor of any smooth projective variety carrying a noninvertible polarized
endomorphism is pseudoeffective.

Our techniques build on Shokurov’s b-divisors. We define the notions of nef Weil
b-divisors and of nef envelopes of b-divisors. We relate the latter to the pullback of
Weil divisors introduced by de Fernex and Hacon. Using the subadditivity theorem
for multiplier ideals with respect to pairs recently obtained by Takagi, we carry over
to the isolated singularity case the intersection theory of nef Weil b-divisors formerly
developed by Boucksom, Favre, and Jonsson in the smooth case.
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0. Introduction
Wahl’s [Wa] characterisic number is a topological invariant of the link of a normal
surface singularity. Its simple behavior under finite morphisms enables one to charac-
terize surface singularities that carry finite noninvertible endomorphisms. Our main
goal is to generalize Wahl’s invariant to higher-dimensional isolated normal singu-
larities and to present a few applications to the description of singularities admitting
nontrivial finite endomorphisms. Our main result can be stated as follows.

THEOREM A
To any normal isolated singularity .X; 0/ there is associated a nonnegative real num-
ber Vol.X; 0/ that we call its volume, satisfying the following properties.
(i) For every finite morphism � W .X; 0/! .Y; 0/ of degree e.�/ we have

Vol.X; 0/� e.�/Vol.Y; 0/;

and equality holds when � is étale in codimension 1.
(ii) If dimX D 2; then Vol.X; 0/ coincides with Wahl’s characteristic number.
(iii) If X is Q-Gorenstein, then Vol.X; 0/D 0 if and only if X has log-canonical

(i.e., lc) singularities.

Our result generalizes in particular the well-known fact that Q-Gorenstein lc
singularities are preserved under finite morphisms (see for instance [Kol1, Propo-
sition 3.16]).

Just as in dimension 2, one infers restrictions on isolated singularities admitting
finite endomorphisms.

THEOREM B
Suppose that � W .X; 0/! .X; 0/ is a finite noninvertible endomorphism of an isolated
singularity. Then Vol.X; 0/D 0.

If X is Q-Gorenstein, then X has lc singularities, and it furthermore has Kawa-
mata log-terminal (klt) singularities if � is not étale in codimension 1.

To obtain a more precise classification of singularities carrying finite endomor-
phisms one would need to get deeper into the structure of singularities with
Vol.X; 0/D 0. This can be done in dimension 2 (see [Wa], [Fav]), but unfortunately,
this task seems very difficult at the moment in arbitrary dimension. To illustrate
the previous result, however, we construct several classes of (not necessarily Q-
Gorenstein) isolated normal singularities carrying finite endomorphisms (see Sec-
tions 6.2–6.3 below). Our examples include quotient singularities, Tsuchihashi’s cusp
singularities (see [Oda], [Tsu]), toric singularities, and certain simple singularities
obtained from cone or deformation constructions.
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In dimension 2, the conclusion of Theorem B plays a key role in the classifi-
cation of projective surfaces admitting noninvertible endomorphisms, which is by
now essentially complete (see [FN], [Nak]). In higher dimensions, classifying projec-
tive varieties carrying a noninvertible endomorphism has recently attracted quite a lot
of attention (see [dqZ] and the references therein), but the general problem remains
largely open.

The assumption on the singularity being isolated in Theorem B is too strong to be
directly useful in this perspective. Nevertheless we observe that Theorem B has some
consequences in the more rigid case of so-called polarized endomorphisms. Recall
that an endomorphism � W V ! V of a projective variety is said to be polarized if
there exists an ample line bundle L on V such that ��LD dL in Pic.V / for some
d � 1 (see [swZ] for a nice survey). By looking at the affine cone over X induced by
a large enough multiple of L, we obtain the following.

THEOREM C
If V is a smooth projective variety carrying a noninvertible polarized endomorphism
�, then �KV is pseudoeffective.

Observe that the ramification formula implies KV �Ln�1 � 0. If KV is pseudo-
effective, then KV � 0 and .V;�/ is then an endomorphism of an abelian variety up
to finite étale cover (see [Fak, Theorem 4.2]). If KV is not pseudoeffective, then V is
uniruled by [BDPP], and our result puts further constraints on the geometry of V .

Throughout the paper, we insist on working with arbitrary non-Q-Gorenstein sin-
gularities. This degree of generality is crucial to obtain Theorem C since the cone
over V is Q-Gorenstein if and only if ˙KV is either Q-linearly trivial or ample (see
Example 2.31 below).

To understand our construction and the difficulties that one has to overcome to
define the volume above, let us recall briefly Wahl’s definition for a normal surface
singularity .X; 0/.

Pick any log resolution � W Y !X of .X; 0/, that is, a birational morphism which
is an isomorphism above X n ¹0º, and such that Y is smooth and the scheme-theoretic
inverse image ��1.0/ is a divisor with simple normal crossing support E . Let KX
be a canonical divisor on X; and let KY be the induced canonical divisor on Y .
Denote by ��KX Mumford’s numerical pullback of KX to Y , which is uniquely
determined as a Q-divisor by the conditions ��.��KX /D KX and ��KX � C D 0
for any �-exceptional curve C . The log-discrepancy divisor is then defined by the
relation AY=X WDKY CE � ��KX . Recall that X is (numerically) lc if and only if
AY=X � 0, while X is (numerically) klt if and only if AY=X > 0 on the whole of E .
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Wahl’s invariant measures the degree of positivity of the log-discrepancy divisor.
The positivity is here relative to the contraction morphism Y ! X , and it is thus
natural to consider the relative Zariski decomposition AY=X D P C N in the sense
of [Sak, p. 408], where N is the smallest effective �-exceptional Q-divisor such that
P DAY=X �N is �-nef. Finally one sets

Vol.X; 0/ WD �P 2 2Q�0: (1)

Two (related) difficulties arise in generalizing Wahl’s construction to higher
dimensions: first, one needs to introduce a notion of pullback for Weil divisors; and
second, one needs to find a replacement for the relative Zariski decomposition. These
problems have already been addressed in [dFH] and in [BFJ1] and [KuMa], respec-
tively. Building on these works our first objective is to explain how these difficul-
ties can be conveniently addressed using Shokurov’s language of b-divisors. In Sec-
tions 1–3, we define and study the notion of a nef Weil b-divisor in the general setting
of a normal variety X . This leads to the notion of nef envelopes and relative Zariski
decomposition as follows.

Let us recall some terminology. A Weil b-divisor W over X is the data of Weil
divisors W� on all birational models � W X� ! X of X that are compatible under
pushforward. A Cartier b-divisor C is a Weil b-divisor for which there is a model
� such that for every other model � 0 dominating � the trace C� 0 of C on X� 0 is the
pullback of the trace C� on X� ; any � as above is called a determination of C . All
the divisors we consider for the time being have R-coefficients.

Now, suppose we are given a projective morphism f W X ! S . A Cartier b-
divisor C is said to be nef (relatively to f ) if C� is nef for one (hence any) deter-
mination � of C . Generalizing [BFJ1] and [KuMa], we say that a Weil b-divisor W
is nef if and only if there exists a net of nef Cartier b-divisors Cn such that the net
Œ.Cn/� � converges to ŒW� � in the space N 1.X�=S/ of numerical classes over S . This
is equivalent to saying that W� lies in the closed movable cone Mov.X�=S/ for all
smooth models X� (cf. Lemma 2.10 below).

In Section 2, we prove that the following definitions make sense (under suitable
conditions) and introduce the following two notions of nef envelopes.
� The nef envelope EnvX .D/ of a Weil divisor D on X is the largest nef Weil

b-divisor Z that is both relatively nef over X and satisfies ZX �D.
� The nef envelope EnvX.W / of a Weil b-divisor W is the largest nef Weil b-

divisor Z that is both relatively nef over X and satisfies Z �W .
In dimension 2, nef envelopes recover the notions of numerical pullback and relative
Zariski decomposition. Specifically, if D is a divisor on a normal surface X , then the
trace EnvX .D/� on a given model X� coincides with the numerical pullback of D
by � , while if D is a divisor on a smooth model X� over X , then the nef part of D
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in its relative Zariski decomposition is given by EnvX.D/� , where D is the Cartier
b-divisor induced by D.

In higher dimensions, D 7! EnvX .D/ is nonlinear in general, and EnvX .D/�
coincides up to sign with the pullback ��D defined in [dFH]. However, it is this
approach via b-divisors and nef envelopes that brings to light the crucial positivity
properties of the pullback of Weil divisors.

We are now in a position to generalize the log-discrepancy divisor and its relative
Zariski decomposition. Given a canonical divisor KX on X , there is a unique canon-
ical divisor KX� , for each model � W X� ! X , with the property that ��KX� D
KX . Thus a choice of KX determines a canonical b-divisor KX over X . The log-
discrepancy b-divisor is then defined as

AX=X WDKXC 1X=X C EnvX .�KX /;

where the trace of 1X=X in any model is equal to the reduced exceptional divisor
over X . The log-discrepancy b-divisor is exceptional over X and does not depend
on the choice of KX . Its coefficients are given by the (usual) log discrepancies of X
when the latter is Q-Gorenstein. The role of the nef part ofAX=X in its relative Zariski
decomposition is in turn played by the nef envelope

P WD EnvX.AX=X /:

To generalize (1), we now face the problem of defining the intersection product of
nef b-divisors. This step is nontrivial. The intersection of Cartier b-divisors is defined
as their intersection in a common determination. However, it cannot be extended to
a multilinear intersection product on the space of Weil b-divisors having reasonable
continuity properties. As it turns out, it is nevertheless possible to extend it to a mul-
tilinear intersection pairing on nef Weil b-divisors lying over a point 0 2 X . This is
done following the approach of [BFJ1], in which multiplier ideals appear as a promi-
nent tool.

Assume from now on that .X; 0/ is an n-dimensional isolated normal singularity.
For all (relatively) nef b-divisors W1; : : : ;Wn above zero, we set

W1 � � � � �Wn WD inf¹C1 � � � � �Cn j Cj nef Cartier;Cj �Wj º 2 Œ�1; 0�:

To develop a reasonable calculus of these intersection numbers, additivity in each
variable is a desirable property. We obtain this result as a consequence of the fact that
any nef envelope of a Cartier b-divisor is the decreasing limit of a sequence of nef
Cartier b-divisors Ck .

Let us explain how to get this crucial approximation property. The first observa-
tion is that the nef envelope of a Cartier b-divisor C is a limit of the graded sequence
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of ideals am WD OX .mC/, m � 0 (see Section 2.1). For any fixed c > 0, we use the
general notion of (asymptotic) multiplier ideal J.X Iac�/ introduced in [dFH] for any
ambient variety X with normal singularities. As was shown in [dFH] this multiplier
ideal can also be computed using compatible boundaries: namely, there exist effective
Q-boundaries � such that J.X Iac�/ coincides with the standard (asymptotic) multi-
plier ideal J..X;�/Iac�/ with respect to the pair .X;�/.

This connection enables us to make use of a recent result of Takagi [Tak2], which
extends the usual subadditivity property of multiplier ideals (see [DEL]) to multiplier
ideals with respect to a pair .X;�/, up to an (inevitable) error term involving � and
the Jacobian ideal of X . The approximation we are looking for then follows by taking
the nef Cartier b-divisor Ck associated to J.X Iak� /.

Now that we have defined the intersection product of nef Weil b-divisors, we can
come back to the definition of the volume. We set

Vol.X; 0/ WD �EnvX.AX=X /
n;

which is shown to be finite (and nonnegative). Once the volume is defined, the prop-
erties stated in Theorem A follow smoothly from transformation laws of envelopes
under finite morphisms (see Proposition 2.19).

The volume as defined above relates to other kinds of invariants that were previ-
ously defined and are connected to growth rate of pluricanonical forms.

In the 2-dimensional case, we first note that the definition (1) admits an equivalent
formulation in terms of the growth rate of a certain quotient of sections. It was indeed
shown in [Wa] that if X is a surface, then

dim
�
H 0.X n ¹0º;mKX /=H

0.Y;m.KY CE//
�
D
m2

2
Vol.X; 0/C o.m2/;

where the left-hand side is independent of the choice of Y and is equal by definition
to the mth log-plurigenus �m.X; 0/ in the sense of Morales [Mor], a notion which
makes sense in all dimensions.

In line with this point of view M. Fulger [Fulg] has recently considered the fol-
lowing invariant of an isolated singularity .X; 0/:

VolF .X; 0/ WD lim sup
m

nŠ

mn
dim

�
H 0.X n ¹0º;mKX /=H

0.Y;m.KY CE//
�
:

It measures by definition the growth rate of �m.X; 0/ or, equivalently, that of Wata-
nabe’sL2-plurigenera ım.X; 0/ (see [Wat1], [Wat2]), and yields a finite number since

ım.X; 0/D �m.X; 0/CO.m
n�1/DO.mn/



THE VOLUME OF AN ISOLATED SINGULARITY 1461

(see [Ish], which contains a thorough introduction to these notions, and Section 5.2
below).

The notion of volume considered by Fulger also behaves well under finite mor-
phisms, and the analogue of Theorem A holds true. Moreover, in contrast to our vol-
ume, VolF .X; 0/ is more accessible to explicit computations. On the other hand, our
volume Vol.X; 0/ relates more closely to lc singularities (see question (b) below).

Fulger [Fulg] explores how the two approaches compare to one another, proving
that Vol.X; 0/�VolF .X; 0/ for any isolated normal singularity .X; 0/. Equality holds
whenX is Q-Gorenstein, but can fail otherwise (cf. Proposition 5.3 and Example 5.4).

In general these volumes can take irrational values. Urbinati [Urb] constructs
examples where the log discrepancy takes irrational values, and Fulger [Fulg] shows
that similar examples have irrational volumes Vol.X; 0/ and VolF .X; 0/.

In the 2-dimensional case, we know by the work of Wahl [Wa] that the volume
is a topological invariant of the link of the singularity and that its vanishing charac-
terizes log-canonical singularities. Furthermore, Ganter [Gan] has shown that there
is a uniform lower bound to the volume of a normal Gorenstein surface singularity
with positive volume. An example brought to our attention by Kollár shows that the
first property fails in higher dimensions: in general the volume of a normal isolated
singularity is not a topological invariant of the singularity (cf. Example 4.23). The
following questions remain open.
(a) Does there exist a positive lower bound, depending only on the dimension, for

the volume of isolated Gorenstein singularities with positive volume?
(b) Is it true that Vol.X; 0/D 0 implies the existence of an effective Q-boundary�

such that the pair .X;�/ is log-canonical? (the converse being easily shown).
It is to be noted that (b) fails with VolF .X; 0/ in place of Vol.X; 0/ (cf. Example 5.4).

The plan of our paper is the following. In the first four sections, we work over
a normal algebraic variety. Section 1 contains basics on b-divisors. The notion of
envelopes is analyzed in detail in Section 2. In this section we also formalize a mea-
sure of the failure of a Weil divisor to be Cartier in terms of certain defect ideals,
which are related to the notion of compatible boundary. In Section 3 we turn to the
definition of the log-discrepancy b-divisor and of multiplier ideals. The key result of
this section is the subadditivity theorem (Theorem 3.17) that we deduce from Takagi’s
work.

The rest of the paper deals with normal isolated singularities. We define the vol-
ume of such a singularity and prove Theorem A(i), (iii) in Section 4. In Section 5
we complete the proof of Theorem A and compare our notion with the approaches
via plurigenera and Fulger’s work. Finally Section 6 focuses on endomorphisms and
contains a proof of Theorems B and C.
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1. Shokurov’s b-divisors
In this section, X denotes a normal variety defined over an algebraically closed field
of characteristic zero, and we set n WD dimX . The goal of this section is to gather gen-
eral properties of Shokurov’s b-divisors over X , for which [Isk] and [Cor] constitute
general references. Proposition 1.14 seems to be new.

1.1. The Riemann–Zariski space
The set of all proper birational morphisms � W X� !X modulo isomorphism is (par-
tially) ordered by � 0 � � if and only if � 0 factors through � , and the order is inductive
(i.e., any two proper birational morphisms to X can be dominated by a third one). For
short, we will refer to X� , or � , as a model over X . The Riemann–Zariski space of
X is defined as the projective limit

XD lim
 ��

X� ;

taken in the category of locally ringed topological spaces, each X� being viewed as a
scheme with its Zariski topology. (Note that X itself is not a scheme anymore.)

As a topological space, X may alternatively be viewed as the set of all valu-
ation subrings V � k.X/ with nonempty center on X , endowed with the Krull–
Zariski topology. Indeed, given a Krull valuation V , the center c�.V / of V on X�
is nonempty for each � by the valuative criterion for properness, and the collection of
all scheme-theoretic points c�.V / defines a point in c.V / in X. By [ZS, Theorem 41,
p. 122] the mapping V 7! c.V / so defined is a homeomorphism.

1.2. Divisors on the Riemann–Zariski space
Following Shokurov we define the group of Weil b-divisors over X (where b stands
for birational) as

Div.X/ WD lim
 ��

Div.X�/;

where Div.X�/ denotes the group of Weil divisors of X� and the limit is taken with
respect to the pushforward maps Div.X� 0/! Div.X�/, which are defined when-
ever � 0 � � . It can alternatively be thought of as the group of Weil divisors on the
Riemann–Zariski space X (hence the notation).

The group of Cartier b-divisors over X is in turn defined as

CDiv.X/ WD lim
�!� CDiv.X�/

with CDiv.X�/ denoting the group of Cartier divisors of X� . Here the limit is taken
with respect to the pullback maps CDiv.X�/! CDiv.X� 0/, which are defined when-
ever � 0 � � . One can easily check that
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CDiv.X/DH 0.X;M�X=O
�
X/

is indeed the group of Cartier divisors of the locally ringed space X.
There is an injection CDiv.X/ ,!Div.X/ determined by the cycle maps on bira-

tional models X� .
An element of DivR.X/ WDDiv.X/˝R (resp., CDivR.X/ WD CDiv.X/˝R) will

be called an R-Weil b-divisor (resp., R-Cartier b-divisor), and similarly with Q in
place of R. The space DivR.X/ is naturally isomorphic to the projective limit of the
spaces DivR.X�/, and CDivR.X/ is naturally isomorphic to the direct limit of the
spaces CDivR.X�/.

Let us now interpret these definitions in more concrete terms. A Weil divisor
W on X consists of a family of Weil divisors W� 2 Div.X�/ that are compatible
under pushforward, that is, such that W� D ��W� 0 whenever � 0 factors through a
morphism � W X� 0 ! X� . We say that W� (also denoted by WX� ) is the trace (or
incarnation as in [BFJ1]) of W on the model X� . By contrast, a Cartier divisor C on
X is determined by its trace on a high enough model; that is, there exists � such that
C� 0 D �

�C� for every � 0 � � , where � W X� 0 ! X� is the induced morphism. We
say that C is determined on X� (or by �).

Weil b-divisors can also be interpreted as certain functions on the set of divisorial
valuations of X . Recall first that a divisorial valuation of X is a rank 1 valuation
of transcendence degree dimX � 1 of the function field k.X/, whose center on X
is nonempty. By a classical result of Zariski (see, e.g., [KoMo, Lemma 2.45]) the
divisorial valuations on X are exactly those of the form � D t ordE , where t 2 R�C
and E is a prime divisor on some birational model X� over X .

Given an R-Weil b-divisor W over X we can then define .t ordE /.W / as t times
the coefficient of E in W� .

LEMMA 1.1
Setting gW .�/ WD �.W / yields an identification W 7! gW between DivR.X/ and the
space of all real-valued 1-homogeneous functions g on the set of divisorial valuations
of X satisfying the following finiteness property: the set of prime divisors E �X (or
equivalently on X� for any given �) such that g.ordE /¤ 0 is finite.

The topology of pointwise convergence therefore induces a topology of coef-
ficient-wise convergence on DivR.X/, for which limj Wj D W if and only if
limj ordE .Wj /D ordE .W / for each prime divisor E over X .

1.3. Examples of b-divisors
We introduce the main types of b-divisors that we shall consider.
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Example 1.2
The choice of a nonzero rational form ! of top degree on X induces a canonical
b-divisor KX whose trace on X� is equal to the canonical divisor determined by !
on X� .

Example 1.3
A Cartier divisor D on a given model X� induces a Cartier b-divisor D, its pullback
to X. It is simply defined by pulling backD to all models dominating X� and then by
pushing forward on all other models. By definition all Cartier b-divisors are actually
obtained this way.

Example 1.4
Given a coherent fractional ideal sheaf a onX we denote byZ.a/ the Cartier b-divisor
determined on the normalized blowup X� of X along a by

a �OX� DOX�
�
Z.a/�

�
:

In particular we haveZ.f /� D��� div.f /when f is a rational function onX . Note
that with this convention Z.a/ is antieffective when a is an actual ideal sheaf.

For any Weil b-divisor we write Z � 0 if Z� is an effective divisor for every � .
We record the following easy properties.

LEMMA 1.5
Let a;b be two coherent fractional ideal sheaves on X :
� Z.a/�Z.b/ whenever a� b;
� Z.a � b/DZ.a/CZ.b/;
� Z.aCb/Dmax¹Z.a/;Z.b/º, where the maximum is defined coefficient-wise;
� Z.a/DZ.b/ if and only if the integral closures of a and b are equal.

Remark 1.6
Given an ideal sheaf a and a positive number s > 0 we set Z.as/ WD sZ.a/. Then, by
definition, we haveZ.as/DZ.bt / if and only if the R-ideals as and bt are valuatively
equivalent in the sense of Kawakita [Kaw].

Definition 1.7
Let W be an R-Weil b-divisor over X . We denote by OX .W / the fractional ideal
sheaf of X whose sections on an open set U � X are the rational functions f such
that Z.f /�W over U .
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We emphasize that the sheaf of OX -modules OX .W / is not coherent in general,
since we are imposing infinitely many (even uncountably many) conditions on f (see
[Isk]). Note that ��OX� .W�/� 	�OX� .W� / whenever � � 	 and

OX .W /D
\
�

��OX� .W�/:

However, if C is an R-Cartier b-divisor, then we have OX .C / D ��OX� .C�/ for
each determination � of C , and in particular OX .C / is coherent in that case.

Cartier b-divisors associated with coherent fractional ideal sheaves can be char-
acterized as follows.

LEMMA 1.8
A Cartier b-divisor C 2 CDiv.X/ is of the form Z.a/ for some coherent fractional
ideal sheaf a on X if and only if C is relatively globally generated over X .

In particular the Cartier divisors Z.a/ with a ranging over all coherent (frac-
tional) ideal sheaves of X generate CDiv.X/ as a group.

Here we say that C is relatively globally generated over X if and only if so is C�
for one (hence any) determination � of C .

Proof
Let C be a Cartier b-divisor determined by � . To say that C is relatively globally
generated over X means by definition that the evaluation map

����OX� .C�/!OX� .C�/

is surjective. If this is the case we thus see that C DZ.a/ with a WD ��OX� .C�/D

OX .C /, while the converse direction is equally clear. The second assertion now fol-
lows from the fact that any Cartier divisor on a given model X� can be written as a
difference of two �-very ample (hence �-globally generated) Cartier divisors.

1.4. Numerical classes of b-divisors
Let X! S be a projective morphism. Recall that the space of codimension 1 relative
numerical classes N 1.X=S/ is the vector space of R-Cartier divisors modulo those
divisors D for which D � C D 0 for every irreducible curve C that is mapped to a
point in S . One can put together these spaces and define the space of 1-codimensional
numerical classes of X over S by

N 1.X=S/ WD lim
�!�N

1.X�=S/;

where the maps are given by pulling back. We define in turn the space of .n � 1/-
dimensional numerical classes of X over S by
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Nn�1.X=S/ WD lim
 ��

N 1.X�=S/;

where the maps are given by pushing forward and � now runs over all smooth (or
at least Q-factorial) birational models of X—so that the pushforward map N 1.X� 0=

S/!N 1.X�=S/ is well defined for � 0 � � .
EachN 1.X�=S/ is a finite-dimensional R-vector space, and we endowN 1.X=S/

and Nn�1.X=S/ with their natural inductive and projective limit topologies, respec-
tively.

LEMMA 1.9
The cycle maps induce a natural continuous injection N 1.X=S/!Nn�1.X=S/ with
dense image.

Proof
Just as in the case of Cartier and Weil b-divisors described in Section 1.2, any class
ˇ in N 1.X�=S/ can be identified to the class in Nn�1.X=S/ determined by pulling
back ˇ on all higher models. We thus have natural continuous maps N 1.X�=S/!

Nn�1.X=S/ which induce a continuous injective map N 1.X=S/! Nn�1.X=S/. It
follows by the definition of the projective limit topology that this map has dense
image, since for any class ˛ 2 Nn�1.X=S/ the net determined by its traces ˛� 2
N 1.X�=S/, viewed as elements of Nn�1.X=S/ as described before, converges to ˛.

There are also natural surjections CDivR.X/ ! N 1.X=S/ and DivR.X/ !

Nn�1.X=S/, but one should be careful that the latter map is not continuous with
respect to coefficient-wise convergence in general.

Example 1.10
Consider an infinite sequence Cj of .�1/-curves onX D P2 blown up at 9 points. We
then have Cj ! 0 in terms of coefficients, but the numerical classes ŒCj � 2 N 1.X/

do not tend to zero since C 2j D�1 for each j .

LEMMA 1.11
Let � W X� ! X be a birational model of X , and let ˛ 2 N 1.X�=X/. Then there
exists at most one �-exceptional R-Cartier divisor D on X� whose numerical class
is equal to ˛.

Proof
LetD be a �-exceptional and �-numerically trivial R-Cartier divisor. We are to show
that D D 0. Upon pulling back D to a higher birational model, we may assume



THE VOLUME OF AN ISOLATED SINGULARITY 1467

that � is the normalized blowup of X along a subscheme of codimension at least
two. If we denote by Ej the �-exceptional divisors, we then have on the one hand
D D

P
j djEj , and on the other hand there exist positive integers aj such that

F WD
P
j ajEj is �-antiample. Now set t WD maxj dj =aj . If we assume by con-

tradiction that D ¤ 0, then upon possibly replacing D by �D we may assume that
t > 0. Now tF �D is effective and there exists j such that Ej is not contained in its
support. If C �Ej is a general curve in a fiber of � , we then have .tF �D/ �C � 0
since C is not contained in the support of the effective divisor tF �D, which contra-
dicts the fact that D � tF is �-ample.

Even assuming that X� is smooth, it is not true in general that any class ˛ 2
N 1.X�=X/ can be represented by a �-exceptional R-divisor (since � might for
instance be small, i.e., without any �-exceptional divisor). It is, however, true whenX
is Q-factorial, and for any normalX when dimX D 2 thanks to Mumford’s numerical
pullback.

Using these remarks we may now prove the following simple lemma, which
enables us to circumvent the discontinuity of the quotient map DivR.X/ !

Nn�1.X=S/.

LEMMA 1.12
(a) Let Wj be a sequence (or net) of R-Weil b-divisors which converges to an

R-Weil b-divisor W coefficient-wise. If there exists a fixed finite-dimensional
vector space V of R-Weil divisors on X such that Wj;X 2 V for all j , then
ŒWj �! ŒW � in Nn�1.X=S/.

(b) Conversely, let ˛j ! ˛ be a convergent sequence (or net) in Nn�1.X=S/.
Then there exist representatives Wj ;W 2 DivR.X/ of ˛j and ˛, respectively,
and a finite-dimensional vector space V of R-Weil divisors on X such that
� Wj !W coefficient-wise;
� Wj;X 2 V for all j .
If ˛j 2N 1.X=S/, then Wj can be chosen to be R-Cartier.

Proof
For each smooth model � the existence of V yields a finite-dimensional space V�
of R-divisors on X� such that Wj;� 2 V� for all j . The natural linear map V� !
N 1.X�=S/ is of course continuous since both spaces are finite-dimensional, and it
follows that ŒWj;� �! ŒW� � in N 1.X�=S/ for each smooth model. Since smooth
models are cofinal in the family of all models we conclude as desired that ŒWj �! ŒW �

in Nn�1.X=S/.
We now consider the converse. Let X� be a fixed smooth model of X . For each

j , ˛j � ˛j;� (resp., ˛ � ˛� ) is exceptional over X� . By the above remarks it is thus
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uniquely represented by an R-Weil b-divisor Zj (resp., Z) that is exceptional over
X� . Since .˛j �˛j;�/� 0 converges to .˛�˛�/� 0 in N 1.X� 0=X�/ for each � 0 � � it
follows by uniqueness of Zj that Zj !Z coefficient-wise.

On the other hand, since N 1.X�=S/ is finite-dimensional there exists a finite-
dimensional R-vector space V of R-divisors on X� such that V ! N 1.X�=X/ is
surjective. This map is therefore open, and we may thus find representativesCj 2 V of
˛j;� converging to a representative C 2 V of ˛� . Setting Wj WDZj CC j concludes
the proof.

1.5. Functoriality
If � W X ! Y is any morphism between two normal varieties, then it is immediate
to see that pulling back induces a homomorphism �� W CDiv.Y/! CDiv.X/ in a
functorial way.

Assume furthermore that � W X ! Y is proper, surjective, and generically finite.
In this case pushing forward induces a homomorphism

�� W Div.X/!Div.Y/;

and the homomorphism �� W CDiv.Y/! CDiv.X/ extends in a natural way to a
homomorphism

�� W Div.Y/!Div.X/:

Before going through the constructions of these homomorphisms, we recall the
following property.

LEMMA 1.13
Let � W X ! Y be a proper, surjective, and generically finite morphism of normal
varieties. Every divisorial valuation � on X induces, by restriction via the field exten-
sion �� W C.Y / ,!C.X/, a divisorial valuation ��� on Y that is defined by

.���/.f / WD �.f ı �/:

The correspondence � 7! ��� defines a surjective map with finite fibers from the set
of divisorial valuations on X to the set of divisorial valuations on Y .

Proof
If � is a divisorial valuation on X , then ��� is a divisorial valuation on Y since the
restriction of the valuation ring of � to C.Y / has transcendence degree dimY � 1
by [ZS, VI.6, Corollary 1]. The assertion is that, if �0 is a divisorial valuation on Y ,
then there exists a nonzero finite number of divisorial valuations �1; : : : ; �r on X that
restrict to �0. Geometrically, if �0 D t ordF where F is a prime divisor on some model
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Y 0 over Y and t > 0, then the valuations �i are constructed by picking the model X 0

over X such that � lifts to a well-defined morphism �0 W X 0 ! Y 0. If E1; : : : ;Er
are the irreducible components of .�0/�F such that �0.Ei /D F , then the associated
valuations ordEi restrict to a multiple of ordF on C.Y /. Up to rescaling, these are the
only divisorial valuations restricting to ordF since any divisorial valuation on X with
nondivisorial center in X 0 restricts to a divisorial valuation on Y with nondivisorial
center in Y 0.

We then define �� W Div.X/! Div.Y/ and �� W Div.Y/! Div.X/ in the fol-
lowing way. If W 2Div.X/, then ��W is characterized by the condition that

ordF .��W /D
X
i

ordF
�
.�0/�Ei

�
� ordEi .W /

for any prime divisor F over Y . Here we are using the notation as in the proof of
Lemma 1.13, so that F is a divisor on a model Y 0 over Y , X 0 is a model over X such
that the map �0 W X 0!X induced by � is a morphism, and the Ei are the irreducible
components of .�0/�F dominating F . It follows by the lemma that the sum is finite.
Note also that on any model Y 0 the coefficient ordF .��W / can be nonzero only for
finitely many prime divisors F on a model X 0, so that ��W does define a Weil b-
divisor over Y .

Regarding the pullback, if W 2 Div.Y/, then ��W is characterized by the con-
dition that

ordE .�
�W /D .�� ordE /.W /

for every prime divisor E over X . This is indeed a Weil b-divisor since each prime
divisor E on X such that .�� ordE /.W /¤ 0 is either mapped to a prime divisor F
on Y such that ordF .W /¤ 0 or is contracted by �, so that the set of all such prime
divisors E appearing on any model X 0 over X is finite by Lemma 1.13.

PROPOSITION 1.14
Let � W X ! Y be a proper, surjective, generically finite morphism. Then �� �

CDiv.X/� CDiv.Y/.

Proof
The assertion is obvious when � is birational because we are just shifting models in
that case. Using the Stein factorization of � we may thus assume that � is finite (and
still proper and surjective). By Lemma 1.8 it is then enough to show that for every
coherent fractional ideal sheaf a on X there exists a coherent fractional ideal sheaf b

on Y such that ��Z.a/DZ.b/. In fact we claim that
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��Z.a/DZ
�
NX=Y .a/

�
; (2)

where NX=Y .a/ denotes the image of a under the norm homomorphism (cf. [Gro,
définition 21.5.5]).

More precisely, pick an affine chart U � Y . Since the restriction ��1.U /! U

is finite, ��1.U / is affine and a is thus generated by its global sections g on ��1.U /.
For each such g its norm is defined by setting

NX=Y .g/.x/D
Y

�.y/Dx

g.y/

for every smooth point x 2 U over which � is étale and by extending it to a regular
function on U by normality. We then define NX=Y .a/.U / as the OU -module gener-
ated by all NX=Y .g/ with g as above.

Let us now prove (2). Pick a prime divisor F on a model Y 0 over Y , and choose
a birational model X 0 over X such that � lifts to a morphism �0 W X 0 ! Y 0. Note
that �0 is proper and generically finite. Let E1; : : : ;Er be the prime divisors of X 0

dominating F , so that .�0/�Ei D ciF for some positive integer ci . Then we have

ordF
�
��Z.a/

�
D
X
i

ci ordEi
�
Z.a/

�
D�

X
i

ci ordEi .a/

by definition of ��. On the other hand, let V � Y 0 be an affine chart containing a point
of F . The ideal sheafNX=Y .a/ �OY 0 is generated, over V , by the functionsNX 0=Y 0.g/
where g ranges over all global sections of a �OX 0 on .�0/�1.V /. We have

ordF
�
NX 0=Y 0.g/

�
D
X

ci ordEi .g/;

and hence

ordF
�
NX=Y .a/

�
D min

®
ordF

�
NX 0=Y 0.g/

�
; g 2H 0

�
.�0/�1.V /;a �OX 0

�¯
D min

°X
ci ordEi .f /; f 2 a

±
;

which proves the claim since we have ordEi .f /D ordEi .a/ for each i if f 2 a is a
general element.

PROPOSITION 1.15
Suppose that � W X! Y is a proper, surjective, generically finite morphism of normal
varieties, and let e.�/ 2N� be its degree. Then we have

���
�W D e.�/W

for every W 2Div.Y/.
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Proof
Let F be an arbitrary prime divisor over Y , and let E1; : : : ;Er be the prime divisors
over X such that ordEi restricts to a multiple of ordF . Let X 0! X and Y 0! Y be
models so that each Ei is on X 0 and E is on Y 0. As before, we can assume that � lifts
to a morphism �0 W X 0! Y 0. Let ci D ordF ..�0/�Ei /. By definition of �� and ��,
we have

ordF .���
�W /D

X
i

ci ordEi .�
�W /

D
X
i

ci ordEi .�
�F /ordF .W /D e.�

0/ordF .W /;

where the last equality follows by projection formula. One concludes by observing
that e.�0/D e.�/.

2. Nef envelopes
In this sectionX still denotes an arbitrary normal variety (over an algebraically closed
field of characteristic zero). We reinterpret the pullback construction of [dFH] as a nef
envelope, which shows in particular that it coincides with Mumford’s numerical pull-
back on surfaces. Section 2.5 introduces the defect ideal of a Weil divisor, measuring
its failure to be Cartier, and a precise description of the defect ideal is obtained.

2.1. Graded sequences and nef envelopes
Recall that a� D .am/m�0 is a graded sequence of fractional ideal sheaves if a0 D

OX , each am is a coherent fractional ideal sheaf of X , and ak � am � akCm for every
k;m (see [Laz, Section 2.4]). We say that a� has linearly bounded denominators if
there exists a (fixed) Weil divisor D on X such that OX .mD/ � am �OX for all m.

Let us first attach an R-Weil b-divisor to any graded sequence of ideal sheaves
with linearly bounded denominators.

PROPOSITION 2.1
Suppose that a� D .am/m�0 is a graded sequence of fractional ideals sheaves am with
linearly bounded denominators. Then we have

1

l
Z.al/�

1

m
Z.am/

for every m divisible by l , and the sequence .1=m/Z.am/ converges coefficient-wise
to an R-Weil b-divisor. We write

Z.a�/ WD lim
m

1

m
Z.am/:
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Proof
All this follows from the superadditivity property

Z.am/CZ.an/�Z.amCn/

since the condition that a� has linearly bounded denominators guarantees that the
sequence .1=m/ordE Z.am/ is bounded below for each prime divisor E over X and
even identically zero for all but finitely many prime divisors E on X .

LEMMA 2.2
Let a� be a graded sequence of fractional ideal sheaves on X with linearly bounded
denominators. Then we have Z.a�/D .1=m0/Z.am0/ for some m0 if and only if the
graded OX -algebra

L
m�0 am of integral closures is finitely generated.

Proof
Since Z.am/ depends only on am (cf. Lemma 1.5), we may assume to begin with that
every am is integrally closed. Assume first that the graded algebra is finitely gener-
ated, so that there existsm0 2N such that akm0 D akm0 for all k 2N. ThenZ.akm0/D
kZ.am0/; hence, Z.a�/ D .1=m0/Z.am0/. Conversely, assume that Z.a�/ D

.1=m0/Z.am0/ for a givenm0. By Proposition 2.1 it follows thatZ.akm0/D kZ.am0/
for all k. Let � be the normalized blowup of X along am0 . We then have

akm0 D akm0 D ��OX�
�
kZ.am0/�

�
for all k (cf. [Laz, Proposition 9.6.6]). Since the graded algebra of (relative) global
sections of multiples of any (relatively) globally generated line bundle is finitely gen-
erated, the fact that Z.am0/� is �-globally generated implies that the OX -algebraL
k akm0 is finitely generated and hence so is its finite integral extension

L
m am.

Definition 2.3
Let D be an R-Weil divisor on X� for a given � . The nef envelope Env�.D/ of D is
defined as the R-Weil b-divisor associated with the graded sequence ��OX� .mD/,
m� 0. When � is the identity we write EnvX for Env� .

We shall see how this definition relates to relative Zariski decomposition and
numerical pullback in the surface case (see Theorem 2.22). A nontrivial toric example
is worked out in Example 2.23.

Remark 2.4
If D is an R-Weil divisor on X , then �EnvX .�D/� coincides by definition with
��D in the sense of [dFH, Definition 2.9].
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Remark 2.5
We introduce later in Section 2.3 a notion of nef envelopes over X of a b-divisor W
(under some condition on W ). The relation between the two notions of envelopes is
explained in Remark 2.17.

PROPOSITION 2.6
Let D;D0 be two R-Weil divisors on a model X� . Then we have
� Env�.DCD0/� Env�.D/C Env�.D0/;
� Env�.tD/D t Env�.D/ for each t 2RC.

Proof
For each m� 0 we have

�
��OX� .mD/

�
�
�
��OX� .mD

0/
�
� ��OX�

�
m.DCD0/

�
;

whence the first point.
To prove the second point we may assume that D is effective (since we may add

to D the pullback of an appropriate Cartier divisor of X to make it effective). Now
observe that Env�.mD/DmEnv�.D/ for each positive integer m since Env�.D/D
limk.1=k/Z.��OX� .kD//; hence, Env�.tD/D t Env�.D/ for each t 2Q�C. On the
other hand, D 7! Env�.D/ is obviously nondecreasing, so if we pick t 2 R�C and
approximate it from below and from above by rational numbers sj ; tj , we get

sj Env�.D/D Env�.sjD/� Env�.tD/� Env�.tjD/D tj Env�.D/

and hence the result.

Linearity of nef envelopes fails in general. The obstruction to linearity will be
studied in greater detail in Section 2.5 (see also Example 2.23 and [dFH]).

COROLLARY 2.7
For every finite-dimensional vector space V of R-Weil divisors on X� and every
divisorial valuation �, the map D 7! �.Env�.D// is continuous on V .

Proof
Proposition 2.6 implies that D 7! �.Env�.D// is a concave function on V , and the
result follows.

PROPOSITION 2.8
For every R-Weil divisorD onX the trace .EnvX .D//X of EnvX .D/ onX coincides
with D.
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Proof
If D is a Weil divisor on X , then we have Z.OX .D//X DD. Indeed this means that
ordE OX .D/D�ordE D for each prime divisor E of X , which holds true since X ,
being normal, is regular at the generic point of E .

As a consequence we get D D .EnvX .D//X when D is a Q-Weil divisor on X ,
and the general case follows by density, using Corollary 2.7.

2.2. Variational characterization of nef envelopes
Let X ! S be a projective morphism. In the usual theory of b-divisors one says that
an R-Cartier b-divisor C is relatively nef over S (or S -nef for short) if C� is S -nef
for one (hence any) determination � of C . Following [BFJ1] and [KuMa] we extend
this definition to arbitrary R-Weil b-divisors.

Definition 2.9
Let X ! S be a projective morphism. We define Nef.X=S/ � Nn�1.X=S/ as the
closed convex cone generated by all S -nef classes ˇ 2 N 1.X=S/, that is, all classes
of S -nef R-Cartier b-divisors.

Since the usual notion of nefness is preserved by pullback, it is immediate to
check that S -nef classes in the sense of the above definition are also preserved by
pullback. On the other hand, nefness is in general not preserved under pushforward
when dimX > 2, and the traces W� of an S -nef R-Weil b-divisor are therefore not
S -nef in general.

Given a projective morphism Y ! S , the S -movable cone Mov.Y=S/ �
N 1.Y=S/ is the closed convex cone Mov.Y=S/ generated by the numerical classes of
all Cartier divisors D on Y whose S -base locus has codimension at least two: recall
that the S -base locus of a Cartier divisor D on Y is the cosupport of the ideal sheaf
obtained as the image of the natural evaluation map f �f�OY .D/˝OY .�D/!OY .

We now have the following alternative description of nef b-divisors.

LEMMA 2.10
Let X! S be a projective morphism. Then we have

Nef.X=S/D proj lim
�

Mov.X�=S/;

where the limit is taken over all smooth (or Q-factorial) models X� . In other words,
an R-Weil b-divisor W is S -nef if and only if W� is S -movable on each smooth (or
Q-factorial) model X� . In particular the restriction of (the class of) W� to any prime
divisor of X� is S -pseudoeffective.
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Proof
Let ˛ 2 Nn�1.X=S/. Since the latter is endowed with the inverse limit topology the
sets

V�;U WD
®
ˇ 2Nn�1.X=S/;ˇ� 2 U

¯
;

where � ranges over all smooth models of X and U � N 1.X�=S/ ranges over all
conical open neighborhoods of ˛� , form a neighborhood basis of ˛.

We infer by definition that ˛ is S -nef if and only if for every � and U there
exists an S -nef class ˇ 2N 1.X=S/ such that ˇ� 2 U . On the other hand, since U is
conical it is immediate to see that ˇ may be assumed to be the class of an S -globally
generated Cartier b-divisor, and the result follows.

The next result is a limiting case of Lemma 1.8.

LEMMA 2.11
Let a� be a graded linearly bounded denominator. Then the R-Weil b-divisor Z.a�/
is X -nef.

Proof
Since a� has linearly bounded denominators it is in particular clear that there exists
a finite-dimensional vector space V of R-Weil divisors on X such that Z.am/ 2 V
for all m. By Lemma 1.12 it thus follows that Œ.1=m/Z.am/� converges to ŒZ.a�/� in
Nn�1.X=X/. But each Z.am/ is X -globally generated by Lemma 1.8, and we thus
conclude that Z.a�/ is X -nef.

PROPOSITION 2.12 (Negativity lemma)
Let W be an X -nef R-Weil b-divisor over X . Then for each � we have W �
Env�.W�/.

The following argument provides in particular an alternative proof of the well-
known negativity lemma [KoMo, Lemma 3.39].

Proof
Let X� be a fixed model of X .

Step 1. Let C be an X -globally generated Cartier b-divisor, determined on some
model X� that may be assumed to dominate X� . As in the proof of Lemma 1.8
we have C D Z.OX .C // since C is X -globally generated, and we infer that C �
Env�.C�/. Indeed 	 � � implies
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OX .C /D 	�OX� .C� /� ��OX� .C�/I

hence,

C DZ
�
OX .C /

�
�Z

�
��OX� .C�/

�
� Env�.C�/

by Proposition 2.1.

Step 2. Let C be an X -nef R-Cartier b-divisor, determined on a model X� that
may again be assumed to be projective over X and to dominate X� . The class of
C� in N 1.X�=X/ is X -nef and hence belongs to the closed convex cone spanned
by the classes of X -very ample divisors of X� . As in Lemma 1.12(ii), we may then
find a sequence of X -very ample Cartier divisors Aj on X� and a sequence tj 2
R�C such that tjAj ! C� coefficient-wise, while staying in a fixed finite-dimensional
vector space of R-divisors on X� . By Step 1 and Proposition 2.6 we have tjAj �
Env�.tj .Aj /�/ for each j . By Corollary 2.7 we infer

�.C /D lim
j
tj �.Aj /� �

�
Env�.tjAj /

�
D �

�
Env�.C�/

�

for each divisorial valuation �, hence C � Env�.C�/. This step recovers in particular
the usual statement of the negativity lemma.

Step 3. Let W be an arbitrary X -nef R-Weil b-divisor. By Lemma 1.12 there exists
a net Wj of X -nef R-Cartier divisors such that Wj !W coefficient-wise and Wj;X
stays in a fixed finite-dimensional space of R-Weil divisors on X . The result now
follows by another application of Corollary 2.7.

As a consequence we get the following variational characterization of nef enve-
lopes.

COROLLARY 2.13
IfD is an R-Weil divisor on X� , then Env�.D/ is the largest X -nef R-Weil b-divisor
W such that W� �D. In particular we have
� Env�.D/DD if D is R-Cartier and X -nef.
� The b-divisor Env�.D/ is R-Cartier, determined by a given 	 � � , if and only

if the trace of Env�.D/ on X� is R-Cartier and X -nef.

Proof
The R-Weil b-divisor Env�.D/ is X -nef by Lemma 2.11. We also clearly have
.1=m/Z.��OX� .mD//� �D, and hence Env.D/� �D in the limit. Conversely if
Z is an X -nef R-Weil b-divisor such that Z� �D, then Z � Env�.Z�/� Env�.D/
by the negativity lemma.
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As an illustration we now prove the following.

PROPOSITION 2.14
Assume that X has klt singularities in the sense that there exists an effective Q-
Weil divisor � such that KX C� is Q-Cartier and .X;�/ is klt (cf. [dFH]). Then
EnvX .D/ is an R-Cartier b-divisor for every R-Weil divisor D on X . When D has
Q-coefficients we even have EnvX .D/D .1=m/Z.OX .mD// for some m.

The result easily follows from [Kol2, Exercise 109], but we provide some details
for the convenience of the reader.

Note that the analogous result for Env�.D/, D being a Weil divisor on a higher
model X� , fails even when X is smooth (cf. [Cut], [Kür] for an explicit example).

Proof
Since .X;�/ is klt it follows from [BCHM, Corollary 1.4.3] that there exists a Q-
factorialization � W X� ! X , that is, a small birational morphism � such that X�
is Q-factorial. Denote by O�� and OD� the strict transforms on X� of � and D,
respectively. Since � is small we have ��.KX C �/ D KX� C O�� , which shows
that .X� ; O��/ is klt, hence so is .X� ; O�� C " OD�/ for 0 < " 	 1. By applying
[BCHM, Corollary 1.4.3] to " OD� , which is �-numerically equivalent to KX� C
O� C " OD as well as �-big (since � is birational) we infer the existence of a new
Q-factorialization 	 W X� ! X such that the strict transform OD� of D on X� is fur-
thermore X -nef. Since 	 is small it is easily seen that 	�OX� .m OD� /DOX .mD/ for
all m; hence, Env� . OD� /D EnvX .D/, and it follows by Corollary 2.13 that EnvX .D/
is the R-Cartier b-divisor determined by OD� .

When D has rational coefficients the base point free theorem shows that OD� is
X -globally generated, so thatM

m�0

OX .mD/D
M
m�0

	�OX� .m
OD� /

is finitely generated over OX . We thus have EnvX .D/ D .1=m/Z.OX .mD// for
some m.

2.3. Nef envelopes of Weil b-divisors
The next result is a variant in the relative case of [BFJ1, Proposition 2.13] and [KuMa,
Theorem D].

PROPOSITION 2.15
Let W be an R-Weil b-divisor. If the set of X -nef R-Weil b-divisors Z such that
Z �W is nonempty, then it admits a largest element.
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Definition 2.16
We say that the nef envelope of W is well defined if the assumption of the proposition
holds. We then denote the largest element in question by EnvX.W / and call it the nef
envelope of W .

Proof of Proposition 2.15
Every Z as in the proposition satisfies Z � Env�.W�/ for all � by Corollary 2.13,
which also implies that � 7! Env�.W�/ is nonincreasing; that is,

Env� 0.W� 0/� Env�.W�/

whenever � 0 � � . If there exists at least one Z as above, then it follows that
EnvX.W / WD lim� Env�.W�/ is well defined as a b-divisor and satisfies EnvX.W /�

Z for every such Z. There remains to show that EnvX.W / is X -nef and satisfies
EnvX.W / � W . But the existence of Z guarantees the existence of a finite-dimen-
sional vector space V of R-Weil divisors on X such that Env�.W�/X 2 V for all � .
Since Env�.W�/ converges to EnvX.W / coefficient-wise, we conclude as before by
Lemma 1.12 that EnvX.W / is X -nef, whereas EnvX.W / � W follows from
Env�.W�/� �W� for 	 � � by letting �!1.

Remark 2.17
Note that the proof gives

EnvX.W /D inf
�

Env�.W�/:

If W is an R-Cartier b-divisor, then we have

EnvX.W /D Env�.W�/

for each determination � .

PROPOSITION 2.18
Let .Wi /i2I be a net of b-divisors decreasing toW such that EnvX.W / is well defined.
Then EnvX.Wi / is well defined for every i , and the net decreases to EnvX.W /.

Proof
By assumption, EnvX.W / is well defined, so that there exists an X -nef R-Weil b-
divisor Z � W . Since Wi � W for all i , the envelopes EnvX.Wi / are also well
defined, and form a net that decreases to a b-divisor Z0 � EnvX.W /. Pick any � .
Since Wi;� !W� , we have EnvX.Wi /� Env�.Wi;�/! Env�.W�/. Letting i!1,
we get Z0 � Env�.W�/. We conclude using the preceding remark.
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PROPOSITION 2.19
Suppose that � W X ! Y is a finite dominant morphism of normal varieties. Let W
be any R-Weil b-divisor over Y whose nef envelope EnvY.W / is well defined. Then
EnvX.�

�W / is also well defined and we have

EnvX.�
�W /D �� EnvY.W /:

We similarly have

EnvX .�
�D/D �� EnvY .D/

for every R-Weil divisor D on Y .

Proof
Since EnvY.W / is Y -nef, its pullback �� EnvY.W / is Y -nef as well and hence also
X -nef. Since we have �� EnvY.W / � �

�W this shows that EnvX.�
�W / is well

defined and satisfies �� EnvY.W /� EnvX.�
�W / by Proposition 2.15.

Conversely, Lemma 2.20 below shows that �� EnvX.�
�W / is Y -nef. Since �� �

EnvX.�
�W /� ���

�W D e.�/W by Proposition 1.15 it follows that

�� EnvX.�
�W /� e.�/EnvY.W /D ���

� EnvY.W /

by Proposition 1.15 again, and we conclude by applying Lemma 2.21 below to Z WD
EnvX.�

�W /� �� EnvY.W /.

LEMMA 2.20
Let � W X ! Y be a finite dominant morphism between normal varieties, and let W
be an X -nef R-Weil b-divisor over X . Then ��W is Y -nef.

Proof
By assumption, the class of W in Nn�1.X=X/ is X -nef and hence can be written as
the limit of a net of X -nef classes of N 1.X=X/. By Lemma 1.12(b) there exists a
net Wj of X -nef R-Cartier b-divisors such that Wj !W coefficient-wise and Wj;X
stays in a fixed finite-dimensional vector of R-Weil divisors on X . It follows that
the divisors .��Wj /Y also stay in a fixed finite-dimensional vector space of R-Weil
divisors on Y . Using the definition of �� on Weil b-divisors, it is immediate to see that
��Wj ! ��W coefficient-wise. Using Lemma 1.12(a) it thus follows that Œ��Wj �!
Œ��W � in Nn�1.Y=Y /, and we are reduced to the case where W is R-Cartier.

Now let � be a determination of W . By Corollary 2.13 we have in particu-
lar W D Env�.W�/, so that the fractional ideals am WD ��O.mW�/ satisfy W D
lim.1=m/Z.am/ coefficientwise, and it is clear that the Z.am/X stay in a fixed finite-
dimensional vector space by monotonicity. We are now reduced to the case where
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W DZ.a/ for some fractional ideal, in which case we have ��Z.a/DZ.NX=Y .a//
by (the proof of ) Proposition 1.14. We conclude that ��Z.a/ is Y -globally generated,
hence in particular Y -nef, by Lemma 1.8.

LEMMA 2.21
Let � W X ! Y be a proper, surjective, generically finite morphism. Suppose that
Z � 0 is an R-Weil b-divisor over X . Then ��Z D 0 only if Z D 0.

Proof
Suppose that there is a prime divisor E lying in some model X 0 over X such that
ordE Z > 0. Since � is generically finite, we can choose a model Y 0 over Y such that
E maps to a prime divisor F on Y 0 via the rational map �0 W X 0 ��� Y 0 obtained by
lifting �. Then ordF .��Z/� ordE Z > 0; hence, ��Z cannot be zero.

2.4. The case of surfaces and toric varieties

THEOREM 2.22
Let X be a normal surface, and let � W X� !X be a smooth (or at least Q-factorial)
model.
(i) If D is an R-divisor on X� , then the b-divisor Env�.D/ is R-Cartier, deter-

mined on X� , and

D D Env�.D/� C
�
D � Env�.D/�

�
coincides with the relative Zariski decomposition of D with respect to � W
X� !X .

(ii) If D is an R-Weil divisor on X , then EnvX .D/ D ��D, where ��D is the
numerical pullback of D in the sense of Mumford.

Recall that the numerical pullback of D is defined as the unique R-divisor D0 on
X� such that ��D0 DD and D0 �E D 0 for all �-exceptional divisors E .

Proof
Let us prove (i). The first assertion follows from Corollary 2.13, since each movable
class is nef when dimX D 2.

The divisor P WD Env�.D/� is an X -nef R-divisor on X� such that D � P and
P �Q for every X -nef divisor Q on X� such that D �Q, by Corollary 2.13 again.
Write N WD P �D. Then we have P �E D 0 for any prime divisor E in the support
of N , since otherwise P C sE is X -nef and at least D for s 	 1. This is one of
the characterizations of the (relative) Zariski decomposition (see [Sak, p. 408]). This
concludes the proof of (i).
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Let us now prove (ii). Let ��D be the numerical pullback of D to X� . Since
��D is �-nef it follows that C WD ��D is X -nef and satisfies CX DD; hence, C �
EnvX .D/ by Corollary 2.13. Conversely set D0 WD EnvX .D/� . We claim that D0 D
��D. Taking this for granted for the moment we then get EnvX .D/ � C by the
negativity lemma, and the result follows.

Since we have ��D0 DD by Proposition 2.8, the claim will follow if we show
that D0 �E D 0 for each �-exceptional prime divisor E on X� . This is a consequence
of the variational characterization of EnvX .D/. Indeed note that D0 � E � 0 since
D0 is �-nef by Lemma 2.10. If we assume by contradiction that D0 � E > 0, then
D0 C "E is still �-nef for 0 < "	 1 and C WDD0C "E is then an X -nef b-divisor
withCX DD. It follows thatC � EnvX .D/ by Corollary 2.13; hence,D0C"E �D0,
a contradiction.

Let us now decribe the case of toric varieties. We refer to [Fult], [Oda], and [CLS]
for basics on toric varieties. Let N be a free abelian group of rank n, and suppose that
we are given two rational polyhedral fans �;�0 in N such that ���0. For the sake
of simplicity we assume that � and �0 have the same support S . Denote by X.�/
and X.�0/ the corresponding toric varieties. Since � is a subset of �0, we have an
induced birational map � W X.�0/!X.�/.

Let D be an R-Weil toric divisor on X.�/. It is given by a real-valued function
hD on the set of primitive vectors �.1/ generating the 1-dimensional faces of �, and
D is R-Cartier if and only if hD extends to a continuous function on S that is linear
on each face. In that case D is �-nef if and only if hD is convex on the union S0 of
all faces of�0 that contain a ray in�0.1/n�.1/. By Corollary 2.13 it follows that the
function attached to Env�.D/� is the supremum of all 1-homogeneous functions on
the convex set S such that g � hD on �.1/ and g is convex on the subset S0.

Example 2.23
Take � in R3 the fan having a single 3-dimensional cone generated by the four rays
.1; 0; 0/; .0; 1; 0/; .0; 0; 1/; .1; 1;�1/. Then X.�/ is an affine variety having an iso-
lated singularity at the origin and is locally isomorphic to a quadratic cone there.

Let �0 be the regular fan having .1; 0; 0/; .0; 1; 0/; .0; 0; 1/; .1; 1;�1/; .1; 1; 0/ as
vertices. The natural map X.�0/! X.�/ is a proper birational map which gives a
(nonminimal) desingularization of X.�/. Denote by Ev the divisor associated to the
corresponding ray v 2R3 either in X.�/ or X.�0/.

Now take D1 D E100 C E010 C E001 and D2 D E100 C E001 C E11�1. Then
D1CD2 is a Cartier divisor on X.�/ whose support function is given by 2x1Cx2C
2x3 in the standard coordinates .x1; x2; x3/ 2R3. Hence ordE110 EnvX .D1CD2/D
3. On the other hand, for any convex function g having value 1 at .0; 0; 1/ and zero at
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.1; 1;�1/, we have g.1; 1; 0/� 1; hence, ordE110 EnvX .D1/� 1. The same argument
shows that ordE110 EnvX .D2/� 1; hence, ordE110 EnvX .D1/CordE110 EnvX .D2/ <
ordE110.EnvX .D1CD2//.

2.5. Defect ideals

Definition 2.24
The defect ideal of an R-Weil divisor D on X is defined as

d.D/ WDOX .D/ �OX .�D/:

Note that d.D/�OX .D�D/DOX is an ideal sheaf. The following proposition
summarizes immediate properties of defect ideals.

PROPOSITION 2.25
Let D;D0 be R-Weil divisors on X . Then we have
(i) d.DCC/D d.D/ for every Cartier divisor C ,
(ii)

d.D/ �OX .DCD
0/�OX .D/ �OX .D

0/�OX .DCD
0/;

(iii)

��1dX .D/ �OY .�
�D/� ��1OX .D/ �OY �OY .�

�D/

for every finite dominant morphism � W Y !X .
(iv) The sequence

d�.D/ WD
�
d.mD/

�
m�0

is a graded sequence of ideals, and

Z
�
d�.D/

�
D EnvX .D/C EnvX .�D/:

Definition 2.26
We say that an R-Weil divisor D on X is numerically Cartier if EnvX .�D/ D
�EnvX .D/. In the special case where D DKX we say that X is numerically Goren-
stein if KX is numerically Cartier.

Remark 2.27
If D is a Q-Weil divisor, then the property of being numerically Cartier can be equiv-
alently checked using valuations, so thatD is numerically Cartier if and only if, given
a positive integer k such that kD is an integral divisor, for every divisorial valuation
� the sequence �.OX .mkD//� �.OX .�mkD// is in o.m/.
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By Proposition 2.6 it is straightforward to see that numerically Cartier divisors
form an R-vector space. We also have the following.

LEMMA 2.28
Let D be an R-Weil divisor on X . Then D is numerically Cartier if and only if

EnvX .DCD
0/D EnvX .D/C EnvX .D

0/

for every R-Weil divisor D0 on X .

Proof
Assume that D is numerically Cartier, so that EnvX .�D/D �EnvX .D/. Then we
have on the one hand EnvX .DCD0/� EnvX .D/CEnvX .D0/ and on the other hand
EnvX .�D/C EnvX .D CD0/ � EnvX .D0/, and additivity follows. The converse is
equally easy and left to the reader.

Example 2.29 (Surfaces)
Since Mumford’s pullback of Weil divisors on surfaces is linear, it follows from The-
orem 2.22 that all R-Weil divisors on a normal surface X are numerically Cartier.

Example 2.30 (Toric varieties)
If D is a toric R-Weil divisor on a toric variety X , then it follows from the discus-
sion from the last section that D is numerically Cartier if and only if D is already
R-Cartier.

Example 2.31 (Cone singularities)
Let .V;L/ be a smooth projective variety endowed with an ample line bundle L.
Recall that the affine cone over .V;L/ is the algebraic variety defined by

X D C.V;L/ WD Spec
�M
m�0

H 0.V;mL/
�
:

If L is sufficiently positive, then X has an isolated normal singularity at its vertex
0 2 X and is obtained by blowing down the zero section E ' V in the total space
Y of the dual bundle L�. We denote by � W Y ! X the contraction map, which is
isomorphic to the blowup of X at zero. Every divisor D on V induces a Weil divisor
C.D/ on X , and the map D 7! C.D/ induces an isomorphism Pic.V /=ZL' Cl.X/
onto the divisor class group of X .

LEMMA 2.32
Let .V;L/ be a smooth polarized variety, and let D be an R-Weil divisor on V .
Assume that L is sufficiently positive, so that C.V;L/ is normal.
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(1) C.D/ is R-Cartier if and only if D and L are R-linearly proportional in
Pic.X/˝R.

(2) C.D/ is numerically Cartier if and only if D and L are numerically propor-
tional in N 1.V /.

Proof
Property (1) follows from the description of the divisor class group of X D C.V /
recalled above. Let us prove (2). Let � W Y ! X be the blowup of X at its vertex
zero. The restriction to E ' V of the strict transform C.D/0 is linearly equivalent
to D. If D is numerically Cartier, then the restriction to E of EnvX .�C.D//Y D
�EnvX .C.D//Y is both pseudoeffective and anti-pseudoeffective by Lemma 2.10, so
EnvX .C.D//Y is numerically equivalent to zero in N 1.Y=X/. But EnvX .C.D//Y �
C.D/0 is �-exceptional, hence proportional to E , and we conclude as desired that
D � C.D/0jE is proportional to L��EjE in N 1.V /.

Conversely assume that D � aL are proportional in N 1.V /. Then C.D/0 and E
are proportional in N 1.Y=X/; hence, there exists t 2 R such that EnvX .C.D//Y �
�tE in N 1.Y=X/. Since �E is X -ample and the numerical class of EnvX .C.D//Y
is in the X -movable cone, it follows that t � 0, which implies that EnvX .C.D//Y
is X -nef. This in turn shows as in the proof of Theorem 2.22 that the b-divisor
EnvX .C.D// is R-Cartier, determined on Y by C.D/0�aE . If we replaceD by �D,
then we get that EnvX .C.D// is determined on Y by C.�D/0 C aE D�.C.D/0 �
aE/; that is, EnvX .�C.D//D�EnvX .C.D// holds as desired.

We now give a more precise description of defect ideals, which is basically an
elaboration of [dFH, Theorem 5.4]. As a matter of terminology we introduce the fol-
lowing.

Definition 2.33
We say that a determination � of an R-Cartier b-divisor C is a log resolution of C if
X� is smooth, the exceptional locus Exc.�/ has codimension one, and Exc.�/CC�
has simple normal crossing (SNC) support.

Another R-Cartier b-divisor C 0 is then said to be transverse to � and C if � is
also a log resolution ofCCC 0 andC 0� has no common component with Exc.�/CC� .

Every R-Cartier b-divisor admits a log resolution by Hironaka’s theorem.

PROPOSITION 2.34
Let D be a Weil divisor on X , and assume that X is quasi-projective. Then we have

d.D/D
X
E

OX .�E/;
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where the sum is taken over the set of all prime divisors E of X such that D �E is
Cartier (and this set is in particular nonempty).

Given a Cartier b-divisor C and a joint log resolution � of C and OX .D/, the
sum can be further restricted to those E such that Z.OX .E// is transverse to �
and C .

Proof
Observe first that

OX .�E/�OX .�E/ �OX .E/D d.E/D d.D/

for all effective Weil divisors E such that D �E is Cartier.
Since X is quasi-projective there exists a line bundle L on X such that L ˝

OX .D/ is generated by a finite-dimensional vector space of global sections V , which
we view as rational sections of L. For each s 2 V set Es WDDC div.s/, which is an
effective Weil divisor congruent to D modulo Cartier divisors.

We claim that there exists a (nonempty) Zariski open subset U of V such that

d.D/D
X
s2U

OX .�Es/ (3)

and
� Es is a prime divisor on X ,
� Z.OX .Es// is transverse to � and C ,
for each s 2 U , which concludes the proof of Proposition 2.34.

Since � dominates the blowup of OX .D/ it is easily seen that the effective divi-
sors

Ms WDZ
�
OX .Es/

�
�
DZ

�
OX .D/

�
�
C �� div.s/

move in a base point free linear system on X� as s moves in V . We may thus find a
nonempty Zariski open subset U of V such that for each s 2 U we have
� Ms has no common component with Exc.�/CC� ,
� Ms is smooth and irreducible,
� Ms C Exc.�/CC� has SNC support,
where the last two points follow from Bertini’s theorem. Since ��Ms D

Z.OX .D//XCdiv.s/DEs by Proposition 2.8, we see in particular thatEs is a prime
divisor for each s 2 U and Z.OX .Es// is transverse to � and C . There remains to
show (3). Observe that

s �OX .�D/�L˝OX
�
�div.s/

�
�OX .�D/DL˝OX .�Es/

for each s 2 V . Since V generates L˝OX .D/ and U is open in V we obtain
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L˝ d.D/D L˝OX .D/ �OX .�D/

D
X
s2U

s �OX .�D/�L˝
X
s2U

OX .�Es/;

and the result follows since L is invertible.

3. Multiplier ideals and approximation
In this section, X still denotes a normal variety. Our main goal here is to show how
to obtain from Takagi’s subadditivity theorem for multiplier ideals of pairs a similar
statement for the general multiplier ideals defined in [dFH]. This result in turn enables
us to approximate nef envelopes of Cartier divisors from above by nef Cartier divisors,
in the spirit of [BFJ1].

3.1. Log discrepancies
We say that an R-Weil divisor � on X is an R-boundary (resp., a Q-boundary, resp.,
an m-boundary) ifKX C� is R-Cartier (resp.,KX C� is Q-Cartier, resp.,m.KX C
�/ is Cartier).

Let ! be a rational top-degree form on X , and consider the associated canon-
ical b-divisor KX. Given an R-boundary � on X we define the relative canonical
b-divisor of .X;�/ by

KX=.X;�/ DKX �KX C�;

which is independent of the choice of !. If E is a prime divisor above X , then
ordE KX=.X;�/ is nothing but the discrepancy of the pair .X;�/ along E . Follow-
ing [dFH] we introduce on the other hand the following.

Definition 3.1
The m-limiting relative canonical b-divisor is defined by

Km;X=X WDKXC
1

m
Z
�
OX .�mKX /

�
;

and the relative canonical b-divisor is

KX=X DKXC EnvX .�KX /:

They are both independent of the choice of ! and are exceptional over X by
Proposition 2.8. Note that Km;X=X !KX=X coefficient-wise as m!1.

Recall that the log discrepancy of a pair .X;�/ along a prime divisor E above
X is defined by adding 1 to the discrepancy. Let us reformulate this by introducing
the pseudo b-divisor 1X, that is, the homogeneous function on the set of divisorial
valuations of X such that
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.t ordE /.1X/D t

for each divisorial valuation t ordE , so that ordE .KX=.X;�/ C 1X/ is now equal to
the log discrepancy of .X;�/ along E . We also consider the reduced exceptional
b-divisor 1X=X , which takes value 1 on the prime divisors that are exceptional over
X and value zero on the prime divisors contained in X .

The following well-known properties show that KX C 1X is better behaved
than KX.

LEMMA 3.2
Assume that X is smooth, and let E be a reduced SNC divisor on X . Then we have
KXC 1X �KX CE .

This result is [Kol1, Lemma 3.11], whose proof we reproduce for the convenience
of the reader.

Proof
Let F be a smooth irreducible divisor in some model � W X� ! X . We may choose
local coordinates .x1; : : : ; xn/ near the generic point of �.F / such that the local
equation of E writes xc � � �xp D 0 for some p D 0; : : : ; n, and we let z be a local
equation of F at its generic point. We then have ��xi D zbiui , where ui is a unit
at the generic point of F and bi 2 N vanishes for i > p. It follows that �� dxi D
biz

bi�1ui dzC z
bidui , and hence

ordF .KX � �
�KX /D ordF .KX�=X /D ordF

�
��.dx1 ^ � � � ^ dxn/

�
� �1C

X
i

bi D�1C ordF E:

LEMMA 3.3
Let � W X ! Y be a generically finite dominant morphism between normal varieties.
Let !Y be a rational top-degree form on Y , let !X be its pullback to X , and let KY,
KX be the associated canonical b-divisors. Then we have

KXC 1X D �
�.KYC 1Y/:

Proof
Let F be a prime divisor on a smooth model Y 0 over Y , and pick a smooth model X 0

overX such that � lifts to a morphism �0 W X 0! Y 0. The modelX 0 can be constructed
by taking a desingularization of the graph of the rational map X ��� Y 0. Let E be a
prime divisor on X 0 with �0.E/ D F . We then have �� ordE D b ordF with b WD
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ordE .�0�F /. The same computation as above shows that the ramification order of �0

at the generic point of E is equal to b � 1, so that we have

ordE
�
KX 0 � .�

0/�KY 0
�
D b � 1:

It follows that

ordE .KX 0/D b ordF .KY 0/C b � 1I

that is,

ordE .KXC 1X/D .b ordF /.KYC 1Y/;

as was to be shown.

Definition 3.4
The m-limiting log-discrepancy b-divisor Am;X=X and the log-discrepancy b-divisor
AX=X are the Weil b-divisors defined by

Am;X=X WDKm;X=X C 1X=X

and

AX=X WDKX=X C 1X=X :

Note that limm!1Am;X=X DAX=X coefficient-wise.
If � W X ! Y is a finite dominant morphism, recall that the ramification divisor

R� is the effective Weil divisor on X such that

KX D �
�KY CR� ;

where KY and KX are defined by !Y and ��!Y , respectively, the divisor R� being
again independent of the choice of !Y .

COROLLARY 3.5
Let � W X ! Y be a finite dominant morphism between normal varieties. Then we
have

0� EnvX .R�/� �
�AY=Y �AX=X ��EnvX .�R�/

and the second (resp., third) inequality is an equality whenX (resp., Y) is numerically
Gorenstein.
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Proof
Since � is finite, we have

��AY=Y �AX=X D �
�.KY=Y C 1Y/� .KX=X C 1X/

D �� EnvY .�KY /� EnvX .�KX /

D EnvX .��
�KY /� EnvX .�KX /

by Lemma 3.3 and Proposition 2.19. Now we have on the one hand

EnvX .��
�KY /D EnvX .�KX CR�/� EnvX .�KX /C EnvX .R�/;

and this is an equality when X is numerically Gorenstein by Lemma 2.28. On the
other hand,

EnvX .�KX /D EnvX .��
�KY �R�/� EnvX .��

�KY /C EnvX .�R�/;

which is an equality if Y is numerically Gorenstein by Proposition 2.19 and Lem-
ma 2.28. The result follows, noting that Env.R�/� 0 since R� � 0.

3.2. Multiplier ideals
The following definition is a straightforward extension of the usual notion of multi-
plier ideals with respect to a pair.

Definition 3.6
Let � be an effective R-boundary on X , and let C be an R-Cartier b-divisor. We
define the multiplier ideal sheaf of C with respect to .X;�/ as the fractional ideal
sheaf

J
�
.X;�/IC

�
WDOX .dKX=.X;�/CC e/:

We have in particular

J
�
.X;�/IC

�
�OX .dCX ��Xe/;

which shows that the (fractional) multiplier ideal is an actual ideal as soon as CX � 0.
By Lemma 3.2 we have

J
�
.X;�/IC

�
D ��OX�

�
dKX� � �

�.KX C�/CC�e
�

for each joint log-resolution � of .X;�/ and C . This shows in particular that
J..X;�/IC/ is coherent, and in the case C D Z.ac/ for a coherent ideal sheaf a

and c > 0 we recover
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J
�
.X;�/IZ.ac/

�
D J

�
.X;�/Iac

�
;

where the right-hand side is defined in [Laz, Definition 9.3.56].
We similarly introduce the following straightforward generalization of the notion

of multiplier ideal defined in [dFH].

Definition 3.7
Let C be an R-Cartier b-divisor over X .
� For each positive integer m the m-limiting multiplier ideal sheaf of C is the

fractional ideal sheaf

Jm.C / WDOX .dKm;X=X CC e/:

� The multiplier ideal sheaf J.C / is the unique maximal element in the family
of fractional ideal sheaves Jm.C /, m� 1.

Here again Lemma 3.2 implies that

Jm.C /D ��OX�

�l
KX� C

1

m
Z
�
OX .�mKX /

�
�
CC�

m�

for each joint log-resolution � of OX .�mKX / and C , which shows in particular that
Jm.C / is coherent. We also have

Jm.C /�OX .dCXe/;

which implies the existence of a unique maximal element in the set of fractional ideals
¹Jm.C /;m� 1º, by using as usual

1

lm
Z
�
OX .�lmKX /

�
�max

� 1
m
Z
�
OX .�mKX /

�
;
1

l
Z
�
OX .�lKX /

��
:

As in [dFH] we now relate the above notions of multiplier ideals, obtaining in
particular a more precise version of [dFH, Theorem 5.4].

THEOREM 3.8
Assume that X is quasi-projective, let C be an R-Cartier b-divisor, and let m � 2.
Then we have

d.mKX /D
X
�

OX .�m�/;

where � ranges over the set of all effective m-boundaries such that

Jm.C /D J
�
.X;�/IC

�
(so that this set is in particular nonempty).
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Proof
Let � be a joint log resolution of a and OX .�mKX /. By Proposition 2.34 applied to
�mKX we have

d.mKX /D
X
E

OX .�E/;

where E ranges over all prime divisors such thatmKX CE is Cartier andZ.OX .E//
is transverse to � and C . There remains to set � WD .1=m/E and to observe that
b�c D 0, so that Jm.C /D J..X;�/IC/ by Lemma 3.9 below.

LEMMA 3.9
Let C be an R-Cartier b-divisor, let � be a joint log resolution ofC and OX .�mKX /,
and let � be an effective m-boundary.
� We have

J
�
.X;�/IC

�
� Jm.C /:

� If b�c D 0 and Z.OX .m�// is transverse to � and C , then

J
�
.X;�/IC

�
D Jm.C /:

Proof
Since m.KX C�/ is Cartier we have

OX
�
�mKX

�
DOX .m�/ �OX

�
�m.KX C�/

�
I

hence,

1

m
Z
�
OX .�mKX /

�
D
1

m
Z
�
OX .m�/

�
�KX C�; (4)

and the first point follows because Z.OX .m�//� 0.
Assume now that b�c D 0 and that Z.OX .m�// is transverse to � and C . By

(4) we have

dKX� � �
�.KX C�/CC�e D

l
KX� C

1

m
Z
�
OX .�mKX /

�
�
CC�

m

�
j 1
m
Z
�
OX .m�/

�
�

k
:

Indeed, by the transversality assumption .1=m/Z.OX .m�/� has no common com-
ponent with C� and no common component with KX� C .1=m/Z.OX .�mKX //� ,
the latter being �-exceptional by Proposition 2.8. But by transversality we also have
.1=m/Z.OX .m�//� D b�� , the strict transform of � on X� , and the result follows
since bb��c D 0.
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As a consequence we get the following extension of [dFH, Corollary 5.5] to b-
divisors.

COROLLARY 3.10
Let X be a normal quasi-projective variety, and let C be an R-Cartier b-divisor.
� Them-limiting multiplier ideal Jm.C / is the largest element of the set of mul-

tiplier ideals J..X;�/IC/ where � ranges over all effective m-boundaries
on X .

� The multiplier ideal J.C / is the largest element of the set of multiplier ideals
J..X;�/IC/ where � ranges over all effective Q-boundaries on X .

We will need the following variant of Lemma 3.9.

COROLLARY 3.11
With the same assumption as in Lemma 3.9, if m � 3, then we can find an effective
m-compatible boundary � such that

J
�
.X;�/IC C

1

m
Z
�
OX .�m�/

��
D Jm

�
C C

1

m
Z
�
d.mKX /

��
:

Proof
The problem is local, so we can assume that X is affine. Let � be as in the statement
of Lemma 3.9. If f 2 d.mKX / is a general element, then ordF .f /D ordF .d.mKX //
for every �-exceptional prime divisor F . By Theorem 3.8 and its proof, we can find
an effective m-boundary of the form �D .1=m/E where E is a prime divisor, such
that f 2OX .�m�/� d.mKX / and

J
�
.X;�/IC C

1

m
Z
�
d.mKX /

��
D Jm

�
C C

1

m
Z
�
d.mKX /

��
:

Note that ordF .OX .�m�//D ordF .d.mKX // for every �-exceptional prime divi-
sor F . Thus, bearing in mind that Z.d.mKX // is exceptional as X is regular in codi-
mension 1, we have

Z
�
OX .�mD/

�
�
DZ

�
d.mKX /

�
�
�mb�� :

Since b�� does not share any component with C� , and b2b��c D 0, we see that
l
KX� � �

�.KX C�/CC� C
1

m
Z
�
OX .�m�/

�m

D
l
KX� � �

�.KX C�/CC� C
1

m
Z
�
d.mKX /

�m
;

which gives
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J
�
.X;�/IC C

1

m
Z
�
OX .�m�/

��
D J

�
.X;�/IC C

1

m
Z
�
d.mKX /

��
:

This completes the proof of the corollary.

Asymptotic multiplier ideals can also be generalized to this setting. For short,
we say that a sequence of R-Cartier b-divisors Z� D .Zm/m�1 is a bounded graded
sequence if there is an R-Cartier b-divisor B such that B � .1=km/Zkm �

max¹.1=k/Zk; .1=m/Zm/ for all m;k � 0. The following definition relies on the
Noetherian property.

Definition 3.12
Let � be an effective R-boundary on X , let C be an R-Cartier b-divisor, and let
Z� D .Zm/m�1 be a bounded graded sequence of R-Cartier b-divisors.
� The asymptotic multiplier ideal sheaf J..X;�/IC C Z�/ with respect to

.X;�/ is the unique maximal element in the family of multiplier ideal sheaves
J..X;�/IC C .1=k/Zk/, k � 1.

� The asymptotic multiplier ideal sheaf J.C CZ�/ is the unique maximal ele-
ment in the family of multiplier ideal sheaves J.C C .1=k/Zk/, k � 1.

LEMMA 3.13
We have J.C CZ�/D Jm.C C .1=m/Zm/ for every sufficiently divisible m.

Proof
We have J.C CZ�/D J.C C .1=p/Zp/ for every sufficiently divisible p. If we fix
any such p, then we have J.C C .1=p/Zp/ D Jm.C C .1=p/Zp/ for every suffi-
ciently divisible m. In particular, if we pick m to be a multiple of p, then we have

J.C CZ�/D J
�
C C

1

p
Zp

�
D Jm

�
C C

1

p
Zp

�
� Jm

�
C C

1

m
Zm

�

� J
�
C C

1

m
Zm

�
� J.C CZ�/:

The lemma follows.

In the case C D cZ.a/ for some c � 0 and some nonzero ideal sheaf a 
 OX ,
and Zk D dZ.bk/ for some d � 0 and some graded sequence of ideal sheaves b� D

.bm/m�0, then we also use the notation

J
�
.X;�/Iac � bd�

�
; Jm.a

c � bd� /; J.ac � bd� /;

to denote J..X;�/IC CZ�/, Jm.C CZ�/, and J.C CZ�/, respectively.
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PROPOSITION 3.14
For every nonzero ideal sheaf a�OX , we have a � J.OX /� J.a/.

Proof
Let f D gh, with g 2 a and h 2 J.OX /. Then Z.f / D Z.g/ C Z.h/ � Z.g/ C
Km;Xm=X for every m� 1, which implies the statement.

3.3. Subadditivity and approximation
Recall that the Jacobian ideal sheaf JacX � OX of X is defined as the nth Fitting
ideal Fittn.
1X / with nD dimX .

Takagi obtained in [Tak2] the following general subadditivity result for multiplier
ideals with respect to a pair.

THEOREM 3.15 ([Tak2])
LetX be a normal variety, and let� be an effective Q-Weil divisor such thatm.KXC
�/ is Cartier for some integer m> 0. If a;b are two nonzero coherent ideal sheaves
on X and c; d � 0, then we have

JacX �J
�
.X;�/Iac � bd �OX .�m�/

1=m
�
� J

�
.X;�/Iac

�
� J
�
.X;�/Ibd

�
:

Note that when X is smooth and�D 0 the statement reduces to the original sub-
additivity theorem of [DEL]. Takagi gives two independent proofs of this result. The
first one is based on positive characteristic techniques and relies on the corresponding
statement for test ideals. The other one builds on the work of Eisenstein [Eis] and
relies on Hironaka’s desingularization theorem.

We now show how to deduce from Takagi’s result a subadditivity theorem for
multiplier ideals in the sense of [dFH].

THEOREM 3.16 (Subadditivity)
Let X be a normal variety. If a;b are two nonzero coherent ideal sheaves on X and
c; d � 0, then we have

JacX �J
�
a
c � bd � d�.KX /

�
� J.ac/ � J.bd /:

The results in [Tak1] and [Sch], combined, suggest the possibility that the cor-
rection term d�.KX / in the left-hand side might be unnecessary.

Proof
By Lemma 3.13 we have

J
�
a
c � bd � d�.KX /

�
D Jm

�
a
c � bd � d.mKX /

1=m
�
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for every sufficiently divisible m. Fix any such m; we can assume that m � 3. By
Corollary 3.11, we can find an effective m-compatible boundary � such that

Jm
�
a
c � bd � d.mKX /

1=m
�
D J

�
.X;�/Iac � bd �OX .�m�/

1=m
�
:

Now we apply Theorem 3.15 to get the inclusion

J
�
.X;�/Iac � bd �OX .�m�/

1=m
�
� J

�
.X;�/Iac

�
� J
�
.X;�/Ibd

�
:

We conclude by observing that J..X;�/Iac/ � Jm.a
c/ � J.ac/, and the similar

statement for bd holds at any rate, by Lemma 3.9.

THEOREM 3.17
Let X be a normal variety, and let a� be a graded sequence of ideal sheaves on X .
Then we have

Z.JacX /CZ
�
d�.KX /

�
�Z

�
J.a�/

�
�Z.a�/�AX=X :

In particular .1=k/Z.J.ak� //! Z.a�/ coefficient-wise as k !1, uniformly with
respect to a�.

This result is an extension to the singular case of [BFJ1, Proposition 3.18], which
was in turn a direct elaboration of the main result of [ELS].

Proof
For each k � 1 we have

Z
�
J.a

1=k

k
/
�
�
1

k
Z.ak/CAX=X

by definition of multiplier ideals, and the right-hand inequality follows.
Regarding the other inequality, let for short d� D .dm/m�0 WD d�.KX /. A recur-

sive application of Theorem 3.16 yields

Jack�1X �J.ak � d
k�1
� /� J.a

1=k

k
/k :

On the other hand, by Proposition 3.14 and the definition of asymptotic multiplier
ideal, we have

ak � dk�1 � J.OX /� J.ak � dk�1/� J.ak � d
k�1
� /:

In terms of b-divisors, this gives

.k � 1/Z.JacX /CZ.ak/CZ.dk�1/CZ
�
J.OX /

�
� kZ

�
J.a

1=k

k
/
�
:

We conclude by dividing by k and letting k!1.
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4. Normal isolated singularities
From now on X has an isolated normal singularity at a given point 0 2 X , and m�

OX denotes the maximal ideal of zero. We first show how to extend to this setting
the intersection theory of nef b-divisors introduced in the smooth case in [BFJ1]. The
main ingredient to do so is the approximation theorem from the previous section. We
next define the volume of .X; 0/ as the self-intersection of the nef envelope of the
log-canonical b-divisor.

4.1. b-divisors over zero
Observe that every Weil b-divisor W over X decomposes in a unique way as a sum

W DW 0CW X�0;

where all irreducible components of W 0 have center zero, and none of W X�0 have
center zero. If W DW 0, then we say that W lies over zero, and we denote by

Div.X; 0/�Div.X/

the subspace of all Weil b-divisors over 0 2X . An element of DivR.X; 0/ is the same
thing as a real-valued homogeneous function on the set of divisorial valuations on X
centered at zero.

Example 4.1
For every coherent ideal sheaf a on X we have

Z.a/0 D lim
k!1

Z.aCm
k/:

On the other hand, we say that a Cartier b-divisor C 2 CDiv.X/ is determined
over zero if it admits a determination � which is an isomorphism away from zero, and
we say that C is a Cartier b-divisor over zero if C furthermore lies over zero. We
denote by CDiv.X; 0/ the space of Cartier b-divisors over zero. There is an inclusion

CDiv.X; 0/� CDiv.X/\Div.X; 0/;

but this is in general not an equality. The following example was kindly suggested to
us by Fulger.

Example 4.2
Consider .X; 0/D .C3; 0/. Let f W Y !X be the morphism given by first taking the
blowup f1 W Y1!X along a line L passing through zero, and then taking the blowup
f2 W Y ! Y1 at a point p on the fiber of f1 over zero. Let E be the exceptional divisor
of f1, and letD be the exceptional divisor of f2. Note thatD lies over zero. We claim
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that the Cartier b-divisorD cannot be determined over zero. If that were the case, then
there would exist a model X 0!X that is an isomorphism outside zero, and a divisor
D0 on X 0 such that D DD0 as b-divisors over X . To show that this is impossible,
consider two sections of the P1-bundleE!L induced by f1, the second one passing
through p but not the first, and let C0 and C1 be their respective proper transforms
on Y , so that D � Ci D i . If L0 is the proper transform of L on X 0, then projection
formula yieldsD �Ci DD0 �L0, and thusD �C0 DD �C1. This gives a contradiction.

Remark 4.3
The previous example can be understood torically. Consider in general .X; 0/ D
.Cn; 0/. It is a toric variety defined by the regular fan �0 in Rn having the canonical
basis as vertices. Any proper birational toric modification � W X.�/! Cn is deter-
mined by a refinement � of �0. We assume X.�/ to be smooth. Denote by V.�/
the torus invariant subvariety of X.�/ associated to a face � of �. For any vertex v
of �, let D.v/ be the Cartier b-divisor determined in X.�/ by the divisor V.RCv/.
Observe that for any face � of �, we have �.V.�//D 0 if and only if � is included
in the open cone .R�/nC. Whence D.v/ lies over zero if and only if v 2 .R�/nC. And
D.v/ is determined over zero if and only if any face of � containing v is included in
.R�/nC.

Example 4.4
Let a � OX be an ideal. Then Z.a/ is determined over zero as soon as a is locally
principal outside zero since the normalized blow-up of X along a is then an isomor-
phism away from zero. If a is furthermore m-primary, then Z.a/ is a Cartier b-divisor
over zero.

Definition 4.5
We shall say than an R-Weil b-divisor W over zero is bounded below if there exists
c > 0 such that W � cZ.m/.

Recall that Z.m/� 0, so that the condition means that the function � 7! �.W /=

�.m/ is bounded below on the set of divisorial valuations centered at zero.

PROPOSITION 4.6
.AX=X /

0 is bounded below.

Proof
Since Z.OX .�KX // � EnvX .KX / by the definition of nef envelope, it follows that
AX=X �A1;X=X , and hence it suffices to check that .A1;X=X /0 is bounded below. Let
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� be a resolution of the singularity of X , chosen to be an isomorphism away from
zero. For each divisorial valuation � centered at zero we have

�.A1;X=X /D �
�
.KXC 1X/�KX�

�
C �

�
KX� CZ.OX .�KX //

�
:

The first term in the right-hand side is nonnegative since it is equal to the log dis-
crepancy of the smooth variety X� along �. On the other hand the Cartier b-divisor�
KX� CZ.OX .�KX //

�
is determined over zero since OX .�KX / is locally principal

outside zero by assumption (cf. Example 4.4) and it also lies over zero by Proposi-
tion 2.8. We thus see that

�
KX� CZ.OX .�KX //

�
2 CDiv.X; 0/

and we conclude by Lemma 4.7 below.

LEMMA 4.7
Every C 2 CDiv.X; 0/ is bounded below.

Proof
Let � be a determination of C which is an isomorphism away from zero. The result
follows directly from the fact that Z.m/� contains every �-exceptional prime divisor
E in its support (since ordE is centered at zero).

4.2. Nef b-divisors over zero
We see that an R-Weil b-divisor over zero is nef if its class in N 1.X=X/ is X -nef.
If W is an R-Weil b-divisor over zero that is bounded below, then EnvX.W / is well
defined, nef, and it lies over zero.

By a result of Izumi [Izu] for every two divisorial valuations �; �0 on X centered
at zero, there is a constant c D c.�; �0/ > 0 such that

c�1�.f /� �0.f /� c�.f /

for every f 2OX . This result extends to nef b-divisors by approximation.

THEOREM 4.8
Given two divisorial valuations �; �0 centered at zero there exists c > 0 such that

c�.W /� �0.W /� c�1�.W /

for every X -nef R-Weil b-divisor W such that W � 0 (which amounts to WX � 0 by
the negativity lemma).
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Proof
Since Env�.W�/ decreases coefficient-wise to W as �!1 by Proposition 2.15, it
is enough to treat the case, whereW D EnvX.C / for some R-Cartier b-divisor C � 0.
But we then have

W D lim
m!1

1

m
Z
�
OX .mC/

�

with OX .mC/�OX , so we are reduced to the case of an ideal, for which the result
directly follows from Izumi’s theorem.

COROLLARY 4.9
For each X -nef R-Weil b-divisor W such that W � 0 and W 0 ¤ 0 there exists " > 0
such that

W � "Z.m/:

Proof
Since W 0 ¤ 0 there exists a divisorial valuation �0 centered at zero such that
�0.W / < 0, and it follows that �.W / < 0 for all divisorial valuations centered at
zero by Theorem 4.8.

Now let � be the normalized blowup of m. Since W� contains each �-excep-
tional prime in its support there exists " > 0 such that W� � "Z.m/� and the result
follows by the negativity lemma.

For nef envelopes of Weil divisors with integer coefficients this result can be
made uniform as follows.

THEOREM 4.10
There exists " > 0 depending only on X such that

EnvX .�D/� "Z.m/

for all effective Weil divisors (with integer coefficients) D on X containing zero.

Proof
By Hironaka’s resolution of singularities we may choose a smooth birational model
X� which dominates the blow-up of m and is isomorphic to X away from zero, and
such that there exists a �-ample and �-exceptional Cartier divisor A on X� . If we
denote by E1; : : : ;Er the �-exceptional prime divisors, then AD �

P
j ajEj with

aj � 1 by the negativity lemma.
By the negativity lemma the desired result means that there exists " > 0 such that

for each effective Weil divisor D through 0 on X we have
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EnvX .�D/� � "Z.m/� :

If we set cj .D/ WD �ordEj EnvX .�D/, then in view of Theorem 4.8 this amounts to
proving the existence of " > 0 such that

max
1�j�r

cj .D/� "

for each D. Note that
X
j

cj .D/Ej D�EnvX .�D/� � bD� (5)

by Proposition 2.8. Now we have on the one hand

�An�1 � EnvX .�D/� D
X

ajEj �A
n�2 � EnvX .�D/�

D
X
j

aj .AjEj /
n�2 �

�
EnvX .�D/� jEj

�
� 0

since AjEj is ample and EnvX .�D/� jEj is pseudoeffective by Lemma 2.10. On the
other hand,

�An�1 � bD� DX
j

aj .AjEj /
n�2 � .bD� jEj /� 1

since bD� jEj is an effective Cartier divisor on Ej , and is nonzero for at least one j .
We thus get

P
j cj .D/.Ej �A

n�1/� 1 from (5), and we infer that

max
j
cj .D/� " WD 1=max

j
.Ej �A

n�1/:

We conclude this section by the following crucial consequence of Theorem 3.17.

THEOREM 4.11
Let C 2 CDiv.X; 0/, and set W WD EnvX.C /. Then there exists a sequence of m-
primary ideals bk and a sequence of positive rational numbers ck! 0 such that
� ckZ.bk/�W for all k;
� limk!1 ckZ.bk/DW coefficient-wise.

Proof
Consider the graded sequence of m-primary ideals am WDOX .mW /DOX .mC/, and
set bk WD J.ak� /. By Theorem 3.17 we have in particular

Z.bk/� kW CZ
�
d.KX /

�
CZ.JacX /
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and .1=k/Z.bk/!W coefficient-wise. Since 0 2X is an isolated singularity we see
that both d.KX / and JacX are m-primary ideals and Lemma 4.7 yields c > 0 such
that

Z
�
d.KX /

�
CZ.JacX /� cZ.m/:

On the other hand, there exists " > 0 such that W � "Z.m/ by Corollary 4.9, and we
conclude that there exists c > 0 such that

Z.bk/� kW C cW

for all k. There remains to set ck WD 1=.kC c/.

4.3. Intersection numbers of nef b-divisors
We indicate in this subsection how to extend to the singular case the local intersection
theory of nef b-divisors introduced in [BFJ1, Section 4] in the smooth case. The main
point is to replace the approximation result [BFJ1, Proposition 3.13] by Theorem 4.11.

Let C1; : : : ;Cn be R-Cartier b-divisors over zero. Pick a common determination
� which is an isomorphism away from zero, and set

C1 � � � � �Cn WD C1;� � � � � �Cn;� :

The right-hand side is well defined since C1;� has compact support, and it does not
depend on the choice of � by the projection formula since Ci;� 0 D ��Ci;� for any
higher model � W X� 0!X� .

The following property is a direct consequence of the definition of Z.ai / and the
formula displayed in [Laz, p. 92].

PROPOSITION 4.12
Let a1; : : : ;an �OX be m-primary ideals. Then

�Z.a1/ � � � � �Z.an/D e.a1; : : : ;an/;

where e.a1; : : : ;an/ denotes the mixed multiplicity (see, e.g., [Laz, p. 91] for a defini-
tion).

The intersection numbers of nef R-Cartier b-divisors C1; : : : ;Cn, C 01; : : : ;C
0
n

over zero satisfy the monotonicity property

C1 � � � � �Cn � C
0
1 � � � � �C

0
n

if Ci � C 0i for each i .
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Definition 4.13
If W1; : : : ;Wn are arbitrary nef R-Weil b-divisors over zero we set

W1 � � � � �Wn WD inf
Ci�Wi

.C1 � � � � �Cn/ 2 Œ�1;C1Œ;

where the infimum is taken over all nef R-Cartier b-divisors Ci over zero such that
Ci �Wi for each i .

Note that .W1 � � � � � Wn/ is finite when all Wi are bounded below. This is for
instance the case if each Wi is the nef envelope of a Cartier b-divisor by Lemma 4.7.

The next theorem summarizes the main properties of the intersection product.
The nontrivial part of the assertion is additivity, which requires the approximation
theorem.

THEOREM 4.14
The intersection product .W1; : : : ;Wn/ 7!W1 � � � � �Wn of nef R-Weil b-divisors over
zero is symmetric, upper semicontinuous, and continuous along monotonic families
(for the topology of coefficient-wise convergence).

It is also homogeneous, additive, and nondecreasing in each variable. Further-
more, W1 � � � � �Wn < 0 if Wi ¤ 0 for each i .

Proof
We follow the same lines as [BFJ1, Proposition 4.4]. Symmetry, homogeneity, and
monotonicity are clear. If Wi ¤ 0 for all i , then there exists " > 0 such that Wi �
"Z.m/ for all i by Corollary 4.9; hence

W1 � � � � �Wn � "
nZ.m/n D�"ne.m/ < 0;

where e.m/ is the Samuel multiplicity of m.
Let us prove the semicontinuity. Suppose that Wi ¤ 0 for all i , and pick t 2 R

such that W1 � � � � �Wn < t . By definition there exist nef R-Cartier b-divisors Ci over
zero such that Wi � Ci and C1 � � � � �Cn < t . Replacing each Ci by .1� "/Ci we may
assume Ci ¤Wi while still preserving the previous conditions. Now consider the set
Ui of all nef b-divisors W 0i such that W 0i � Ci . This is a neighborhood of Wi in the
topology of coefficient-wise convergence, and .W 01 � � � � �W

0
n/ < t for all W 0i 2 Ui .

This proves the upper semicontinuity.
As a consequence we get the following continuity property: for all families Wj;k

such that
� Wj;k �Wj for all j; k and
� limkWj;k DWj for all j ,
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we have limkW1;k � � � � �Wn;k DW1 � � � � �Wn. IndeedW1;k � � � � �Wn;k �W1 � � � � �Wn
holds by monotonicity, and the claim follows by upper semicontinuity.

We now turn to additivity. Assume first that W 0, W1;W2; : : : ;Wn are nef enve-
lopes of Cartier b-divisors over zero. By Theorem 4.11 there exist two sequences C 0

k

and Cj;k of nef Cartier divisors above zero such that Cj;k �Wj and Cj;k !Wj as
k!1, and similarly for C 0

k
and W 0. Since C1;kCC 0k �W1CW

0 also converges to
W1CW

0 the above remark yields

.C1;k CC
0
k/ �C2;k � � � � �Cn;k! .W1CW

0/ �W2 � � � � �Wn:

On the other hand, we have

.C1;k CC
0
k/ �C2;k � � � � �Cn;k D .C1;k �C2;k � � � � �Cn;k/C .C

0
k �C2;k � � � � �Cn;k/;

where

.C1;k �C2;k � � � � �Cn;k/! .W1 �W2 � � � � �Wn/

and

.C1;k �C2;k � � � � �Cn;k/! .W 0 �W2 � � � � �Wn/;

so we get additivity for nef envelopes.
In the general case, let W 0;W1;W2; : : : ;Wn be arbitrary nef b-divisors over zero.

We then have Env�.Wj;�/�Wj , and Env�.Wj;�/ is a nonincreasing net converging
to Wj by Remark 2.17. The additivity then follows from the previous case and the
continuity along decreasing nets.

Finally, the continuity along nondecreasing sequences is the content of Theo-
rem A.1, which is proven in the appendix and will appear in a more general setting in
[BFJ2].

The expected local Khovanskii–Teissier inequality holds.

THEOREM 4.15
For all nef R-Weil b-divisors W1; : : : ;Wn over zero we have

jW1 � � � � �Wnj � jW
n
1 j
1=n � � � jW n

n j
1=n: (6)

In particular we have

j.W1CW2/
nj1=n � jW n

1 j
1=nC jW n

2 j
1=n:
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Proof
Arguing as in the proof of Theorem 4.14 we may use Theorem 4.11 to reduce to
the case where Wi D Z.ai / for some m-primary ideals ai . In that case the result
follows from Proposition 4.12 and the local Khovanskii–Teissier inequality (cf. [Laz,
Theorem 1.6.7(iii)]).

PROPOSITION 4.16
Suppose that � W .X; 0/! .Y; 0/ is a finite map of degree e.�/. Then for all nef R-
Weil b-divisors W1; : : : ;Wn over 0 2 Y we have

.��W1/ � � � � � .�
�Wn/D e.�/W1 � � � � �Wn: (7)

Proof
Arguing as in the proof of Theorem 4.14 by successive approximation relying on
Theorem 4.11, we reduce to the case where each Wj is R-Cartier over zero. Let
� W Y 0! Y be a common determination of the Wj which is an isomorphism away
from zero. Since ��1.0/D 0 there exists a birational morphism � W X 0!X which is
an isomorphism away from zero such that � lifts as a morphism �0 W X 0! Y 0, whose
degree is still equal to e.�/, and the result follows.

Remark 4.17
For every graded sequence a� of m-primary ideals we have

�Z.a�/
n D lim

k!1

dimC.OX=ak/

kn=nŠ
:

Indeed, it was shown by Lazarsfeld and Mustaţă [LM, Theorem 3.8] that the right-
hand-side limit exists and coincides with limk!1 e.ak/=k

n (which corresponds to
a local version of the Fujita approximation theorem). On the other hand, Z.a�/ is
the nondecreasing limit of .1=kŠ/Z.akŠ/; hence, Z.a�/n D limk!1Z.ak/

n=kn by
using the continuity of intersection numbers along the nondecreasing sequence, and
the claim follows in view of Proposition 4.12.

4.4. The volume of an isolated singularity
By Proposition 4.6 the log-discrepancy divisor AX=X is always bounded below. Its
nef envelope EnvX.AX=X / is therefore well defined and bounded below as well, and
we may introduce the following.

Definition 4.18
The volume of a normal isolated singularity .X; 0/ is defined as

Vol.X; 0/ WD �EnvX.AX=X /
n:
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We have the following characterization of singularities with zero volume.

PROPOSITION 4.19
Vol.X; 0/ D 0 if and only if AX=X � 0. When X is Q-Gorenstein, Vol.X; 0/ D 0 if
and only if it has log-canonical singularities.

Proof
By Theorem 4.14 we have Vol.X; 0/D 0 if and only if EnvX.AX=X /D 0, which is
equivalent to AX=X � 0 since every X -nef b-divisor over zero is antieffective by the
negativity lemma.

When X is Q-Gorenstein, then AX=X D Am;X=X for any integer m such that
mKX is Cartier. We conclude recalling that X is log-canonical if the trace of the
log-discrepancy divisor Am;X=X in one (or equivalently any) log resolution of X is
effective.

The volume satisfies the following basic monotonicity property.

THEOREM 4.20
Let � W .X; 0/! .Y; 0/ be a finite morphism between normal isolated singularities.
Then we have

Vol.X; 0/� e.�/Vol.Y; 0/;

with equality if � is étale in codimension 1.

Proof
We have AX=X � �

�AY=Y by Corollary 3.5, and equality holds if and only ifR� D 0,
that is, if and only if � is étale in codimension 1. The result follows immediately by
using Theorem 2.19 and Proposition 4.16.

4.5. The volume of a cone singularity
In the case of a cone singularity, the volume relates to the positivity of the anticanon-
ical divisor of the exceptional divisor in the following way.

PROPOSITION 4.21
Let 0 2 X be the affine cone over a polarized smooth variety .V;L/ as in Exam-
ple 2.31. We assume in particular that X is normal.
(a) If j�mKV j contains a smooth element for some m� 1, then Vol.X; 0/D 0.
(b) Conversely, if Vol.X; 0/D 0, then �KV is pseudoeffective.
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Proof
Denote by � W X� !X the blowup at zero, with exceptional divisor E ' V . If D 2
j�mKV j is a smooth element, then we consider the pair .X;�/, where � is the
cone over D divided by m. Note that � gives a log resolution of .X;�/ and KX� C
E � ��.KX C�/ has order one along E , by adjunction. Therefore .X;�/ is log-
canonical, and hence Am;X=X � 0. This implies that AX=X � 0, and thus Vol.X; 0/D
0 by Proposition 4.19.

Conversely, assume that Vol.X; 0/D 0. We then have a D ordE .AX=X / � 0 by
Proposition 4.19 and

KX� CE C EnvX .�KX /� D aE

since E is the only �-exceptional divisor. Now EnvX .�KX /� restricts to a pseudo-
effective class in N 1.E/ by Lemma 2.10. The pseudoeffectivity of �KE follows by
adjunction (one can also see that �KE is big if the generalized log-discrepancy a is
positive).

In [Kol3, Chapter 2, Example 55], Kollár gives an example of a family of sin-
gular threefolds where the central fiber admits a boundary which makes it into a log-
canonical pair while the nearby fibers do not. The same kind of example can be used
to show that the volume defined above is not a topological invariant of the link of
the singularity in general, in contrast with the 2-dimensional case. We are grateful to
János Kollár for bringing this example to our attention.

Recall first that a link M of an isolated singularity 0 2 X is a compact real-
analytic hypersurface of X n ¹0º with the property that X is homeomorphic to the
(real) cone over M . It can be constructed as follows (cf., e.g., [Loo, Section 2A]). Let
r W X ! RC be a real-analytic function defined in a neighborhood of zero such that
r�1.0/D ¹0º (for instance, the restriction to X of kzk2 in a local analytic embedding
in CN ). Upon shrinking X we may assume that r has no criticial point on X n ¹0º,
and M can then be taken to be any level set r�1."/ for 0 < "	 1.

If 0 2 X is the affine cone over a polarized variety .V;L/, then its link M is
diffeomorphic to the (unit) circle bundle of any Hermitian metric on L�. Indeed,
we may take the function r to be given by r.v/ D

P
j jhsj ; v

mij2=m, where .sj /
is a basis of sections of mL for m� 1. As a consequence, the links of the cone
singularities Xt induced by any smooth family of polarized varieties .Vt ;Lt /t2T are
all diffeomorphic—as follows by applying the Ehresmann–Feldbau theorem to the
family of circle bundles with respect to a Hermitian metric on L over the total space
of the family Vt .

We use the following result.
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LEMMA 4.22
Let Sr be the blowup of P2 at r very general points. Then�KSr is not pseudoeffective
if (and only if) r � 10.

This fact is certainly well known to experts, but we provide a proof for the con-
venience of the reader.

Proof
By semicontinuity it is enough to show that �KSr is not pseudoeffective for the
blowup Sr of P2 at some family of r � 10 points. We may also reduce to the case
r D 10 since the anticanonical bundle only becomes less effective when we keep
blowing up points.

First, by [Sak, Lemma 3.1], for any rational surface S we have �KS pseudoef-
fective if and only if h0.�mKS / > 0 for some positive integer m. The short proof
goes as follows. The nontrivial case is when �KS is pseudoeffective but not big.
Let �KS D P CN be the Zariski decomposition, which satisfies P 2 D P �KS D 0.
By Riemann–Roch it follows that �.mP /D �.OS /D 1 for any m such that mP is
Cartier. But h2.mP /D h0.KS �mP/D 0 becauseKS is not pseudoeffective; hence,
h0.mP /� �.mP /, and the result follows.

Second, let S9 be the blowup of P2 at 9 very general points pi of a given smooth
cubic curve C with inflection point p. We then have h0.�mKS9/D 1 for all positive
integers m; otherwise we would get H 0.OC .3m/.�m

P
i pi //¤ 0 by restriction to

the strict transform of C , and 9p �
P
i pi would be m-torsion in Pic0.C /' C . In

other words, we see that mC is the only degree 3m curve in P2 passing through each
pi with multiplicity at least m. If we let p10 be any point outside C it follows of
course that no degree 3m curve passes through p1; : : : ; p10 with multiplicity at least
m. But this means that the blowup S10 of P2 at p1; : : : ; p10 has h0.�mKS10/D 0 for
all m, so that �KS10 is not pseudoeffective by Sakai’s lemma.

We are now in a position to state our example.

Example 4.23
Let T be the parameter space of all sets of r distinct points †t � P2, and for each t 2
T let Vt be the blowup of P2 at †t . Let L be a polarization of the smooth projective
family .Vt /t2T , and let Xt be the associated family of cone singularities, whose links
are all diffeomorphic according to the above discussion. After possibly replacing L
by a multiple, we can assume that each Xt is normal.

If for a given t 2 T the points †t all lie on a smooth cubic curve, then the anti-
canonical system j�KVt j contains the strict transform of that curve, and we thus have



1508 BOUCKSOM, DE FERNEX, and FAVRE

Vol.Xt ; 0/D 0 for such values of t by Proposition 4.21. On the other hand, Proposi-
tion 4.21 and Lemma 4.22 show that Vol.Xt ; 0/ > 0 for t 2 T very general.

5. Comparison with other invariants of isolated singularities

5.1. Wahl’s characteristic number
As recalled in the introduction, Wahl [Wa] defined the characteristic number of a nor-
mal surface singularity .X; 0/ as �P 2 of the nef part P in the Zariski decomposition
of KX� CE , where � W X� !X is any log resolution of .X; 0/ and E is the reduced
exceptional divisor of � . The following result proves that the volume defined above
extends Wahl’s invariant to all isolated normal singularities.

PROPOSITION 5.1
If .X; 0/ is a normal surface singularity, then Vol.X; 0/ coincides with Wahl’s char-
acteristic number.

Proof
Let � W X� !X be the log resolution of .X; 0/, and let E be its reduced exceptional
divisor. By Theorem 2.22 we see that Env�.AX�=X / coincides with the nef part of
KX�CE��

�KX . Since the latter is �-numerically equivalent toKX�CE it follows
that Env�.AX�=X / is �-numerically equivalent to the nef part P ofKX� CE , so that

�P 2 D�Env�.AX�=X /
2:

On the other hand, we claim that Env�.AX�=X / D EnvX.AX=X /, which concludes
the proof. Indeed on the one hand we have

EnvX.AX=X /� Env�.AX�=X /

as for any Weil b-divisor. On the other hand, Lemma 3.2 implies that

KXC 1X �KX� CE

over zero; hence, AX=X � AX�=X , and we infer EnvX.AX=X / � Env�.AX�=X / as
desired.

Proof of Theorem A
The definition of the volume is given in Section 4.4. Theorem A(i) is precisely Theo-
rem 4.20. Statement (ii) is Proposition 5.1. Statement (iii) is Proposition 4.19.

5.2. Plurigenera and Fulger’s volume
Let 0 2X be (a germ of ) an isolated singularity, and let � W X� !X be a log resolu-
tion with reduced exceptional SNC divisor E . One may then consider the following
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plurigenera (see [Ish] for a review):
� Knöller’s plurigenera (see [Knö]), defined by

m.X; 0/ WD dimH 0.X� nE;mKX� /=H
0.X� ;mKX� /I

� Watanabe’s L2-plurigenera (see [Wat1]), defined by

ım.X; 0/ WD dimH 0.X� nE;mKX� /=H
0
�
X� ;mKX� C .m� 1/E

�
I

� Morales’s log-plurigenera (see [Mor, Definition 0.5.4]), defined by

�m.X; 0/ WD dimH 0.X� nE;mKX� /=H
0
�
X� ;m.KX� CE/

�
:

These numbers do not depend on the choice of log resolution. They satisfy

�m.X; 0/� ım.X; 0/� m.X; 0/DO.m
n/;

and one may use them to define various notions of the Kodaira dimension of an iso-
lated singularity.

In a recent work, Fulger [Fulg] has explored in more detail the growth of these
numbers. His framework is the following. Given a Cartier divisor D on X� , consider
the local cohomological dimension

h1¹0º.D/D dimH 0.X� nE;D/=H
0.X� ;D/D dim OX .��D/=OX .D/:

Observe that m.X; 0/D h1¹0º.mKX� / and �m.X; 0/D h1¹0º.m.KX� C E//. Fulger

proves that h1
¹0º
.mD/DO.mn/ and defines the local volume of D by setting

volloc.D/ WD lim sup
m!1

nŠ

mn
h1¹0º.mD/:

When the Cartier divisor D lies over zero one has the following.

PROPOSITION 5.2
Suppose that D is a Cartier divisor in X� lying over zero. Then

volloc.D/D�EnvX.D/
n:

Proof
We may assume D � 0. The envelope of D is the b-divisor associated to the graded
sequence of m-primary ideals OX .�mD/. The result follows from Remark 4.17.

Fulger [Fulg] then introduces an alternative notion of volume of an isolated sin-
gularity by setting

VolF .X; 0/ WD volloc.KX� CE/:
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PROPOSITION 5.3
We have Vol.X; 0/DVolF .X; 0/ if X is Q-Gorenstein.

Proof
For any integer m such that mKX is Cartier, one has AX=X DAm;X=X . Pick any log-
resolution � W X� !X . Then Lemma 3.2 applied to X� shows that AX�=X �AX=X .
In particular, these b-divisors share the same envelope. We conclude by Proposi-
tion 5.2 above.

In general, Fulger proves that there is always an inequality

Vol.X; 0/�VolF .X; 0/:

We know by Wahl [Wa] that in dimension 2 these volumes always coincide. In high-
er dimension these two invariants may, however, differ, as shown by the following
example.

Example 5.4
Let V be any smooth projective variety such that neither KV nor �KV is pseudoef-
fective, for instance V D C � P1, where C is a curve of genus at least 2. Pick any
ample line bundle L on V such that the the affine cone 0 2X over .V;L/ is normal.
We claim that

Vol.X; 0/ > 0DVolF .X; 0/:

Indeed, Proposition 4.21 and the fact that �KV is not pseudoeffective show that
Vol.X; 0/ > 0. On the other hand, the fact that KV is not pseudoeffective implies that
ım.X; 0/D 0 for all m and hence VolF .X; 0/D 0. To see this, let � W X� !X be the
blowup of zero, with exceptional divisorE ' V . Since L is ample,mKV � .p�m/L
is not pseudoeffective for any p �m; hence,

H 0
�
E;mKE C .p �m/EjE

�
'H 0

�
V;mKV � .p �m/L

�
D 0:

Now .KX� CE/jE DKE by adjunction, and the restriction morphism

H 0.X� ;mKX� C pE/=H
0
�
X� ;mKX� C .p � 1/E

�
!H 0

�
E;mKE C .p �m/EjE

�
is injective. We have thus shown H 0.X� ;mKX� C .m� 1/E/DH

0.X� ;mKX� C

pE/ for all p �m; hence,H 0.X� ;mKX� C .m� 1/E/DH
0.X� nE;mKX� /, that

is, ım.X; 0/D 0.
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6. Endomorphisms
We apply the previous analysis to the study of normal isolated singularities admitting
endomorphisms.

6.1. Proofs of Theorems B and C
We start by proving the following result.

THEOREM 6.1
Assume thatX is numerically Gorenstein, and let � W .X; 0/! .X; 0/ be a finite endo-
morphism of degree e.�/ � 2 such that R� ¤ 0. Then there exists " > 0 such that
AX=X ��"Z.m/.

Remark 6.2
When X is Q-Gorenstein or dimX D 2, the condition AX=X � �"Z.m/ for some
" > 0 is equivalent to Am;X=X > 0 for some m. By Corollary 3.10 the latter condition
means in turn that X has klt singularities in the sense that there exists a Q-boundary
� such that .X;�/ is klt. It is possible to prove this result unconditionnally; we shall
return to this problem in a later work.

Remark 6.3
Tsuchihashi’s cusp singularities (see below) show that the assumption R� ¤ 0 is
essential even when KX is Cartier.

Proof
SinceX is numerically Gorenstein,R�k DKX � .�

k/�KX is numerically Cartier for
each k and Corollary 3.5 yields

.�k/�AX=X DAX=X C EnvX .R�k /:

On the other hand, observe that R�k D
Pk�1
jD0.�

j /�R� by the chain rule. Each
.�j /�R� is numerically Cartier as well, so that

EnvX .R�k /D
k�1X
jD0

.�j /� EnvX .R�/

by Lemma 2.28 and Proposition 2.19. Using Proposition 4.6 and Theorem 4.10 we
thus obtain c1; c2 > 0 such that

.�k/�.AX=X /� c1Z.m/� c2

k�1X
jD0

.�j /�Z.m/
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for all divisorial valuations � centered at zero and all k. Since we have .�j /�m�m

it follows that

.�k/�AX=X ��Z.m/.kc2 � c1/:

But the action of �k on divisorial valuations centered at zero is surjective by Lem-
ma 1.13. We furthermore have �..�k/�AX=X /D �..�

k/�m/�.AX=X / for each divi-
sorial valuation � centered at zero, and there exists ck > 0 such that �..�k/�m/ �
ck�.m/ for all � by Lemma 4.7. We thus get AX=X ��"kZ.m/ with

"k WD
kc2 � c1

ck
> 0

as soon as k > c1=c2.

Proof of Theorem B
If � W X ! X is a finite endomorphism with e.�/ � 2, then Theorem A implies
Vol.X; 0/ � 2Vol.X; 0/; hence Vol.X; 0/ D 0. When X is Q-Gorenstein and � is
not étale in codimension 1, then X is klt by Theorem 6.1 and Remark 6.2.

Proof of Theorem C
By assumption, there exists an endomorphism � W V ! V and an ample line bundle
L such that ��L' dL for some d � 2. The composite map

H 0.V;mL/
��

!H 0.V;m��L/'H 0.V;dmL/

induces an endomorphism of the finitely generated algebra
L
m�0H

0.V;mL/ (which
does not preserve the grading). Since the spectrum of this algebra is equal to X D
C.V /, we get an induced endomorphism C.�/ on C.V /. It is clear that C.�/ is finite,
fixes the vertex 0 2X , and is not an automorphism. We conclude that Vol.X; 0/D 0,
which implies that �KV is pseudoeffective by Proposition 4.21.

6.2. Simple examples of endomorphisms
A quotient singularity is locally isomorphic to .Cn=G;0/ where G is a finite group
acting linearly on Cn. Let � W Cn! Cn=G be the natural projection. For any holo-
morphic maps h1; : : : ; hn W Cn=G!C such that

T
h�1i .0/D .0/, the composite map

� ı .h1; : : : ; hn/ W .C
n=G;0/! .Cn=G;0/ is a finite endomorphism of degree � 2 if

the singularity is nontrivial. Note also that any toric singularity admits finite endo-
morphisms of degree � 2 (induced by the multiplication by an integer � 2 on its
associated fan).

We saw the above examples of endomorphisms on cone singularities. One can
modify this construction to get examples of other kinds of simple singularities.
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Consider a smooth projective morphism f W Z! C to a smooth pointed curve
0 2 C , and suppose given a noninvertible endomorphism � such that f ı� D f . Note
that � is automatically finite since the injective endomorphism �� of N 1.Z=C/ has
to be bijective.

Assume that D �Z0 is a smooth irreducible ample divisor of the fiber Z0 over
zero that does not intersect the ramification locus of � and such that �.D/ � D.
Denote by Y !Z the blowup of Z along D. Then � lifts to a rational self-map of Y
over C , and the fact that � is étale around D implies that the indeterminacy locus of
this rational lift is contained in ��1.��1.D/ nD/ and hence in the strict transform E

of Z0 on Y .
Since the conormal bundle ofE in Y is ample,E contracts to a simple singularity

0 2X by [Gra]. (We are therefore dealing with an analytic germ 0 2X in that case.)
The above discussion shows that � induces a finite endomorphism of .X; 0/, which is
furthermore not invertible since � was assumed not to be an automorphism.

Basic examples of this construction include deformations of abelian varieties hav-
ing a section, with � the multiplication by a positive integer.

6.3. Endomorphisms of cusp singularities
Our basic references are [Oda] and [Tsu]. Let C �Rn be an open convex cone that is
strongly convex (i.e., its closure contains no line), and let � � SL.n;Z/ be a subgroup
leaving C invariant, whose action on C=R�C is properly discontinuous without fixed
point, and has compact quotient. Denote by

M WD �nC=R�C

the corresponding .n� 1/-dimensional orientable manifold.
Consider the convex envelope ‚ of C \ Zn. It is proved in [Tsu] that the faces

of ‚ are convex polytopes contained in C and with integral vertices. Since ‚ is �-
invariant the cones over the faces of ‚ therefore give rise to a �-invariant rational fan
† of Rn with j†j D C [ ¹0º. This fan is infinite but is finite modulo � since M is
compact.

The (infinite type) toric variety X.†/ comes with a �-action which preserves
the toric divisor D WD X.†/ n .C�/n as well the inverse image of C by the map
Log W .C�/n!Rn defined by

Log.z1; : : : ; zn/D .log jz1j; : : : ; log jznj/:

The �-invariant set U WD Log�1.C / [D is open in X.†/, and the action of � is
properly discontinuous and without fixed point on U . One then shows that the divisor
E WDD=� � U=� DW Y , which is compact since † is a finite fan modulo � , admits
a strictly pseudoconvex neighborhood in Y , so that it can be contracted to a normal
singularity 0 2X , which is furthermore isolated since Y �E is smooth. Note that Y ,
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though possibly not smooth along E , has at most rational singularities since U does,
being an open subset of a toric variety. The isolated normal singularity .X; 0/ is called
the cusp singularity attached to .C;�/. It is shown in [Tsu] that .C;�/ is determined
up to conjugation in GL.n;Z/ by the (analytic) isomorphism type of the germ .X; 0/.

LEMMA 6.4
The canonical divisor KX is Cartier; X is lc but not klt.

Remark 6.5
Cusp singularities are, however, not Cohen–Macaulay in general and hence not Goren-
stein.

Proof
The n-form 
 D dz1

z1
^ � � � ^ dzn

zn
on the torus .C�/n extends to X.†/ with poles

of order one along D. It is �-invariant since � is a subgroup of SL.n;Z/; thus it
descends to a meromorphic form on U=� with order one poles along D=� . We con-
clude that KX is zero and that X is lc but not klt since � W .Y;E/!X is crepant and
.X.†/;D/ is lc but not klt as for any toric variety.

Now let A 2GL.n;R/ with integer coefficient which preserves C and commutes
with � (e.g., a homothety). Then Z induces a regular map on U that descends to
the quotient Y and preserves the divisors E , and we get a finite endomorphism � W

.X; 0/! .X; 0/ whose topological degree is equal to jdetAj.

Example 6.6 (Hilbert modular cusp singularities)
Let K be a totally real number field of degree n over Q, and let N be a free Z-
submodule of K of rank n (for instance N D OK ). Using the n distinct embeddings
of K into R we get a canonical identification K ˝Q RD Rn, and we may view N

as a lattice in Rn. Now set C WD .R�C/
n �NR, and consider the group �CN of totally

positive units of u 2 O�K such that uN DN , where u is said to be totally positive if
its image under any embedding of K in R is positive. By Dirichlet’s unit theorem,
�CN is isomorphic to Zn�1, and there is a canonical injective homomorphism �CN ,!

SL.N /. For any subgroup � � �CN of finite index, the triple .N;C;�/ then satisfies
the requirements of the definition of a cusp singularities. The singularities obtained
by this construction are called Hilbert modular cusp singularities.

Appendix. Continuity of intersection products along nondecreasing nets
In this appendix, we fix an isolated normal singularity 0 2 X as in Section 4. The
following theorem is taken from [BFJ2], where the result will appear in a more general
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form. We are very grateful to Mattias Jonsson for allowing us to include a proof
here.

THEOREM A.1 (Increasing limits)
For 1� r � n, let ¹Wr;iºi2I be a net of nef R-Weil b-divisors over zero increasing to
Wr . Assume that there exists some constant C > 0 such that Wr;i � CZ.m/ for all
r; i . Then we have

W1;i � � � � �Wn;i !W1 � � � � �Wn:

Proof
After rescaling, we may assume that Wr;i �Z.m/ for all r; i . We prove the statement
by induction on p D 0; : : : ; n� 1 under the assumption that Wr;i DWr for all i and
all r > p.

The case pD 0 is trivial, so first suppose pD 1. Let C2; : : : ;Cn be nef R-Cartier
b-divisors such that Cr �Wr for 2� r � n. It follows from Lemma A.4 that

0 � W1 � � � � �Wn �W1;i �W2 � � � � �Wn

D �.W1 �C2 � � � � �Cn �W1 �W2 � � � � �Wn/

C .W1 �W1;i / �C2 � � � � �Cn

CW1;i �C2 � � � � �Cn �W1;i �W2 � � � � �Wn

� .W1 �W1;i / �C2 � � � � �CnC

nX
rD2

�
.Cr �Wr / �Wr � � � � �Wr

�1=.2n�1/
:

Fix " > 0. We can assume that the b-divisors Cr are chosen such that 0� .Cr �Wr / �
Wr � � � � �Wr � �. On the other hand, sinceCr are R-Cartier b-divisors andW1;i !W1,
we have .W1 �W1;i / �C2 � � � � �Cn � � for i large enough.

Now assume that 1 < p < n and that the statement is true for p � 1. Write

ai DW1;i � � � � �Wp;i �WpC1 �Wn:

Clearly ai is increasing in i , and we must show that supi ai DW1 � � � � �Wn. If j � i ,
then Wp;j �Wp;i �Wp , and so

W1;i � � � � �Wp�1;i �Wp;j �WpC1 � � � � �Wn � ai �W1;i � � � � �Wp�1;i �Wp �WpC1 � � � � �Wn:

Taking the supremum over all i , we get by the inductive assumption that

W1 � � � � �Wp�1 �Wp;j �WpC1 � � � � �Wn � sup
i

ai �W1 � � � � �Wn:

The inductive assumption implies that the supremum over j of the first term equals
W1 � � � � �Wn. Thus supi ai DW1 � � � � �Wn, which completes the proof.
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LEMMA A.2 (Hodge index theorem)
Let Z3; : : : ;Zn be nef R-Cartier b-divisors over zero. Then

.Z;W / WDZ �W �Z3 � � � � �Zn

defines a bilinear form on the space of Cartier b-divisors over zero that is negative
semidefinite.

Proof
By choosing a common determination Y !X , we are reduced to proving this state-
ment for exceptional divisors lying in Y . We may perturb Zi and assume that they
are rational and ample over zero. By intersecting by general elements of multiples of
Zi , we are then reduced to the 2-dimensional case. Since the intersection form on the
exceptional components of any birational surface map is negative definite, the result
follows.

LEMMA A.3
If Z;W;Z2; : : : ;Zn are nef R-Weil b-divisors over zero with Z.m/ � Z � W � 0
and Z.m/�Zj � 0 for j � 2, then

0� .W �Z/ �Z2 � � � � �Zn �
�
.W �Z/ �Z � � � � �Z

�1=2n�1
:

Proof
We may assume that all the b-divisors involved are R-Cartier. By Lemma A.2, the
bilinear form .Z;W / 7!Z �W �Z3 � � � � �Zn is negative semidefinite. Hence,

0 � .W �Z/ �Z2 � � � � �Zn � jZ2 �Z2 �Z3 � � � � �Zn/j
1=2

� j.W �Z/ � .W �Z/ �Z3 � � � � �Znj
1=2

� j.W �Z/ � .W �Z/ �Z3 � � � � �Znj
1=2 � j.W �Z/ �Z �Z3 � � � � �Znj

1=2:

Repeating this procedure n� 2 times, we conclude the proof.

LEMMA A.4
If Zr ;Wr are nef R-Weil b-divisors with Z.m/�Zr �Wr � 0 for 1� r � n, then

0�W1 � � � � �Wn �Z1 � � � � �Zn �

nX
rD1

�
.Wr �Zr/ �Zr � � � � �Zr

�1=2n�1
:

Proof
It follows from Lemma A.3 by writing
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W1 � � � � �Wn �Z1 � � � � �Zn

D .W1 �Z1/ �W2 � � � � �Wn

CZ1 � .W2 �Z2/ �W3 � � � � �WnC � � � CZ1 � � � � �Zn�1 � .Zn �Wn/:
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[LM] R. LAZARSFELD and M. MUSTAŢĂ, Convex bodies associated to linear series, Ann.
Sci. Éc. Norm. Supér. (4) 42 (2009), 783–835. MR 2571958 (1504)

[Loo] E. J. N. LOOIJENGA, Isolated Singular Points on Complete Intersections, London Math.
Soc. Lecture Note Ser. 77, Cambridge Univ. Press, Cambridge, 1984.
MR 0747303 (1506)

[Mor] M. MORALES, Resolution of quasi-homogeneous singularities and plurigenera,
Compos. Math. 64 (1987), 311–327. MR 0918415 (1460, 1509)

[Nak] N. NAKAYAMA, On complex normal projective surfaces admitting non-isomorphic
surjective endomorphisms, preprint, 2008. (1457)

[Oda] T. ODA, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of
Toric Varieties, Ergeb. Math. Grenzgeb. (3) 15, Springer, Berlin, 1988.
MR 0922894 (1456, 1481, 1513)

[Sak] F. SAKAI, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), 389–410.
MR 0761313 (1458, 1480, 1507)

[Sch] K. SCHWEDE, Test ideals in non-Q-Gorenstein rings, Trans. Amer. Math. Soc. 363
(2011), 5925–5941. MR 2817415 (1494)

[Tak1] S. TAKAGI, Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128
(2006), 1345–1362. MR 2275023 (1494)

[Tak2] , A subadditivity formula for multiplier ideals associated to log pairs, to appear
in Proc. Amer. Math. Soc., preprint, arXiv:1103.1179v2 [math.AG] (1460, 1494)

[Tsu] H. TSUCHIHASHI, Higher-dimensional analogues of periodic continued fractions and
cusp singularities, Tohoku Math. J. (2) 35 (1983), 607–639. MR 0721966 (1456,
1513, 1514)

[Urb] S. URBINATI, Discrepancies of non-Q-Gorenstein varieties, to appear in Mich.
Math J., preprint, arXiv:1001.2930v3 [math.AG] (1461)

[Wa] J. WAHL, A characteristic number for links of surface singularities, J. Amer. Math.
Soc. 3 (1990), 625–637. MR 1044058 (1456, 1460, 1461, 1508, 1510)

[Wat1] K. WATANABE, On plurigenera of normal isolated singularities, I, Math. Ann. 250
(1980), 65–94. MR 0581632 (1460, 1509)

[Wat2] , “On plurigenera of normal isolated singularities, II” in Complex Analytic
Singularities, Adv. Stud. Pure Math. 8, North-Holland, Amsterdam, 1987,
671–685. MR 0894312 (1460)

[ZS] O. ZARISKI and P. SAMUEL, Commutative Algebra, Vol. II, reprint of the 1960 ed.,
Grad. Texts in Math. 29, Springer, New York, 1975. MR 0389876 (1462, 1468)



1520 BOUCKSOM, DE FERNEX, and FAVRE

[dqZ] D.-Q. ZHANG, Polarized endomorphisms of uniruled varieties, Compos. Math. 146
(2010), 145–168. MR 2581245 (1457)

[swZ] S.-W. ZHANG, “Distribution in algebraic dynamics” in Surveys in Differential
Geometry, Vol. X, Surv. Differ. Geom. 10, Int. Press, Somerville, Mass., 2006,
381–430. MR 2408228 (1457)

Boucksom

CNRS - Institut de Mathématiques de Jussieu, 75252 Paris CEDEX, France;

boucksom@math.jussieu.fr

de Fernex

Department of Mathematics, University of Utah, Salt Lake City, Utah 48112-0090, USA;

defernex@math.utah.edu

Favre

CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau

CEDEX, France; favre@math.polytechnique.fr


