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Abstract. Let X be a smooth projective Berkovich space over a trivially or discretely
valued field k of residue characteristic zero, and let L be an ample line bundle on X.
We develop a theory of plurisubharmonic (or semipositive) metrics on L. In particular
we show that the (non-Archimedean) Monge-Ampère operator induces a bijection between
plurisubharmonic metrics and Radon probability measures of finite energy. In the discretely
valued case, these results refine earlier work obtained in collaboration with C. Favre. In
the trivially valued case, the results are new and will in subsequent work be shown to have
ramifications for the study of K-stability.
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2 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Introduction

Consider a polarized smooth projective variety (X,L) defined over a field k of charac-
teristic zero. Our main objective in this paper is to define and study the class of singular
semipositive metrics on the Berkovich analytification of L with respect to the trivial abolute
value on k. In forthcoming work [BoJ17], we will use these results to study K-stability from
a non-Archimedean point of view, continuing the ideas of [BHJ17]. These results will in
turn be applied in [BBJ17] to the existence of twisted Kähler-Einstein metrics.

Our results are similar to—but often more precise than—the ones in [BFJ16a, BFJ15,
BGJKM16], which dealt with the case of a discretely valued ground field of residue charac-
teristic zero. Namely, first we introduce and study the class PSH(L) of singular semipositive
metrics on L. Then we define a subclass E1(L) consisting of metrics of finite energy. This
class contains the class of continuous semipositive metrics, as studied by many authors.
We then define a Monge-Ampère operator on this class, and completely describe its image.
Generally speaking, the results are inspired by analogous results in the Archimedean case,
by which we mean complex geometry: more on this below, and see the survey [BFJ16b].

Let us now describe the results in the paper in more detail. In what follows, we write
X also for the Berkovich analytication of X with respect to the trivial absolute value on
k. Similarly, we will write L for the analytification of the total space of a line bundle (or
invertible sheaf) L on X. These conventions are reasonable in view of the GAGA results
in [Berk90, §3.5].

Singular semipositive metrics. We use additive notation for line bundles and metrics. A
metric (resp. singular metric) on a line bundle L on X is then a function on the complement
L× of the zero section in L with values in R (resp. R ∪ {−∞}). If φi is a metric on Li and
mi ∈ Z, i = 1, 2, then m1φ1 +m2φ2 is a metric on m1L1 +m2L2. A metric on OX can and
will be identified with a function on X. Any section s of L defines a singular metric log |s|,
whose value on the image of s is constantly equal to 0. Since k is trivially valued, there is
a canonical trivial metric φtriv on L, using which we can identify metrics by functions: any
metric on L can be written as φ = φtriv + ϕ, for some function ϕ on X.

Now let L be an ample line bundle on X. Define PSH(L) as the smallest class of singular
metrics on L such that:

(i) PSH(L) contains all metrics of the form m−1 log |s|, where m ≥ 1 and s is a nonzero
section of mL;

(ii) PSH(L) is closed under maxima, addition of constants, and decreasing limits.

Here the last part of (ii) means that if (φj)j is a decreasing net in PSH(L) and φ :=
limj φj 6≡ −∞ on L×, then φ ∈ PSH(L). The elements of PSH(L) will be called semipositive
or plurisubharmonic (singular) metrics.

The definition of PSH(L) makes sense when L is the analytification of an ample line
bundle with respect to any multiplicative norm on the ground field k. In particular, it
makes sense for the usual (Archimedean) norm on k = C. One can then show that the
class PSH(L) coincides with the class of semipositive singular metrics usually considered in
complex geometry.

Back in the trivially valued case, the space PSH(L) has two fundamental properties mir-
roring the Archimedean situation. To state them, we need to define the topology on PSH(L),
as well as the analogues of smooth metrics on L. First, the Berkovich space X contains a
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dense subset Xqm of quasimonomial points, and the topology on PSH(L) in defined by
pointwise convergence on Xqm. Second, define FS(L) ⊂ PSH(L) as the set of Fubini-Study
metrics, i.e. metrics of the form

φ = max
1≤l≤N

m−1(log |sl|+ al),

where m ∈ Z>0, al ∈ Z and sl, 1 ≤ l ≤ N are sections of mL having no common zero. The
class FS(L) coincides with the class H, defined in [BHJ17] via ample test configurations.

Theorem A. Let L be an ample line bundle on X.

(a) The quotient space PSH(L)/R is compact.
(b) Any singular metric in PSH(L) is the limit of a decreasing net in FS(L).

In the Archimedean case, the compactness statement in (a) is classical, whereas the
regularization statement in (b) is due to Demailly [Dem92]; see also [B lK07].

Theorem A will be deduced from the main results in [BFJ16a], which dealt with the case
of a discretely valued ground field. See below for details.

The Monge-Ampère operator and the Calabi-Yau theorem. The second main result
involves the Monge-Ampère equation

MA(φ) = µ, (MA)

where φ ∈ PSH(L) and µ is a Radon probability measure on X. To state it properly, we
need some further definitions.

There are by now several ways to define the Monge-Ampère operator on (sufficiently
regular) metrics on line bundles, the most flexible of which is the one developed by Chambert-
Loir and Ducros [CD12] in their pioneering work on forms and currents on Berkovich spaces.
Suffice it to say that if φ1, . . . , φn ∈ FS(L), then the mixed Monge-Ampère measure

MA(φ1, . . . , φn) = V −1ddcφ1 ∧ · · · ∧ ddcφn,

where V = (Ln), is an atomic probability measure supported on Shilov points in X. We
also write MA(φ) := MA(φ, . . . , φ). The Monge-Ampère energy12 of a metric φ ∈ FS(L) is
defined by

E(φ) :=
1

n+ 1

n∑
j=0

∫
(φ− φtriv) MAj(φ),

where MAj(φ) = MA(φ, . . . , φ, φtriv . . . , φtriv) is defined as above, using j copies of φ. For a
general metric φ ∈ PSH(L) we set

E(φ) := inf{E(ψ) | ψ ∈ FS(L), ψ ≥ φ},

and define E1(L) as the space of metrics φ ∈ PSH(L) of finite energy, E(φ) > −∞. This
space contains all continuous semipositive metrics, as defined and studied by Zhang [Zha95],
Gubler [Gub98] and others. In the Archimedean case, the corresponding class was first
defined by Guedj and Zeriahi [GZ07], following the fundamental work of Cegrell [Ceg98].

1In the Archimedean case, this also goes under the name Aubin-Mabuchi energy.
2In [BHJ17], the Monge-Ampère operator MA, the energy functional E, as well as many related functionals

were all written with a superscript “NA”, but we don’t do so here.
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The metric φ in the left-hand side of (MA) will be in the class E1(L). As for the right-hand
side, define the energy of a Radon probability measure µ (with respect to L) by

E∗(µ) := sup{E(φ)−
∫
X

(φ− φtriv)µ | φ ∈ E1(L)},

and let M1(X) be the space of Radon probability measure of finite energy. For example,
any finite atomic measure supported on quasimonomial points has finite energy. In the
Archimedean case, the space M1(X) was introduced in [Ceg98, GZ07].

Theorem B. Let L be an ample line bundle on X.

(a) There exist a unique extension of the Monge-Ampére operator to E1(L) that is con-
tinuous under increasing and decreasing limits.

(b) The operator in (a) defines a bijection

MA: E1(L)/R→M1(X)

between plurisubharmonic metrics of finite energy modulo constants, and Radon prob-
ability measures of finite energy.

Theorem B is the analogue of [BBGZ13, Theorem A], itself is a generalization of the
celebrated Calabi-Yau theorem [Yau78] and subsequent work by Ko lodziej [Ko l98]. We note
that the injectivity of MA on the space of continuous semipositive metrics modulo constants
was first proved in [YZ16], whereas a sketch of a proof of the solvability of (MA) for µ a
Dirac mass can be found in [KT00].

Strategy. The definitions of the classes PSH(L), E1(L), and the Monge-Ampère opera-
tor make sense over any non-Archimedean ground field k, any k-variety X, and any am-
ple line bundle L on X. We partially develop the theory under these assumptions; see
also [BGJKM16, GM16, GJKM17] for important work in this direction. However, we were
not able to prove Theorems A and B in full generality.

Instead, following [BFJ16a, BFJ15] we first prove these theorems when k is discretely
valued and of residue characteristic zero. In this case, we can use the existence of snc
models (constructed using Hironaka’s theorem), as well as vanishing theorems in algebraic
geometry. Theorem A is essentially a direct consequence of the main results of [BFJ16a],
except that our definition of the class PSH(L) differs from the one in loc. cit, and some
work is needed to prove that the two definitions are equivalent. As for Theorem B, the
injectivity of the Monge-Ampère operator was proved in [BFJ15] (see also [YZ16]), whereas
solutions to (MA) were established in [BFJ15, BGJKM16] for measures µ supported on the
dual complex of an snc model of X. For a general measure µ ∈M1(X) of finite energy, we
apply a regularization process using snc models, inspired by the approach in [GZ07].

We then reduce the case of a trivially valued ground field to the discretely valued case
using the non-Archimedean field extension k ↪→ k(($)). Indeed, points in the Berkovich
space X can be identified with Gm-invariant points in the base change Xk(($)) or in the

product X ×k A1
k. In this way, the role of models of (X,L) is played by test configurations

for (X,L).



SINGULAR SEMIPOSITIVE METRICS 5

Applications to K-stability. Following the solution to the Yau-Tian-Donaldson conjec-
ture for Fano manifolds [CDS15, Tia15]—the existence of a Kähler–Einstein metric is equiv-
alent to K-stability—much interest has gone into analyzing K-stability. In [BoJ17] we will
show how the the Calabi-Yau theorem naturally fits into this analysis.

Let X be a smooth complex Fano variety, that is, X is smooth and projective over k = C,
and L := −KX is ample. As explained in [BHJ17] (and observed much earlier by S.-
W. Zhang), K-stability admits a natural non-Archimedean interpretation, using the trivial
absolute value on k. Namely, we can define a natural Mabuchi functional M : FS(L) → R
with the property that X is K-stable iff M(φ) ≥ 0 for all φ ∈ FS(L), with equality iff
φ = φtriv.3 In [BHJ17, Der15] a stronger notion was introduced: X is uniformly K-stable if
there exists δ > 0 such that M ≥ δJ on FS(L). Here J(φ) = max(φ − φtriv) − E(φ) ≥ 0,
with equality iff φ = φtriv + c, c ∈ R. It was shown in [BBJ15] that if X has no nontrivial
vector fields, then X admits a Kähler-Einstein metric iff X is uniformly K-stable.

The proof in [BBJ15] uses another natural functional, the Ding functional D : FS(L) →
R, and we say that X is uniformly Ding stable if there exists δ > 0 such that D ≥ δJ on
FS(L). It was shown using the Minimal Model Program in [BBJ15] (see also [Fuj16b]) that
X is uniformly Ding stable iff it is uniformly K-stable. Further, X is K-semistable iff it is
Ding semistable; this corresponds to the case δ = 0.

The Calabi-Yau theorem gives a different proof of this equivalence, not relying on the Min-
imal Model Program, but instead inspired by thermodynamics and the Legendre transform,
as in [Berm13]. For simplicity we only discuss K-semistability. The Mabuchi functional
naturally extends to E1(L) and can be written as M(φ) = F (MA(φ)), where F (µ), the free
energy of the measure µ ∈ M1(X), is of the form F (µ) = L∗(µ) − E∗(µ); here E∗(µ) is
the energy, whereas L∗(µ) =

∫
X Aµ is the integral of µ agains the log discrepancy func-

tion A = AX [JM12]. Similarly, the Ding functional D is defined on E1(L) and satisfies
D = L − E, where E(φ) is the energy, and L(φ) = infX(A + φ − φtriv). As the notation
indicates, E∗ and L∗ are the Legendre transforms of E and L, respectively. Using the
Calabi–Yau theorem it now follows that M ≥ 0 on E1(L) iff F ≥ 0 on M1(X) iff D ≥ 0 on
E1(L).

Fujita [Fuj16b] and C. Li [Li15b] (see also [FO16, BlJ17]) have recently given a valuative
criterion for K-semistability and uniform K-stability; here we only discuss the former. There
exists a natural invariant S(x) ≥ 0 defined for Shilov (or quasimonomial) points x on X such
that X is K-semistable iff A(x) ≥ S(x) for all x. Now, the Dirac mass δx is a probability
measure of finite energy, and F (δx) = A(x)−S(x), so if X is K-semistable, then A(x) ≥ S(x)
for all x. Further, the reverse implication also follows, due to convexity properties of L∗ and
E∗.

In summary, the Calabi–Yau theorem can be used to avoid techniques from the Mini-
mal Model Program. Further, they apply also beyond the Fano situation. This gives rise
to a stability criterion for the existence of twisted Kähler–Einstein metrics, as explored
in [BBJ17].

Possible generalizations. There are several possible extensions of the work of this paper.
On the one hand, one could try to prove all the results over an arbitrary non-Archimedean
field. We lay the groundwork for doing so; in particular, our definition of the spaces PSH(L)

3The Mabuchi functional is a variation of the Donaldson-Futaki invariant that has better functorial
properties.
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and E1(L), as well as the Monge-Ampère operator make sense in general. However, we need
to assume that k is discretely or trivially valued, of residue charateristic zero, for several of
the fundamental results. It would be interesting to see if the tropical charts in [CD12, GK17]
can replace our use of dual complexes; the latter are used to establish the compactness of
PSH(L), and to solve the Monge-Ampère equation MA(φ) = µ, by approximating µ by nicer
measures.

We also use vanishing theorems for multiplier ideals to prove that the psh envelope of a
continuous metric is continuous. This technique requires residue characteristic zero. Very
recently, Gubler, Jell, Künnemann and Martin [GJKM17] instead used test ideals to prove
continuity of envelopes in equicharacteristic p. This allows them to prove solve the Monge-
Ampère equation for measures µ supported on a dual complex. For all of this they need to
assume resolution of singularities, and that the variety is obtained by base change from a
family over a perfect field.

As in the Archimedean case [BBGZ13, BBEGZ16], it would also be interesting to relax
the assumptions on (X,L). For example, one could consider big line bundles L, singular
varieties X, or pairs (X,B). This may require new ideas.

Organization. Following a general discussion of Berkovich analytifications in §1, where we
in particular discuss the Gauss extension k ⊂ k(($)), we discuss metrics on line bundles
in §2. In particular, we define the classes FS(L) and DFS(L) that in our study play the
role of smooth positive and positive metrics, respectively. In §3, we recall the definition of
the Monge-Ampère operator on DFS metrics, the associated energy functionals, and state
various estimate involving the Monge-Ampère operator on FS metrics. These estimates are
proved in the appendix. In §4 we use dual complexes to study analytifications of smooth
projective varieties over discretely or trivially valued fields of residue characteristic zero.
The discretely valued case was studied in [BFJ16a], and we use the Gauss extension to treat
the trivially valued case. Then, in §5, we introduce the class of PSH(L) of psh metrics on an
ample line bundle L. When k is discretely valued, this class is shown to coincide with the
class considered in [BFJ16a]. When k is discretely or trivially valued, of residue characteristic
zero, we deduce from loc. cit. the compactness of PSH(L)/R. In §6 we introduce the class
E1(L) of metrics of finite energy and extend the Monge-Ampère operator and associated
energy functionals to this class. Finally, in §7 we prove Theorem B.

Acknowledgment. We thank R. Berman, B. Berndtsson, A. Chambert-Loir, A. Ducros,
C. Favre, W. Gubler, T. Hisamoto, M. Mustaţă and J. Poineau for fruitful discussions. The
first author was partially supported by the ANR grants GRACK, MACK and POSITIVE.
The second author was partially supported by NSF grants DMS-1266207 and DMS-1600011,
the Knut and Alice Wallenberg foundation, and the United States—Israel Binational Science
Foundation. Part of this work was carried out at IMS, Singapore.



SINGULAR SEMIPOSITIVE METRICS 7

1. Berkovich analytifications

In this section we recall basic facts about the analytification of varieties in the sense
of Berkovich, with particular attention to the case when the ground field is discretely or
trivially valued.

1.1. Setup. A non-Archimedean field is a field k equipped with a complete multiplicative,
non-Archimedean norm | · |. We denote by k◦ := {|a| ≤ 1} ⊂ k the valuation ring of k,

by k◦◦ = {|a| < 1} its maximal ideal, and by k̃ := k◦/k◦◦ the residue field. The value
group of k is |k×| ⊂ R×+, where k× = k \ {0}. We say k is trivially valued if |k×| = {1}
and discretely valued if |k×| = rZ for some r ∈ (0, 1). For any subgroup Γ ⊂ R×+ we write√

Γ = {r1/n ∈ R×+ | r ∈ Γ, n ∈ N}.
The notation k′/k means that k′ is a non-Archimedean field extension of k. Given k′/k, set

s(k′/k) := tr. deg(k̃′/k̃), t(k′/k) := dimQ(
√
|k′×|/

√
|k×|), and d(k′/k) := s(k′/k) + t(k′/k).

All schemes will be separated. By an ideal on a scheme we mean a coherent ideal sheaf.
By a variety over a field k, we mean an integral (separated) scheme of finite type over k.

1.2. Analytification. Let k be any non-Archimedean field. The analytification functor
in [Berk90, 3] associates to any variety X (or, more generally, scheme locally of finite type)
over k a (good, boundaryless) k-analytic space X an in the sense of Berkovich. Since our focus
will be on the Berkovich spaces, we change notation and denote by X the analytification and
by Xsch the underlying variety, viewed as a scheme. We will also write An = An

k , Pn = Pn
k

and Gm = Gm,k for the analytifications of An = Ank , Pn = Pn, Gm = Gm,k, respectively.

As a set, the analytification X of Xsch consists of all pairs x = (ξ, | · |), where ξ ∈ Xsch

is a point and | · | = | · |x is a multiplicative norm on the residue field κ(ξ) extending the
norm on k. We denote by H(x) the completion of κ(ξ) with respect to this norm. The map
ker : X → Xsch sending (ξ, | · |) to ξ is surjective and called the kernel map. If Xsch = SpecA
is affine, with A a finitely generated k-algebra, X consists of all multiplicative seminorms
on A extending the norm on k.

The Zariski topology on X is the weakest topology in which ker : X → Xsch is continu-
ous. Unless mentioned otherwise, we work with the Berkovich topology on X, the coarsest
refinement of the Zariski topology for which the following holds: for any open affine subset
U = SpecA ⊂ Xsch and any f ∈ A, the function ker−1(U) 3 x→ |f(x)| ∈ R+ is continuous,
where f(x) denotes the image of f in k(ξ) ⊂ H(x), so that |f(x)| = |f |x. Then X is Haus-
dorff, locally compact, and locally path connected. It is compact iff Xsch is proper. We say
X is projective (resp. quasiprojective, smooth) if Xsch has the corresponding properties.

A point x ∈ X is rigid if kerx is a closed point of Xsch. This is equivalent to H(x) being
a finite extension of k. The set Xrig of rigid points is a dense subset of X unless k is trivially
valued. The points in X whose kernel is the generic point of Xsch are the valuations (in
multiplicative terminology) of the function field of Xsch extending the valuation on k. They
form a dense subset Xval ⊂ X.

If x ∈ X, we define s(x) := s(H(x)/k) and similarly t(x), d(x). The Abhyankar inequality

says that d(x) ≤ dim ker(x) ≤ dimX. A point x is quasimonomial if d(x) = dimX.4 Write
Xqm ⊂ Xval for the set of quasimonomial points. In §4 we give a geometric description of

4Such points have many other names in the literature, including “monomial” or “Abhyankar” points.
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quasimonomial point when k is trivially or discretely valued and of residue characteristic
zero; see e.g. [Tem16, 7.2.4] for the general case.

Lemma 1.1. If f : X ′ → X is induced by a surjective morphism of irreducible k-varieties,
then f(X ′qm) ⊂ Xqm.

Proof. Pick x′ ∈ X ′qm and set x := f(x′). Since f is surjective, x is a valuation. Now
d(x′) = n′ := dimX, and we must show that d(x) ≥ n := dimX. By considering the non-
Archimedean field extensions k ⊂ H(x) ⊂ H(x′), we see that d(x′) = d(x) + d(H(x′)/H(x)),
so we must show that d(H(x′)/H(x)) ≤ n′ − n. But H(x) and H(x′) are the comple-
tions of k(X) and k(X ′) with respect to the norms defined by x and x′, respectively, and
tr.deg(k(X ′)/k(X)) = n′ − n, so d(H(x)/H(x)) ≤ n′ − n by the Abhyankar inequality. �

We say that a point x ∈ X is Shilov if s(x) = dimX. When k is trivially valued, the only
Shilov point is the trivial valuation on k(X).

If k′/k is a non-Archimedean field extension, the ground field extension Xk′ is a k′-analytic
space, and coincides with the analytification of the k′-variety Xsch ×Spec k Spec k′. We have
a continuous surjective map π : Xk′ → X whose fiber over a point x ∈ X can be identified
with the Berkovich spectrum of the non-Archimedean Banach k-algebra H(x)⊗̂kk′.

1.3. Models and Shilov points. If X is projective, then a model of X is a flat and
projective scheme X over Spec k◦, together with an isomorphism of the generic fiber Xη
onto Xsch. The special fiber X0 of X is a scheme over k̃.

To any model X of X is associated a reduction map redX : X → X0 defined as follows.
Given x ∈ X, denote by Rx the corresponding valuation ring in the residue field κ(ker(x)).
By the valuative criterion of properness, the map Tx := SpecRx → Spec k◦ admits a unique
lift Tx → X mapping the generic point to ker(x). We then let redX (x) be the image of the
closed point of Tx under this map.5 Each x ∈ X with redX (x) a generic point of X0 is a
Shilov point, and the set Γ(X ) ⊂ XShi of Shilov points for X so obtained is a finite set.
Every Shilov point in X is in fact a Shilov point for some model X , see [GM16, Proposition
A.9].

Given any two models X̃ ,X of X, there is a canonical birational map X̃ 99K X induced

by the isomorphisms of the generic fibers onto Xsch. We say that X̃ dominates X if this
map is a morphism. Any two models can be dominated by a third.

1.4. The discretely valued case. Assume k is discretely valued, i.e. |k×| = rZ for a unique
r ∈ R×+, with r < 1. Then any model is noetherian, with special fiber X0 a Cartier divisor, of
X . If X (and hence X) is normal, X0 can be decomposed as a Weil divisor X0 =

∑
i∈I biEi,

where Ei, i ∈ I are the irreducible components of X0 and bi ≥ 1, and each Ei determines a
unique Shilov point xi ∈ XShi with redX (xi) the generic point of Ei, given by xi = rordEi /bi ,
where ordEi : k(X )× → Z is the order of vanishing along Ei.

1.5. The trivially valued case. When k is a trivially valued field, we have an embedding
Xsch ↪→ X, defined by associating to ξ ∈ Xsch the point in X defined by the trivial norm on
κ(ξ). In this way we can view Xsch as a closed subset of X. It consists of all points x ∈ X
such that the norm on H(x) is trivial. Obviously the kernel map is the identity on Xsch. By

5If x ∈ Xval, that is, s(x) is the generic point of Xsch, then redX (x) is the center of x on X in valuative
terminology [Vaq00]; this is also the terminology used in [BFJ16a].
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using only closed points, we obtain the subset Xrig ⊂ Xsch ⊂ X of rigid points. The closure
of Xrig in X is equal to Xsch. We will refer to the image in X of the generic point of Xsch

as the generic point of X; it corresponds to the trivial valuation on k(X).
There is a scaling action of multiplicative group R×+ on X defined by powers of norms.

We denote by xt the image of x by t ∈ R×+. If x = (ξ, | · |), then xt = (ξ, | · |t) for t ∈ R×+; in

particular, ker(xt) = ker(x). The set of fixed points of the scaling action is exactly Xsch ⊂ X.
As t→ 0, we have xt → kerx ∈ Xsch.

Recall that a point x ∈ X is divisorial, x ∈ Xdiv, if s(x) = dimX − 1 and t(x) = 1. All
such points arise as follows. There exists a proper birational map X ′ → X, with X ′ normal,
a prime Weil divisor E ⊂ X ′, and r ∈ R×+ with r < 1, such that x = rordE , with ordE the
order of vanishing along E.

Any ideal a on Xsch induces a continuous function |a| : X → R+. This function is defined
by |a|(x) := max{|f(x)| | f ∈ a · OXsch,red(x)} for x ∈ X, and is homogeneous: |a|(xt) =

(|a|(x))t for x ∈ X and t ∈ R×+.

Now suppose X is projective. Since k◦ = k, Xsch is the only model of X. The associated
reduction map red: X → Xsch has the following properties. Let x ∈ X and set ξ := kerx,
so that x defines valuation on κ(ξ) that is trivial on k. If Y is the closure of ξ in X, then
η = red(x) is the unique point in Y such that |f(y)| ≤ 1 for y ∈ OY,η and |f(y)| < 1 when
further f(η) = 0.

Clearly redx is a specialization of kerx, i.e. kerx belongs to the Zariski closure of redx. We
have redx = kerx iff x ∈ Xsch, and in this case redx = kerx = x. Note that redxt = redx
for t ∈ R×+, and that xt → redx as t→∞.

The scaling action induces a dual action on continuous functions: if ϕ ∈ C0(X) and
t ∈ R×+, then we define t∗ϕ ∈ C0(X) by t∗ϕ(x) := ϕ(xt). This, in turn, induces an action

of R×+ on positive (resp. signed) Radon measures6 on X by setting 〈t∗µ, ϕ〉 := 〈µ, t∗ϕ〉
for µ a positive (resp. signed) Radon measure on X, t ∈ R×+, and ϕ ∈ C0(X). We have
t∗µ =

∫
X δxt dµ(x).

1.6. The Gauss extension. If k is a non-Archimedean field and r ∈ R×+, the circle algebra
kr is a Banach k-algebra defined by

kr := {a =

∞∑
−∞

aj$
j | lim

j→±∞
|aj |rj = 0},

equipped with the multiplicative norm

‖
∑
j

aj$
j‖ = max

j
|aj |rj . (1.1)

The Berkovich spectrum Ck(r) = M(kr) is the Berkovich circle of radius r over k. When

r 6∈
√
|k×|, kr is a non-Archimedean field and Ck(r) a singleton; such field extensions kr/k

play a crucial role in the general theory of Berkovich spaces.

Now let k be a trivially valued field and pick r ∈ (0, 1). In this case,

k′ := kr ' k(($))

6A positive (resp. signed) Radon measure on X is a positive (resp. bounded) linear functional on C0(X).
Equivalently, it is a positive (resp. signed) Borel measure on X that is inner regular.
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is the field of formal Laurent series with coefficients in k, equipped with the natural norm for
which |$| = r. Clearly |k′×| = rZ. The valuation ring of k′ is the ring k′◦ = k[[$]] of formal
power series and we identify the residue field of k′ with k. The reduction map k′◦ → k sends
$ to 0. For any non-Archimedean extension K/k, we have K⊗̂kk′ ' Kr.

Let X be the analytification of a k-variety Xsch. Write X ′ := Xk′ for the ground field
extension, and π : X ′ → X for the canonical map. For x ∈ X, we have π−1(x) ' CH(x)(r).

Lemma 1.2. If x′ ∈ X ′ and x := π(x′) ∈ X, then we have:

s(x′) = s(H(x′)/H(x)) + s(x) (1.2)

t(x′) = t(H(x′)/H(x)) + t(x)− 1 (1.3)

d(x′) = d(H(x′)/H(x)) + d(x)− 1. (1.4)

Proof. The invariant s is additive in towers of non-Archimedean field extensions; hence

s(H(x′)/k′) + s(k′/k) = s(H(x′)/k) = s(H(x′)/H(x)) + s(H(x)/k).

By definition, s(x′) = s(H(x′)/k′) and s(x) = s(H(x)/k), and (1.1) gives s(k′/k) = 0. This
proves (1.2). The proofs of (1.3)–(1.4) are identical, using t(k′/k) = 1, and d(k′/k) = 1. �

Corollary 1.3. We have d(x) ≥ d(x′). In particular, if x′ is quasimonomial, so is x.

Proof. The preimage π−1(x) ' CH(x)(r) embeds in the Berkovich affine line over H(x), so
d(H(x′)/H(x)) ≤ 1 by the Abhyankar inequality. We conclude using (1.4). �

As a special case of [Berk90, 5.2], we have a natural continuous section

σ = σr : X → X ′

of π : X ′ → X. Namely, if x ∈ X, then π−1(x) ' CH(x)(r) is the circle of radius r over H(x),

and σr(x) ∈ π−1(x) is the point corresponding to the norm on the circle algebra H(x)r. This
type of norm is known as a Gauss norm, so we call σr the Gauss extension.

Concretely, if x ∈ X, then x′ = σr(x) is given as follows. Any f ∈ H(x′) ' H(x)r can be
written as f =

∑
j fj$

j where fj ∈ H(x). Then

|f(x′)| = max
j
|fj(x)|rj . (1.5)

Corollary 1.4. For any x ∈ X, set x′ := σr(x) ∈ X ′. Then we have:

(i) if r ∈
√
|H(x)×|, then s(x′) = s(x) + 1 and t(x′) = t(x)− 1;

(ii) if r 6∈
√
|H(x)×|, then s(x′) = s(x) and t(x′) = t(x);

(iii) d(x′) = d(x).

Proof. Clearly (iii) follows from (i) and (ii). To prove (i)–(ii) it suffices by Lemma 1.2 to
compute s := s(H(x′)/H(x)) and t := t(H(x′)/H(x)).

First assume r 6∈
√
|H(x)×|. By (1.5) we have

√
|H(x′)×|/

√
|H(x)×| ' rQ, so t = 1. To

compute s, pick any f ∈ H(x′)◦ and write f =
∑

j fj$
j . Then f̃ = f̃0 ∈ H̃(x), so s = 0.

Now suppose r ∈
√
|H(x)×|. Pick n ≥ 1 minimal such that rn ∈ |H(x)×|, g ∈ H(x)×

with |g(x)| = rn, and set f = $−ng. Then f ∈ H(x′)◦ and it is easy to see that {f̃} is a

transcendence basis for H̃(x′)/H̃(x). Thus s = 1, which completes the proof. �

Corollary 1.5. With the same notation as in Corollary 1.4, we have:
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(i) x′ is a valuation iff x is a valuation;
(ii) x′ is quasimonomial iff x is quasimonomial;

(iii) x is the trivial valuation iff x′ = rordX×{0};

(iv) x is divisorial iff x′ is Shilov, x′ 6= rordX×{0} and r ∈
√
|H(x)×|.

Proof. To prove (i), pick any f ∈ H(x′) ' H(x)r and write f =
∑

j fj$
j . From (1.5) it

follows that |f(x′)| = 0 iff |fj(x)| = 0 for all j, which yields (i). The statements in (ii)–(iv)
follow from Corollary 1.4 and our definition of quasimonomial and Shilov points. �

Let Gm be the multiplicative group over k. Then Gm(k) ' k× acts on k′ by

γ ·
∑
j

aj$
j =

∑
j

γ−jaj$j ,

and k ⊂ k′ is the set of k×-invariant points. We also have an induced continuous action on
X ′. If x′ ∈ X ′ and γ ∈ k×, the image γ · x′ ∈ X ′ is characterized by |f(γ · x′)| = |(γ · f)(x′)|
for f ∈ H(x)r, where x = π(x′).

Proposition 1.6. If k is an infinite field, then the image σr(X) ⊂ X ′ is closed and consists
of all k×-invariant points.

Proof. Given x′ ∈ X ′, set x := π(x′), and let ‖ · ‖ be the norm on the circle algebra H(x)r.
First suppose x′ = σr(x). For any γ ∈ k×, and f =

∑
j $

jfj ∈ H(x)r, we then have

|f(γ · x′)| = ‖γ · f‖ = max
j
rj |γ−jfj(x)| = max

j
rj |fj(x)| = ‖f‖ = |f(x′)|,

so x′ is k×-invariant.
Now suppose x′ is k×-invariant, but that x′ 6= σr(x). We can then find f ∈ H(x)r

such that |f(x′)| < ‖f‖. Write f =
∑

j fj$
j , and let J be the finite set of indices j for

which |$jfj(x)| = ‖f‖. We may assume fj = 0 for j 6∈ J . For γ ∈ k× we have γ · f =∑
j $

jγ−jfj . By assumption, |(γ · f)(x′)| = |f(x′)|, and hence |
∑

j $
jγ−jfj(x)| < ‖f‖ for

all γ ∈ k×. Pick distinct elements γi, i ∈ J , of k×. The matrix (γ−ji )i,j∈J is of Vandermonde

type and therefore invertible. Let (aij)i,j∈J be its inverse, so that
∑

i ailγ
−j
i = δjl. Thus∑

i ail(γi · f) = $lfl for each l ∈ J , so

‖f‖ = |$lfl(x)| = |
∑
i

ail(γi · f)(x′)| ≤ max
i
|(γi · f)(x′)| = |f(x′)| < ‖f‖,

a contradiction. �

The base change X ′ can also be viewed as a closed subset of X×A1 (i.e. the analytification
of Xsch ×A1 with respect to the trivial valuation on k) cut out by the equation |$| = r. In
this way, we can view the Gauss extension as a continuous map

σ = σr : X → X ×A1.

The scaling actions by R×+ on X and X ×A1 interact with the Gauss extension as follows:

σrt(x
t) = σr(x)t
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for x ∈ X, r, t ∈ R×+. Given d ≥ 1, we have a selfmap md : X ×A1 → X ×A1 induced by

the base change $ → $d. We then have

σrd(x) = md(σr(x))

for any x ∈ X.
Following [Oda13] we define a flag ideal on Xsch × A1 to be a Gm-invariant ideal cosup-

ported on the central fiber Xsch × {0}.

1.7. Test configurations. Assume k is trivially valued andX projective. As already noted,
Xsch is the only model of X. Instead of models, we use the notion of a test configuration,
first introduced by Donaldson [Don02]. The definition below essentially follows [BHJ17].

Definition 1.7. A test configuration X for X consists of the following data:

(i) a flat and projective morphism of k-schemes π : X → A1
k;

(ii) a Gm-action on X lifting the canonical action on A1
k;

(iii) an isomorphism X1
∼→ X.

The trivial test configuration of X is given by the product Xsch×A1
k, with the trivial Gm-

action on X. Given test configurations X , X ′ for X there exists a unique Gm-equivariant

birational map X ′ 99K X extending the isomorphism X̃1 ' X ' X1. We say that X ′
dominates X if this map is a morphism. Any two test configurations can be dominated
by a third. Two test configurations that dominate each other will be identified. Any test
configuration dominating the trivial test configuration is obtained by blowing up a flag ideal
on Xsch × A1

k.
Now consider the non-Archimedean field extension k′ = kr = k(($)) of k from §1.6. The

inclusion k[$] ↪→ k[[$]] = k′◦ induces a morphism Spec k′◦ → A1
k. Any test configuration

X dominating the trivial test configuration therefore gives rise to a Gm-invariant model
X ′ := X ×A1

k
Spec k′◦ of X ′ := Xk′ dominating Xsch

k′◦ := Xsch ×Spec k Spec k′◦, and whose

special fiber X ′0 can be identified with the central fiber X0 of X . In fact, every Gm-invariant
model X ′ of X ′ dominating Xsch

k′◦ arises in this way. Indeed, X ′ is the blowup of a Gm-

invariant ideal on Xsch
k′◦

cosupported on the special fiber, and such an ideal comes from a flag

ideal on Xsch × A1
k.

If X is a test configuration forX dominating the trivial test configuration, write redX : X →
X0 for the composition redX ◦σr, where σr : X → X ′ is the Gauss extension. When X is the
trivial test configuration, X0 = Xsch and redX becomes the reduction map in §1.5.

Let X be a normal test configuration for X dominating the trivial test configuration, and
write the central fiber as X0 =

∑
i∈I biEi where Ei are the irreducible components. Passing

to the model X ′ of X ′, Ei defines a k×-invariant Shilov point x′i = rordEi /bi ∈ X ′. It follows
from Corollary 1.5 that x′i = σr(xi), where xi ∈ X is either the generic point or a Shilov
point. Note that xi depends on the choice of r ∈ R×+, but only up to scaling.

Given d ≥ 1, define a new test configuration X̃ = X̃d for X as the normalization of the
fiber product of X → A1

k and the map A1
k → A1

k given by $ → $d. The induced map

g = gd : X̃ → X is finite, of degree d. Let Ẽ be an irreducible component of X̃0. Then
E := g(Ẽ) is an irreducible component of X0. Let xẼ and xE be the associated points in X.

Lemma 1.8. With the notation above, we have xẼ = xdE.
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Proof. Set eẼ := ordẼ(g∗E). Then ordẼ(g∗f) = eẼ ordE(f) for every f ∈ k(X ) = k(X̃ ).
Applying this to f = $ yields dbẼ = bE , where bE = ordE($) and bẼ = ordẼ($). Now
suppose f ∈ k(X). Then g∗f = f , and hence

|f(xẼ)| = |(g∗f)(xẼ)| = rordẼ(g∗f)/bẼ = reẼ ordE(f)/bẼ = rd ordE(f)/bE = |f(xE)|d,
which completes the proof. �
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2. Metrics on line bundles

This section contains a general discussion of metrics on line bundles, essentially follow-
ing [CD12, 6.2]. We also introduce classes of metrics that, in our study, play the role of
positive smooth and smooth metrics in complex geometry.

Let k be any non-Archimedean field. As we will in part work additively, fix a logarithm
log : R×+ → R.7 When k is nontrivially (resp. discretely) valued, we require log |k×| ⊃ Z
(resp. log |k×| = Z). When k is trivially valued, the logarithm is chosen compatible with
the Gauss extension σ = σr : k → kr = k(($)) in the sense that log r = −1.

Let X be the analytification of a variety Xsch over k.

2.1. Line bundles and their skeleta. By a line bundle L onX we mean the analytification
of (the total space of) a line bundle Lsch on Xsch.8 Thus we have a canonical map p : L→ X,
the analytification of the corresponding map Lsch → Xsch. Write L× for the complement in
L of the image of the zero section.

We can cover X by Zariski open subsets U = (SpecA)an, where A is a finitely generated
k-algebra, such that p−1(U) ' (SpecA[T ])an and p−1(U) ∩ L× ' (SpecA[T±1])an; the map
p is then given by restriction of seminorms from A[T ] to A. When k is trivially valued, this
description shows that p commutes with the R×+-actions on L and X.

The fiber Lx over a point x ∈ X is isomorphic to (SpecH(x)[T ])an, the Berkovich affine
line overH(x). Similarly, L×x = L×∩Lx is isomorphic to (SpecH(x)[T±1])an, and comes with
a multiplicative action of H(x)×. The skeleton Sk(Lx) ⊂ L×x is the set of fixed points under
this action, and is isomorphic to R×+, with r ∈ R×+ corresponding to the multiplicative

norm on H(x)[T±1] defined by |
∑

i aiT
i| = maxi |ai|ri. There is a continuous retraction

L×x → Sk(Lx) that in this notation sends v ∈ L×x to r := |T (v)|.
We define the skeleton Sk(L) ⊂ L× of L as the union of the individual skeleta Sk(Lx).

This is a closed subset of L×.9 The retraction above defines a continuous global retraction
L× → Sk(L). With U ⊂ X as above, we have p−1(U) ∩ Sk(L) ' U ×R×+. If L and M are
line bundles on X, we have a canonical map L ×X M → L ⊗M , where the fiber product
on the left is in the category of k-analytic spaces. Using a variant of the ∗-multiplication
in [Berk90, 5.2], this induces a continuous map Sk(L)×XSk(M)→ Sk(L⊗M). If v ∈ Sk(Lx)
and w ∈ Sk(Mx), the image v ∗ w ∈ Sk((L ⊗M)x) is defined as follows: the norm on the
Banach k-algebra H(v)⊗̂H(x)H(w) is multiplicative, and hence defines a point in L ×M ,
whose image v ∗ w ∈ L ⊗ M under the canonical map above is easily seen to belong to
Sk(L ⊗M). Identifying the skeleta with R×+, the map (v, w) → v ∗ w simply becomes the
multiplication map (r, s) 7→ rs. In this way, the skeleton Sk(L) of any line bundle L is a
torsor for Sk(OX) = X ×R×+.

Similarly, if L is a line bundle on X, we have a canonical isomorphism L× 7→ L−1× that
restricts to a homeomorphism of Sk(L) onto Sk(L−1). For x ∈ X, we can identify Sk(Lx)
and Sk(L−1

x ) with R×+, and the map above is then given by r 7→ r−1.

7Working multiplicatively throughout would obviate the choice of a logarithm, but the additive convention
is very convenient when studying the Monge-Ampère operator and functionals on metrics.

8There is a notion of a line bundle on an arbitrary k-analytic space. When Xsch is projective, the GAGA
results in [Berk90, 3] imply that all line bundles on X are analytifications of line bundles on Xsch.

9In the Archimedean case, that is, k = C with the usual norm, one can define the skeleton of a line bundle
L as the quotient of L× by the natural S1-action.
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X

L×

x1 x2 x3

Figure 1. The skeleton of a line bundle L over X. The three trees are the
fibers L×xi over points xi, i = 1, 2, 3. The vertical segment in each fiber is the

skeleton Sk(L×xi) ∼ R×+.

If f : Y → X is a morphism of quasiprojective varieties, induced by a morphism Y sch →
Xsch, and L is a line bundle on X, then f∗L is a line bundle on Y , and f induces a map
f∗L→ L that sends Sk(f∗L) to Sk(L).

Let k′/k be a non-Archimedean field extension and set X ′ := Xk′ . For any line bundle L
on X, L′ := Lk′ is a line bundle on X ′, and the canonical map L′ → L maps Sk(L′) onto
Sk(L). More precisely, for any x′ ∈ X ′, Sk(L′x′) maps homeomorphically onto Sk(Lx), where
x ∈ X is the image of x′. In the special case when k is trivially valued and k′ = k(($)),
the Gauss extension σ : L→ L′ maps Sk(L) into Sk(L′), More precisely, for every x ∈ X, σ
maps Sk(Lx) maps homeomorphically onto Sk(L′x′), where x′ = σ(x).

2.2. Metrics. A metric on a line bundle L on X is a function ‖ · ‖ : L → R≥0 whose
restriction to each fiber Lx ' A1

H(x) is of the form ‖v‖ = c|T (v)|, where c = c(x) ∈ (0,∞).

In particular, the restriction of ‖ · ‖ to Lx is continuous, and we have ‖av‖ = |a|‖v‖ for
a ∈ H(x)×, v ∈ Lx, and ‖v‖ > 0 for v ∈ L×x . The restriction of the metric to Lx is uniquely
determined by its value at any point in L×x . Choosing a metric on L amounts to specifying
the unit circle ‖v‖ = 1 inside Lx ' A1

H(x) for each x, just like in the complex case.

A metric on OX will be identified with a function on X with values in R×+, the identifi-
cation arising by evaluating the metric on the constant section 1.

A metric ‖ ·‖ on L is uniquely determined by its restriction to the skeleton Sk(L). In fact,
if q : L× → Sk(L) denotes the retraction, then ‖v‖ = ‖q(v)‖ for every v ∈ L×. The metric is
affine on the skeleton: if we identify Sk(Lx) ' R×+ for x ∈ X, then ‖r‖ = ar, where a ∈ R×+.

Given metrics on line bundles L, M , there is a unique metric on L ⊗M such that ‖v ⊗
w‖ = ‖v‖ · ‖w‖ for v ∈ Lx(H(x)), w ∈ Mx(H(x)). We also have ‖v ∗ w‖ = ‖v‖ · ‖w‖ for
(v, w) ∈ Sk(L) ×X Sk(M). Similarly, a metric on L induces a metric on L−1 satisfying
analogous properties.

It will be convenient to use additive notation for both line bundles and metrics. Thus we
write L+M := L⊗M , −L := L−1, and describe a metric ‖ · ‖ on L via

φ := − log ‖ · ‖ : L× → R.

In fact, by a metric on L we will, from now on, mean such a function φ.10 When needed,
the corresponding multiplicative metric will be denoted by ‖ · ‖φ = e−φ.

10The term “weight” is sometimes used in the literature for such a function φ.
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With this convention, if φ is a metric on L, any other metric is of the form φ+ϕ, where ϕ
is a function on X, that is, a metric on OX . If φi is a metric on Li, i = 1, 2, then φ1 +φ2 is a
metric on L1 +L2. If φ is a metric on L, then −φ is a metric on −L. If φ is a metric on mL,
where m ≥ 1, then m−1φ is a metric on L. If φ1, φ2 are metrics on L, so is max{φ1, φ2}.

If φ1 and φ2 are metrics on L that induce the same metric on mL for some m ≥ 1, then
φ1 = φ2. We can therefore define a metric on a Q-line bundle L as the choice of a metric
φm on mL for m sufficiently divisible, with the compatibility condition lφm = φml.

If φ is a metric on a line bundle L on X, and f : Y → X is a morphism, induced by a
morphism Y sch → Xsch, then f lifts to a map f∗L→ L. For any metric φ on L, f∗φ = φ ◦ f
is then a metric on f∗L.

Let k′/k be a non-Archimedean field extension. Given a line bundle L on X, set X ′ = Xk′

and L′ := Lk′ , and write π for the canonical maps L′ → L and X ′ → X. If φ is a metric on
L, then φ◦π is a metric on L′. In the special case when k is trivially valued and k′ = k(($)),
we have that φ′ ◦ σ is a metric on L for every metric φ′ on L′, where σ : L→ L′ denotes the
Gauss extension.

If k is trivially valued and L is a line bundle on X, then the canonical map L× → X is
equivariant for the scaling action of R×+ on L× and X, and induces an action on metrics on

L: if φ is a metric on L and t ∈ R×+, then φt : L
× → R defined by

φt(v) := tφ(v1/t) (2.1)

is a metric on L.
A metric on a line bundle L is continuous if it is continuous as a function on L×. This

is equivalent to the restriction to Sk(L) being continuous. If s ∈ H0(X,L) is a nowhere
vanishing global section, then φ is continuous iff the function φ ◦ s is continuous on X. A
simple partition of unity argument shows that every line bundle admits a continuous metric,
see also 2.4. Continuity of metrics is preserved by all the operations above.

If X is proper, we say that a metric φ on L is bounded if for some/any continuous metric
ψ on L, the function φ− ψ is bounded.

A singular metric on a line bundle L is a function φ : L× → R ∪ {−∞} such that, for
every x ∈ X, the restriction φ|L×x is either ≡ −∞ or a metric on Lx. All the remarks above

about metrics (except continuity) carry over to singular metrics. Note that any metric is a
singular metric.

As an important example, any global section s ∈ H0(X,L) defines a singular metric

φ := log |s|

on L as follows: for any x ∈ X we have φ(s(x)) = 0 if s(x) 6= 0, whereas φ ≡ −∞ on L×x
if s(x) = 0. In other words, φ(v) = log |v/s(x)| for v ∈ L×x . Note that log |s| restricts to a
continuous metric over the Zariski open set {s 6= 0} ⊂ X. When k is trivially valued, any
singular metric φ = log |s| is homogeneous in the sense that φt = φ for t ∈ R×+.

Consider a non-Archimedean field extension k′/k, and set X ′ = Xk′ , L
′ = Lk′ . If s ∈

H0(X,L) and s′ ∈ H0(X ′, L′) is defined from s by ground field extension, then log |s′| =
log |s|◦π, where π : L′ → L is the canonical map. When k is trivially valued and k′ = k(($)),
this implies log |s| = log |s′| ◦ σ, where σ : L→ L′ is the Gauss extension.

2.3. FS metrics. Then next class of metrics will, for the purposes of this paper, play the
role of positive smooth metrics in complex geometry.
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Definition 2.1. A Fubini-Study metric ( FS metric for short) on a line bundle L on X is
a metric φ of the form

φ :=
1

m
max
α

(log |sα|+ λα), (2.2)

where m ≥ 1, (sα) is a finite set of global sections of mL without common zero, and λα ∈ Z.

We write FS(L) for the space of FS metrics on L. The terminology stems from the
observation that if X = PN , m = 1, λα = 0 and the sα are homogenous coordinates, then φ
is the (non-Archimedean counterpart of the) Fubini-Study metric on O(1). The constants
λα are only necessary when k is trivially valued, since otherwise the assumption log |k×| ⊃ Z
allows us to absorb λα into sα.

Remark 2.2. If L is ample and m� 0, so that mL is very ample, we may in (2.2) assume
that the sections (sα)α∈A of mL define an embedding of X into projective space. Indeed,
pick additional sections (sα)α∈A′ of mL such that (sα)α∈A∪A′ gives an embedding into PN ,
and set λα � 0 for α ∈ A′. Then maxα∈A(log |sα|+ λα) = maxα∈A∪A′(log |sα|+ λα).

Remark 2.3. The terminology differs slightly from [BE17], where real coefficients λα are
allowed in the definition of FS metrics. The present convention is, however, sufficient for
the purposes of this article

Note that any FS metric is continuous, and that L admits an FS metric iff L is semiample.
The following lemma follows easily from the definition.

Lemma 2.4. With notation as above, we have:

(i) if φ ∈ FS(L), then φ+ c ∈ FS(L) for any c ∈ Q;
(ii) if φ1, φ2 ∈ FS(L), then max{φ1, φ2} ∈ FS(L);

(iii) if φi ∈ FS(Li) for i = 1, 2, then φ1 + φ2 ∈ FS(L1 + L2);
(iv) if φ is a metric on L, and mφ ∈ FS(mL) for some m ≥ 1, then φ ∈ FS(L);
(v) if φ1, φ2 ∈ FS(L), θ1, θ2 ∈ Q+, and θ1 + θ2 = 1, then θ1φ1 + θ2φ2 ∈ FS(L);

(vi) if f : X ′ → X is (induced by) a morphism of k-varieties, and φ ∈ FS(L) for some
line bundle L on X, then f∗φ ∈ FS(f∗L).

2.4. DFS metrics. Then next class of metrics will, for us, play the role of smooth metrics
in complex geometry.

Definition 2.5. A DFS metric on a line bundle L on X is a metric of the form φ1 − φ2,
with φi an FS metrics on Li, i = 1, 2, where L = L1 − L2. A DFS-function on X is a DFS
metric on OX .

Write DFS(L) for the set of DFS metrics on a line bundle L, and DFS(X) for the set of
DFS functions on X. Every DFS metric is continuous. If X is quasiprojective, every line
bundle on X admits a DFS metric.

Lemma 2.6. If L is ample, every DFS function on X is a difference of FS metrics on L.

Proof. Consider ϕ ∈ DFS(X). By definition, there exists a semiample line bundle M and
ψ1, ψ2 ∈ FS(M) such that ϕ = ψ1−ψ2. Pick b ≥ 1 large enough so that bL−M is base point
free, and pick any φ ∈ FS(bL−M). Then φi := b−1(ψi + φ) ∈ FS(L) and ϕ = φ1 − φ2. �

Theorem 2.7. The set DFS(X) is a Q-vector subspace of C0(X) which is stable under
max and contains all constants. If X is quasiprojective, DFS(X) separates points. If X is
projective, DFS(X) is dense in C0(X).
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Corollary 2.8. If X is projective, then for every line bundle L, DFS(L) is dense in the set
of continuous metrics on L.

Proof of Theorem 2.7. It follows easily from Lemma 2.4 that DFS(X) is a Q-vector space
which is stable under max and contains all constant functions.

Now assume X is quasiprojective. It only remains to prove DFS(X) separates points.
Indeed, if X is further projective, then X is compact, so the Boolean version of the Stone-
Weierstrass theorem implies that DFS(X) is dense in C0(X).

Being quasiprojective, X embeds into some projective space, so since DFS-functions are
clearly stable under pull-back, we are reduced to the case X = Pn

k . Now let x, y ∈ X be two
distinct points. By considering a hyperplane not containing x or y, we may further assume
x, y ∈ An

k ⊂ Pn
k . Since x 6= y, there exists a polynomial f ∈ k[t1, . . . , tn], say of degree

d ≥ 0, such that |f(x)| 6= |f(y)|. Suppose |f(x)| < |f(y)| for definiteness and write f = s/td0,
where s ∈ H0(Pn

k ,O(d)). Given m ∈ Z and λα ∈ Z, 0 ≤ j ≤ n, set

ψ = d max
0≤j≤n

(log |tα| − λα)

and
u := max{log |s|, ψ −m} − ψ = max{log |s| − ψ,−m}.

Then ψ is an FS metric on O(1) and u a DFS-function on Pn
k . Assume λ0 = 0 and λα � 1

for j > 0. Then ψ(x) = d log |t0(x)| and ψ(y) = d log |t0(y)|. If m > − log |f(y)|, this implies

u(x) = max{log |s(x)| − d log |t0(x)|,−m} = max{log |f(x)|,−m}
< max{log |f(y)|,−m} = max{log |s(y)| − d log |t0(y)|,−m} = u(y),

completing the proof. �

2.5. Smooth and regularizable metrics. We now comment on the relation of FS metrics
and DFS metrics to the point of view of Chambert-Loir and Ducros in [CD12].

In our study, DFS (resp. FS) metrics, play the role of smooth (resp. smooth positive) met-
rics in complex geometry. This is in line with earlier work by Zhang [Zha95], Gubler [Gub98],
Chambert-Loir [CL06] and others, but differs from the point of view by Chambert-Loir and
Ducros in [CD12].

Indeed, a metric φ on a line bundle L is smooth (resp. smooth psh) in the sense of [CD12]
iff for every x ∈ X, there exists an open subset U ⊂ X of x, nonvanishing sections
s1, . . . , sN ∈ Γ(U,L), and a smooth (resp. smooth convex) function χ : RN → R such that
φ = χ(log |s1|, . . . , log |sN |) on p−1(U). A continuous metric φ is (locally) psh-regularizable it
is locally a uniform limit of smooth psh metrics. Finally, a continuous metric is regularizable
if it is a difference of psh-regularizable metrics.

Lemma 2.9. Any FS metric is psh-regularizable, and any DFS metric is regularizable.

The second statement is indeed a consequence of the first, which is proved exactly as
in [CD12, 6.3.2].

2.6. Ground field extension and scaling. Next we consider how FS metrics and DFS
metrics behave under ground field extension, and under scaling in the trivially valued case.

Proposition 2.10. Consider a non-Archimedean field extension k′/k. Let L be a line bundle
on X, set L′ = Lk′, and let π : L′ → L be the canonical map.
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(i) If φ ∈ FS(L), then φ ◦ π ∈ FS(L′).
(ii) If φ ∈ DFS(L), then φ ◦ π ∈ DFS(L′).

Proof. It suffices to prove (i). Write φ = 1
m maxα(log |sα| + λα), where λα ∈ Z and sα are

global sections of mL without common zero. The sections sα induce global sections s′α of
mL′ without common zero, and φ ◦ π = 1

m maxα(log |s′α|+λα), so φ ◦ π is an FS metric. �

Proposition 2.11. Suppose k is trivially valued and set k′ = k(($)). Let L be a line bundle
on X, L′ = Lk′, π : L′ → L the canonical map, and σ : L→ L′ the Gauss extension.

(i) If φ′ ∈ FS(L′), then φ′ ◦ σ ∈ FS(L); further, φ′ ◦ σ ◦ π ≥ φ′.
(ii) If φ′ ∈ DFS(L′), then φ′ ◦ σ ∈ DFS(L).

Proof. It suffices to prove (i). Since log |k′×| = Z, we can write any FS metric on L′ as
φ′ = m−1 maxα∈A log |s′α|, where the s′α are finitely many sections of mL′ without common
zero. For α ∈ A, we can write s′α =

∑
j $

js′α,j , where each s′α,j arises from a section

sα,j ∈ H0(X,mL) via ground field extension. For each α we then have

log |s′α| ◦ σ = max
j
{log |s′α,j | ◦ σ − j} = max

j
{log |sα,j | − j}

on L, and hence

φ′ ◦ σ = m−1 max
α,j
{log |sα,j | − j}. (2.3)

Since the sections sα,j , α ∈ A, j ∈ Z have no common zero on X, there exists a finite subset
J ⊂ Z such that the same is true for α ∈ A, j ∈ J , and the right-hand side of (2.3) is
unchanged if we only take the max over α ∈ A and j ∈ J . Thus φ′ ◦ σ ∈ FS(L). Further,

φ′ ◦ σ ◦ π = m−1 max
α,j

(log |s′α,j | − j) ≥ m−1 max
α

log |
∑
j

$js′α,j | = φ′,

which completes the proof. �

Proposition 2.12. Assume k is trivially valued. Let L be a line bundle on X and φ a
metric on L. For t ∈ R×+, let φt be the scaled metric on L as in (2.1).

(i) If φ ∈ FS(L), then φt ∈ FS(L) for t ∈ Q×+.

(ii) If φ ∈ DFS(L), then φt ∈ DFS(L) for t ∈ Q×+.

Thus Q×+ acts on FS(L) and DFS(L).

Proof. It suffices to prove (i). We can write

φ = 1
m max

α
(log |sα|+ λα), (2.4)

where m ≥ 1, the sα are sections on mL without common zero, and λα ∈ Z. Since L→ X
is equivariant for the R×+-action, we have sα(xt) = sα(x)t for x ∈ X, t ∈ R×+; hence

φt = 1
m max

α
(log |sα|+ tλα), (2.5)

and the result follows. �
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2.7. Model metrics. For the rest of §2, assume X is projective. We will give geometric
interpretations of FS metrics and DFS metrics.

A model of a line bundle L on X consists of a model X of X together with a Q-line bundle
L on X and an isomorphism L|Xη

∼→ Lsch. A model L is ample (resp. semiample, nef ) if it
is relatively ample (resp. semiample, relatively nef) for the morphism X → Spec k◦.

Any model L defines a metric φL on L as follows. First suppose L is a line bundle. Given
x ∈ X, set ξ = redX (x) ∈ X0 and pick a local section s ∈ Γ(U ,L) defined in a Zariski open
neighborhood U of ξ, such that s(ξ) 6= 0. If U = (U∩Xsch)an, then x ∈ U , s defines a section
of L on U , and we declare φL(s(x)) = 0. When L is a Q-line bundle, we set φL := m−1φmL
for m sufficiently divisible.

A metric of the form φL is called a model metric. If φi is a model metric on Li, i = 1, 2,
then φ1 − φ2 is a model metric on L1 − L2. If φ is a metric on L and a ∈ Z \ {0}, then φ is
a model metric on L iff aφ is a model metric on aL.

Proposition 2.13. Assume k is nontrivially valued, and let L be a line bundle on X.

(i) A DFS metric on L is the same as a model metric.
(ii) If L is semiample, then an FS metric on L is the same thing as a model metric

defined by a semiample model L of L
(iii) If L is ample, then an FS metric on L is the same thing as a model metric defined

by an ample model L of L.

Proof. Note that (i) follows from (iii), since any DFS metric is a difference of FS metrics on
ample line bundles, and any model metric is a difference between model metrics defined by
ample models.

To prove (ii), assume L is semiample and consider a metric φ on L. First suppose φ = φL
is a model metric, with L a semiample Q-line bundle. To prove that φL is an FS metric,
we may, after replacing L and L by a suitable multiple, assume L is a base point free line
bundle. Let (s′j)0≤j≤N be global sections of L without common zero on X . For each j, let

sj ∈ H0(X,L) = H0(Xsch, Lsch) be the restriction of s′j to Xsch. Then (sj)0≤j≤N have no

common zero on X, so ψ := maxj log |sj | is an FS metric on L. We claim that ψ = φ, which
will complete the proof. Pick any point x ∈ X, and set ξ := red(x) ∈ X0. We may assume
s′0(ξ) 6= 0. By the definition of φ, this implies φ(s0(x)) = 0. On the other hand, for any j, we
have s′j/s

′
0 ∈ OX ,ξ, so sj/s0 is a regular function at x, and |sj(x)/s0(x)| ≤ 1, by the definition

of the reduction map. It follows that ψ = log |s0| on Lx, and hence ψ(s0(x)) = 0 = φ(s0(x)),
which completes the proof.

Conversely, suppose φ is an FS metric, say φ := m−1 max0≤j≤N (log |sα| + λj), where
λj ∈ Z and the sj are global sections of mL without common zero. Replacing L and φ
by mL and mφ, respectively, we may assume m = 1 and that L is very ample. Since
log |k×| ⊃ Z, we may further assume λj = 0 for all j. Thus φ := max0≤j≤N log |sj |. The

sections sj define a morphism f : Xsch → PNk , and L = f∗OPNk
(1). Pick any model X ′ of

X and let X be the scheme theoretic closure of the graph of f in X ×Spec k◦ PNk◦ . Then f

extends to a morphism X → PNk◦ , and if we set L := f∗OPN
k◦

(1), then (X ,L) is a semiample

model of (X,L). We claim that φ = φL. But by construction, the sections sj extend to
global sections sj of L without common zeros. The same argument as above now shows that
φ = φL, completing the proof of (ii).
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Finally assume L is ample. We only need to show any FS metric φ on L is a model metric
associated to an ample model of L. Reasoning as above, and also invoking Remark 2.2, we
may assume that L is very ample and that φ := max0≤j≤N log |sα|, where the sj define an

embedding Xsch ↪→ PNk into projective space. Let X be the closure of the image of Xsch in

PNk◦ , and L := OPN
k◦

(1)|X . Then (X ,L) is an ample model of (X,L) and φ = φL. �

If (X ,L) and (X̃ , L̃) are models of (X,L) such that X̃ dominates X , and L̃ is the pullback

of L under the morphism X̃ → X , then L and L̃ give rise to the same model metric on L,
φL = φL̃. We say that a metric φ ∈ DFS(L) is determined on a model X of X if φ = φL for
a Q-line bundle L on X . Two Q-line bundles L1 and L2 on X define the same metric on L
iff L1 − L2 is numerically trivial [GM16, 4.5].

2.8. The trivial metric. If k is trivially valued, the only model of (X,L) is (Xsch, Lsch).
This gives rise to the trivial metric φtriv = φtriv,L on L. The assignment L→ φtriv,L is linear
in L, in the sense that φtriv,L1 + φtriv,L2 = φtriv,L1+L2 and φtriv,mL = mφtriv,L for m ∈ Z.
The following result therefore shows that the trivial metric on a semiample (resp. arbitrary)
line bundle is an FS metric (resp. a DFS metric).

Lemma 2.14. If L is base point free and (sα) are finitely many global sections of L without
common zero, then the trivial metric on L is given by φtriv = maxα log |sα|.

Proof. Set φ := maxα log |sα|. Given x ∈ X, set ξ := red(x) ∈ X, and consider a local
section s of L defined in a Zariski open neighborhood of ξ such that s(ξ) 6= 0. We must
prove that φ(s(x)) = maxα log |sα(x)/s(x)| = 0. But since ξ = red(x) and s(ξ) 6= 0, we have
|sα(x)/s(x)| ≤ 1 for all α, with equality iff sα(ξ) 6= 0. �

The trivial metric allows us to identify metrics on L with functions on X: if φ is a metric
on L, then φ − φtriv is a function on X; the trivial metric itself corresponds to the zero
function. The trivial metric is homogeneous, i.e. invariant under the scaling action by R×+.

2.9. Metrics from test configurations. In this section, k is trivially valued. We shall
show that DFS metrics are exactly metrics arising from test configurations. These are the
only metrics considered in [BHJ17]. The next definition follows loc. cit.

Definition 2.15. A test configuration L for L consists of a test configuration X of X in
the sense of Definition 1.7, together with the following data:

(iv) a Gm-linearized Q-line bundle L on X ;
(v) an isomorphism L|X1 ' L.

If more precision is needed, we say that (X ,L) is a test configuration for (X,L). A test
configuration (X ,L) is said to be ample (resp. semiample, nef) if L is relatively ample (resp.
semiample, nef) for the canonical morphism L → A1.

The trivial test configuration of (X,L) is (Xsch ×A1, Lsch ×A1), where the action of Gm

occurs on the A1-factors. A test configuration (X̃ , L̃) dominates another test configuration

(X ,L) for (X,L), if X̃ dominates X and L̃ is the pullback of L under X̃ → X .
To explain how a test configuration induces a metric, set k = k(($)) and let (X ′, L′) =

(Xk′ , Lk′) be the ground field extension. Suppose (X ,L) is a test configuration for (X,L)
dominating the trivial test configuration. Then the base change (X ′,L′) of (X ,L) via the



22 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

map Spec k[[$]]→ Spec k[$] is a model of (X ′, L′), and hence defines a model metric φL′ on
L′. Using the Gauss extension σ : L→ L′, this gives rise to a metric φL = φL′ ◦ σ on L.

When L is a line bundle, any section s ∈ H0(X,L) has a Gm-invariant extension s̄ ∈
H0(X \ X0,L). Conversely, any section s ∈ H0(X ,L) decomposes as s =

∑
j $

j s̄j , where

sj ∈ H0(X,L).

Remark 2.16. When L (and hence L) is a base point free line bundle, the induced metric
φL on L can be described as follows. Consider any point x ∈ X, set ξ := redX (x) ∈ X0,
and pick a global section s ∈ H0(X ,L) such that s(ξ) 6= 0. Write s =

∑
j $

j s̄j, where

sj ∈ H0(X,L). For any j such that $j s̄j is regular and does not vanish at ξ, we then have
φL(sj(x)) = −j; this determines φL on L×x .

If (X ,L) and (X̃ , L̃) are test configurations for (X,L), with (X̃ , L̃) dominating (X ,L),

then the model (X̃ ′, L̃′) dominates (X ′,L′), so φL̃′ = φL′ and finally φL̃ = φL. If L is an
arbitrary test configuration for L, we can therefore define the metric φL on L as the metric
defined by any test configuration dominating both (X ,L) and the trivial test configuration.
We say that an DFS metric φ is determined on a test configuration X for X, if φ = φL for
some test configuration (X ,L).

When L is ample, we say, following [BHJ17], that a metric on L is positive if it is defined
by a semiample test configuration for L. By [BHJ17, Lemma 6.3], every positive metric
is associated to a unique normal ample test configuration for L, but the latter may not
dominate the trivial test configuration in general.

Proposition 2.17. Let L be a line bundle on X.

(i) A DFS metric on L is the same thing as a metric defined by a test configuration.
(ii) If L is semiample, then an FS metric on L is the same thing as a metric defined by

a semiample test configuration for L.
(iii) If L is ample, then an FS metric on L is the same thing as a positive metric on L.

Proof. Most of the statements follows from Proposition 2.13. Set k′ = k(($)), X ′ = Xk′ ,
L′ = Lk′ , and let π : L′ → L denote the canonical map. Consider a metric φ on L and set
φ′ := φ ◦ π,

If φ = φL for a test configuration L, then φ′ = φL′ , where L′ is the associated model of
L′. By Proposition 2.13, φ′ is a DFS metric, hence so is φ = φ′ ◦σ by Proposition 2.11. The
same argument shows that if L is semiample, then φ is an FS metric.

It only remains to prove that any FS metric φ is defined by a semiample test configuration.
Passing to multiples of L and φ, respectively, we may assume φ = max0≤j≤N (log |sj | − λj),
where N ≥ 0, sj ∈ H0(X,L) = H0(Xsch, Lsch), λj ∈ Z for each j, and the sections sj have

no common zero. Define sections s′j of Lsch × A1 over Xsch × Gm by s′j := $λjsj . Then

(s′j)0≤j≤N define a rational map τ : Xsch×A1 99K PN ×A1 that is regular outside the central

fiber. Let X be the graph of this rational map and L the pullback of O(1)×A1. Then (X ,L)
is a semiample test configuration for (X,L), and φ = φL. This completes the proof. �

We later need an alternative description of DFS functions on X, analogous to [BFJ16a,
Proposition 2.2]. Recall that a flag ideal is a Gm-invariant ideal on Xsch × A1 cosupported
on the central fiber. Any flag ideal a defines continuous function ϕa := log |a| ◦ σ on X,
where σ : X → X ×A1 is the Gauss extension. Note that ϕa ≡ −1 for a = ($).
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Proposition 2.18. The Q-vector space generated by all functions ϕa coincides with DFS(X),
and is hence dense in C0(X).

Proof. It suffices to prove the following two statements:

(i) if φ ∈ FS(L) and φ ≤ φtriv, then φ− φtriv = m−1ϕa for some m ≥ 1 and flag ideal a;
(ii) if a is a flag ideal, then there exist L and φ ∈ FS(L) such that φ = φtriv + ϕa.

Here φtriv denotes the trivial metric on L.
To prove (i), write φ = m−1 max0≤j≤N{−j + maxs∈Aj log |s|}, where m,N ≥ 1 and Aj is

a finite set of global sections of mL, and the sections in AN have no common zero. Let aj
be the base ideal defined by the sections in Aj , Then aN = OXsch , a :=

∑N
0 $jaj is a flag

ideal, and φ = φtriv +m−1ϕa.
Now suppose a =

∑N
j=0($j)aj , is a flag ideal, where the aj are ideals on Xsch and

aN = OXsch . Pick L ample such that L⊗ aj is globally generated, say by sections (sj,l)l∈Lj
for all j. Then ϕa = maxj(maxl log |sj,l| − j)− φtriv, proving (ii). �

2.10. Scaling and base change. Assume k is trivially valued. The scaling action on
metrics can then be interpreted geometrically as a base change, as in [BHJ17, §6.3]. Indeed,
consider a normal test configuration (X ,L) for (X,L) and an integer d ≥ 1. As in §1.7, let

X̃ be the normalization of the base change under $ 7→ $d, and g : X̃ → X the induced map.

Set L̃ = g∗L. Then (X̃ , L̃) is a normal test configuration for (X,L).

Proposition 2.19. If φ = φL and φ̃ = φL̃ are the model metrics associated to L and L̃,

respectively, then φ̃ = φd, i.e. φ scaled by a factor d.

Proof. The statement is true when (X ,L) is the trivial test configuration, and φ = φtriv. By
linearity it therefore suffices to treat the case when L = OX and L = OX (D) for a divisor
D supported on the central fiber. We then view φ = φD as a function on X and must
show that φg∗D(xd) = dφD(x) for all x ∈ X. Since φD is continuous, it suffices to do this

for x ∈ XShi. Passing to a higher model, we may assume that x = xE for an irreducible

component E ⊂ X0. Let Ẽ be an irreducible component of X̃0 such that g(Ẽ) = E. By

Lemma 1.8 we have xẼ = xdE . Further, bEeẼ = dbẼ , where bE = ordE(X0), bẼ = ordẼ(X̃0)
and eẼ = ordẼ(g∗E). This leads to

φg∗D(xdE) = φg∗D(xẼ) = b−1
Ẽ

ordẼ(g∗D) = b−1
Ẽ
eẼ ordE(D) = db−1

E ordE(D) = dφD(xE),

completing the proof. �

2.11. Shilov points and the Izumi inequality. We will later need two results on the
uniform behavior of functions on X of the form φ−φref , where φref ∈ DFS(L) is a reference
metric (assumed to be the trivial metric when k is trivially valued) and φ ranges over metrics
in FS(L).

The first result concerns the suprema of such functions.

Lemma 2.20. For any φref ∈ DFS(L), there exists a finite subset Z ⊂ XShi of Shilov points
such that supX(φ− φref) = maxZ(φ− φref) for every φ ∈ FS(L).

Proof. By Proposition 2.13, φref is a model metric, associated to a model X of X. In this
case, we can take Z = Γ(X ) ⊂ XShi, the finite set of Shilov points associated to X . Indeed,
this follows from [BE17, Lemma 4.18] when φ = log |s| for a nonzero section s ∈ H0(X,L),
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or more generally, φ = 1
m log |s| for s ∈ H0(X,mL). Taking maxima yields the same result

for FS metrics φ. �

The second result is deeper, and can be viewed as a global version of the Izumi inequality,
see [BFJ14] for a discussion. A proof when k is discretely valued case of residue characteristic
zero, can be found in [BFJ16a, §6.1]. The result in the trivially valued case is equivalent
to [BKMS16, Proposition 2.12]. Our proof is completely different from the ones in loc. cit.

Theorem 2.21. For any metric φref ∈ DFS(L) and any two quasimonomial points x1, x2 ∈
Xqm, there exists a constant C = C(L, x1, x2, φref) such that

|(φ− φref)(x1)− (φ− φref)(x2)| ≤ C (2.6)

for any metric φ ∈ FS(L).

Proof. We may assume dimX ≥ 1. We first prove that if the statement is true over a non-
Archimedean extension k′ of k, then it is true over k. Indeed, set X ′ = Xk′ , L

′ = Lk′ , and
write π for the canonical maps X ′ → X and L′ → L. Since xi ∈ Xqm, we have d(xi) = n.
By [Berk90, 9.1.4], there exist points x′i ∈ π−1(xi), i = 1, 2, such that d(x′i) ≥ d(xi) = n. But
then d(x′i) = n by the Abhyankar inequality, so x′i ∈ X ′qm. Now φ′ref := φref ◦ π ∈ DFS(L′)
and φ′ := φ ◦ π ∈ FS(L) for any φ ∈ FS(L). Further, (φ′ − φ′ref)(x

′
i) = (φ − φref)(xi), for

i = 1, 2, so we can pick C = C(L′, x′1, x
′
2, φ
′
ref).

We may therefore assume that k is algebraically closed and nontrivially valued. We may
of course also assume x1 6= x2. Let us first treat the case when X is the analytification
of a smooth projective curve. The result can then be proved using potential theory, as
systematically developed by Thuillier [Thu05]; see also [BR10, BPR11, Jon12].

We can equip H := X \Xrig ⊃ Xqm with a natural structure of a metric space. For any
strictly semistable model X of X, the dual graph (or skeleton) ∆X is a connected metrized
graph that embeds isometrically into H. Further, any point x ∈ Xqm belongs to some dual
graph ∆X . Pick a strictly semistable model X of X such that x1, x2 ∈ ∆X and φref is
associated to a Q-line bundle L on X . Let V ⊂ XShi be the set of vertices of ∆ := ∆X .
Each x ∈ V corresponds to an irreducible component E of the special fiber of X , and we set
r(x) := deg(Lref |E) ∈ Q. (The measure

∑
x∈V r(x)δx on X is the Monge-Ampère measure

ddcφref , see §3.1.)
Given φ ∈ FS(L), the restriction of the function ϕ := φ − φref to ∆ is then continuous

and has the following properties:

(i) ϕ is convex and piecewise affine (with rational slopes) on each edge of ∆;
(ii) for each vertex x ∈ V , we have r(x) +

∑
~v∈Ex D~vϕ ≥ 0, where Ex is the set of edges

of ∆ emanating from x and D~vϕ is the slope of ϕ at x along each such edge.

It is now easy to see from (i)–(ii) that |D~vϕ| is uniformly bounded independently of ϕ.
From the convexity statement in (ii) it now follows that ϕ|∆ is uniformly Lipschitz. Since
x1, x2 ∈ ∆, the estimate (2.6) follows.

The case of curves being settled, the general case of Theorem 2.21 is now a consequence
of Lemma 2.22 below. Indeed, the line bundle M := f∗L on Y is ample. If we write
f : M → L for the canonical map, then ψref := φref ◦ f ∈ DFS(M). Further, if φ ∈ FS(L),
then ψ := φ ◦ f ∈ FS(M), and (φ − φref)(xi) = (ψ − ψref)(yi). We can therefore pick
C = C(M,y1, y2, ψref). �
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Lemma 2.22. For any two quasimonomial points x1, x2 ∈ Xqm, there exists an algebraically
closed extension k′/k, a morphism f : Y → Xk′ from a smooth projective k′-analytic curve
and quasimonomial points y1, y2 ∈ Y qm such that f(yi) = xi.

The proof relies on the next result.

Lemma 2.23. Let k be a non-Archimedean field, X a k-analytic space of pure dimension
n ≥ 1, and x ∈ Xqm a quasimonomial point. We can then find a non-Archimedean field
extension k′/k such that the preimage of x under the induced map π : Xk′ → X has nonempty
topological interior.

Proof of Lemma 2.23. We are grateful to A. Ducros and J. Poineau for help with the fol-
lowing argument.

For any `/k, the `-analytic space X` has dimension n, the map π` : X` → X is continuous
and surjective, and by [Berk90, 9.1.4] there exists a quasimomonial point y ∈ π−1

` (x). We
may therefore replace k by any non-Archimedean extension.

In particular, we may assume k algebraically closed and nontrivially valued. By [Poi13,
Corollaire 3.14], for any non-Archimedean extension k′/k, we have a canonical section
σ : X → X ′ of π. Indeed, the norm on the Banach k-algebraM(H(x)⊗̂kk′) is multiplicative
and defines a point σ(x) =: x′ in π−1{x} = M(H(x)⊗̂kk′) ⊂ X ′. It follows from [Berk90,
9.1.4, 9.3.2] that x′ is also quasimonomial. If we choose k′ := H(x), then |H(x′)×| = |k′×|,
so t(x′) = 0, and hence s(x′) = n, i.e. x′ is Shilov.

We may therefore assume that k is algebraically closed, nontrivially valued, and that x is
Shilov. We will prove that any algebraically closed extension k′ of H(x) yields the desired
conclusion.

By [Poi13, 4.16], there exists a strictly k-affinoid Laurent domain V = M(A) ⊂ X
whose Shilov boundary is the singleton {x}. Then V ′ = Vk′ =M(A′) is a Laurent domain
in X ′ = Xk′ , with Shilov boundary {x′}, where x′ = σ(x), and A′ = A⊗̂kk′. Consider

the reduction maps red: V → Ṽ and red′ : V ′ → Ṽ ′ = Spec Ã′, where Ã′ = Ã ⊗k̃ k̃
′. If

π : V ′ → V is the canonical map, and π̃ : Ṽ ′ → Ṽ the reduction, then π̃ ◦ red′ = red ◦π.
The canonical character A → H(x) → k′ and the identity on k′ induce a character

χ : A′ → k′. Let y′ ∈ V (k′) be the rigid point defined as the image of the corresponding map
M(k′)→M(AV ′) = V ′. Its reduction ỹ′ = red′(y′) is a closed point, given by the image of

the morphism Spec k̃′ → Spec Ã′ = Ṽ ′. On the one hand, π̃(ỹ′) is the generic point of Ṽ , so

π(y′) = x. On the other hand, the preimage under red′ of any closed point in Ṽ ′ is open in
V ′, and hence so is its preimage in X ′. Thus y′ lies in the topological interior of π−1(x) in
X ′. �

Proof of Lemma 2.22. Lemma 2.23 yields an algebraically closed k′/k such that π−1(xi) ⊂
X ′ has nonempty interior for i = 1, 2. Since k′ is nontrivially valued, X ′rig is dense in
X ′, so we can pick x′i ∈ X ′rig ∩ π−1(xi) for i = 1, 2, and it is then easy to construct
an irreducible curve on the variety Xk′ passing through x′1, x

′
2 (see for instance [Mum70,

Lemma, §2.6, p.53]). Let Y be the normalization of this curve and Y be the corresponding
k′-analytic space. We then have points zi ∈ Y (k′), i = 1, 2, and a map f ′ : Y → X ′ such
that f ′(zi) = x′i, i = 1, 2. Write f := π ◦ f ′ : Y → X. Since f−1(xi) = (f ′)−1π−1(xi) is open
in Y and nonempty, it contains some point yi ∈ Y qm, i = 1, 2. �
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3. The Monge-Ampère operator on DFS metrics

In this section we recall the definition of the mixed Monge-Ampère operator on DFS
metrics, as well as the energy functionals E, I and J on FS metrics. We also prove estimates
that are, for the most part, well known in the Archimedean setting. Unless otherwise stated,
k is an arbitrary non-Archimedean field, and X is a geometrically integral projective variety
over k.

3.1. The mixed Monge-Ampère operator. Let φi be a DFS metric on a line bundle Li
for 1 ≤ i ≤ n. To this data is associated a mixed Monge-Ampère measure

ddcφ1 ∧ · · · ∧ ddcφn.

This was defined by Chambert-Loir [CL06] when k is discretely valued and contains a count-
able dense subfield, and extended by Gubler [Gub08] to the general nontrivially valued case.

Later, Chambert-Loir and Ducros [CD12] developed a general theory of forms and currents
on Berkovich spaces using ideas from tropical geometry, and used their theory to define mixed
Monge-Ampère measures of regularizable metrics, and hence of DFS metrics.11 See §2.5 for
the terminology used in what follows, and [CD12] for details.

First, when the φi are smooth metrics, ddcφi is defined as a (1, 1)-form, and the wedge
product ddcφ1 ∧ · · · ∧ ddcφn is a smooth (n, n)-form on X, which is then identified with a
measure on X. It is a positive measure when the φi are smooth psh.

Second, when the φi are psh-regularizable, i.e. locally given as uniform limits of smooth

psh metrics (φji )j , the locally defined measures ddcφj1 ∧ · · · ∧ ddcφ
j
n converge as j →∞ to a

measure ddcφ1 ∧ · · · ∧ ddcφn independent on the choice of local regularization φji .
The assigment (φ1, . . . , φn) 7→ ddcφ1 ∧ · · · ∧ ddcφn is symmetric and multilinear on the

semigroup of n-tuples of psh-regularizable metrics. We can therefore define ddcφ1∧· · ·∧ddcφn
when the φi are regularizable (i.e. differences of psh-regularizable metrics).

By Lemma 2.9, any FS metric (resp. DFS metric) is psh-regularizable (resp. regularizable),
so the mixed Monge-Ampère measure ddcφ1∧· · ·∧ddcφn is a positive Radon measure (resp.
Radon measure) on X when the φi are FS metrics (resp. DFS metrics).

We need the following result, which in implicit in [CD12] (see [BE17, Lemma 6.2]).

Lemma 3.1. For 1 ≤ i ≤ n, let φi be a regularizable metric on a line bundle Li. Let k′/k be
a non-Archimedean field extension, write π for the canonical maps Xk′ → X and Li,k′ → Li,
and set φ′i := φi ◦ π for 1 ≤ i ≤ n. Then

ddcφ1 ∧ · · · ∧ ddcφn = π∗(ddcφ′1 ∧ · · · ∧ ddcφ′n). (3.1)

As a consequence, we have∫
X
ψ ddcφ1 ∧ · · · ∧ ddcφn =

∫
X′
ψ′ ddc(φ′1 ∧ · · · ∧ ddcφ′n) (3.2)

for any continuous function ψ on X, where ψ′ = ψ ◦ π.

Proposition 3.2. If φi is a DFS (resp. FS) metrics on a line bundle Li, 1 ≤ i ≤ n, then the
mixed Monge-Ampère measure ddcφ1 ∧ · · · ∧ ddcφn is a finite atomic signed (resp. positive)
measure on Xqm of total mass (L1 · . . . · Ln).

11Alternatively, the approach in [GK17] treats DFS metrics more directly, without regularization.



SINGULAR SEMIPOSITIVE METRICS 27

Proof. When k is nontrivially valued, this was proved in [CD12, 6.9.2], see §3.2 below. The
mixed Monge-Ampère measure is supported on Shilov points in this case.

When k is trivially valued, we get the same result using Lemma 2.22 with the ground
field extension k′ = k(($)). In this case, the Monge-Ampère measure is now supported on
Shilov points and the generic point of X, see §3.4. �

3.2. Geometric description. Suppose k is nontrivially valued. Then each DFS metric φi,
1 ≤ i ≤ n, is a model metric associated to a model Li of L. We may assume that the Li are
all Q-line bundles on a common model X of X. Let Ei, i ∈ I be the irreducible components
of the special fiber X0, and let xj ∈ XShi be the Shilov point associated to Ej . In this case,
we have

ddcφ1 ∧ · · · ∧ ddcφn =
∑
j

λjδxj , (3.3)

where λj ∈ R, see [CD12, 6.9.2]. If the non-Archimedean field k is stable, then

λj = [|H(x)×| : |k×|](L1|Ej · . . . · Ln|Ej ), (3.4)

see [CD12, 6.9.3]. Important cases of stable fields include algebraically closed fields, and
trivially or discretely valued fields.12

Let us say a few more words about Gubler’s construction in [Gub08], adapted (and spe-

cialized) to our situation. Assume k is algebraically closed. For 0 ≤ i ≤ n, let φ̂i = (Li, φ, si)
be the datum of a line bundle Li of X, a model (i.e. DFS) metric φi on Li, and a rational sec-
tion si of Li. Assuming that the divisors of the si have empty intersection, Gubler [Gub98]

defines a local height λφ̂0,...,φ̂n of X. This is symmetric and multilinear in (φ̂0, . . . , φ̂n). Now

suppose that L0 = OX , so that φ0 is a DFS-function, and that s0 ≡ 1. In this case, the
local height λφ̂0,...,φ̂n is independent of s1, . . . , sn. Further, φ0 7→ λφ̂0,...,φ̂n is linear and given

by integration against the Monge-Ampère measure. In other words,

λφ̂0,...,φ̂n =

∫
φ0 dd

cφ1 ∧ · · · ∧ ddcφn. (3.5)

3.3. The discretely valued case. When k is discretely valued, the special fiber of X is a
Cartier divisor X0 =

∑
j bjEj , where bj ∈ Z>0. In this case, (3.3)–(3.4) give

ddcφ1 ∧ · · · ∧ ddcφn =
∑
j

bj(L1|Ej · . . . · Ln|Ej )δxj , (3.6)

consistent with the construction in [CL06]. The formula in (3.5) can be interpreted as
follows. Consider any φ0 ∈ DFS(X). We may assume φ0 is determined on X by a Cartier
divisor D =

∑
j rjEj on X supported on the special fiber. We then have∫

φ0 dd
cφ1 ∧ · · · ∧ ddcφn = λφ̂0,...,φ̂n = (D · L1 · . . . · Ln) =

∑
j

rj(L1|Ej · . . . · Ln|Ej ).

12See [BGR, 3.6] for details on stable fields. Recall that we require non-Archimedean fields to be complete.
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3.4. The trivially valued case. When k is trivially valued, we can interpret the mixed
Monge-Ampère measure of DFS metrics in terms of test configurations, in line with [BHJ17].
Indeed, consider metrics φi ∈ DFS(Li), 1 ≤ i ≤ n. These are defined by normal test
configurations (X ,Li) for (X,Li), with X independent of i and dominating the trivial test
configuration.

Now apply Lemma 3.1 to k′ = k(($)). It follows from the discussion in §3.3 that if we
write the central fiber as X0 =

∑
j bjEj , then

ddcφ1 ∧ · · · ∧ ddcφn =
∑
j

bj(L1|Ej · . . . · Ln|Ej )δxj , (3.7)

where xj ∈ X is the point associated to Ej . Further, if ψ ∈ DFS(X) is defined by a
Q-Cartier Q-divisor D =

∑
j rjEj on X , supported on the central fiber, then∫

ψ ddcφ1 ∧ · · · ∧ ddcφn = (D · L1 · . . . · Ln).

Here the intersection number on the right is a sum of intersection numbers on the Ej . There
is also another useful expression. As in [BHJ17, §2.2], we can define canonical compactifica-
tions (X̄ , L̄i) of (X ,Li) (with X̄ still independent of i). We then have∫

ψ ddcφ1 ∧ · · · ∧ ddcφn = (D · L̄1 · . . . · L̄n),

this being an ordinary intersection number on the projective k-scheme X̄ .

Proposition 3.3. Assume k is trivially valued. For 1 ≤ i ≤ n, let φi be a DFS metric on
a line bundle Li on X. If φi,t denotes the scaling of φi by t ∈ Q×+ as in (2.1), then

ddcφ1,t ∧ · · · ∧ ddcφn,t = t∗(ddcφ1 ∧ · · · ∧ ddcφn). (3.8)

As a consequence, for any ψ ∈ DFS(X), we have∫
ψt dd

cφ1,t ∧ · · · ∧ ddcφn,t = t

∫
ψ ddcφ1 ∧ · · · ∧ ddcφn. (3.9)

Proof. Note that (3.9) follows from (3.8), since t∗ψt(x) = ψt(x
t) = tψ(x) for any ψ ∈

DFS(X). Conversely (3.9) implies (3.8), since DFS(X) is dense in C0(X).
Thus it suffices to prove (3.9). Since we are dealing with group actions of Q×+, it suffices

to consider the case when t = d is a positive integer. To do this, we follow [BHJ17, §6.6].
Pick a normal test configuration X for X, dominating the trivial test configuration, Let X ′
be the pullback of X by the map A1

k → A1
k given by $ 7→ $d, and let gd : X ′ → X be the

resulting map. Set L′i = g∗dLi, 1 ≤ i ≤ n and D′ := g∗dD. By Proposition 2.19, φi,d and ψd
are the model metrics associated to L′i and D′, respectively.

The morphism A1
k → A1

k above extends to a morphism P1
k → P1

k, and the compactification
X̄ ′ of X ′ is the base change of X̄ → P1

k with respect to this morphism, so gd extends to a
morphism gd : X̄ ′ → X̄ , and the compactification L̄′i of L′i is equal to g∗dL̄i. Thus∫

ψd dd
cφ1,d ∧ · · · ∧ ddcφn,d = (D′ · L̄′1 · . . . · L̄′n)

= (g∗dD · g∗dL̄1 · . . . · g∗dL̄n) = d(D · L̄1 · . . . · L̄n) = d

∫
ψ ddcφ1 ∧ · · · ∧ ddcφn,

where the third equality follows from the projection formula. �
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3.5. Fundamental properties. We now state two fundamental properties of the Monge-
Ampère operator on DFS metrics. First, we have the following integration by parts formula.

Proposition 3.4. For any DFS-functions f , g on X and DFS metrics φ1, . . . , φn−1 on line
bundles L1, . . . , Ln−1 on X, we have∫

fddcg ∧ ddcφ1 ∧ · · · ∧ ddcφn−1 =

∫
gddcf ∧ ddcφ1 ∧ · · · ∧ ddcφn−1. (3.10)

Proof. After ground field extension, we may assume that k is nontrivially valued. In this
case, we can express both sides of (3.10) as local heights, and the equality follows from (3.5)
and the symmetry of the local height. Alternatively, one can argue using [CD12, 3.12.2]. �

Second, we have the following Cauchy-Schwarz inequality. It is a special case of the local
Hodge index theorem (Theorem 2.1) in [YZ16]. The case when k is discretely or trivially
valued is also treated in [BFJ15, Proposition 2.21] and [BHJ17, Lemma 6.14], respectively.

Proposition 3.5. Let φ1, . . . , φn−1 be FS metrics on semiample line bundles L1, . . . , Ln−1.

(i) The symmetric bilinear form

(f, g) 7→ −
∫
X
fddcg ∧ ddcφ1 ∧ · · · ∧ ddcφn−1

on DFS(X) is positive semidefinite.
(ii) If f ∈ DFS(X) is a nonconstant function, and there exists ε ∈ Q×+ such that φi±εf ∈

FS(Li) for 1 ≤ i ≤ n, then∫
X
fddcf ∧ ddcφ1 ∧ · · · ∧ ddcφn−1 < 0.

Remark 3.6. The local Hodge index theorem in [YZ16] is much more general than Propo-
sition 3.5. For example, it holds when f is associated to a vertical R-Cartier R-divisor on
a model of X.

Propositions 3.4 and 3.5 form the engine that drives the Monge-Ampère vehicle.

3.6. Mixed Monge-Ampère measures and Shilov points. The following conjecture
states that there are “many” mixed Monge-Ampère measures.

Conjecture 3.7. Assume that k is nontrivially valued, X is geometrically integral, and L
is ample. Let f : XShi → R be a function such that∫

XShi

f ddcψ1 ∧ · · · ∧ ddcψn = 0

for any FS metrics ψi ∈ FS(L), 1 ≤ i ≤ n. Then f ≡ 0.

Proposition 3.8. If k is discretely valued, of residue characteristic zero, and X is smooth,
then Conjecture 3.7 is true.

Proof. Given any point x ∈ XShi, pick a regular model X of X such that x corresponds to
an irreducible component of X0, and such that L admits an ample model L on X . This is
possible by the assumptions on k and X. Let ψ ∈ FS(L) be the metric induced by L. Let
E1, . . . , EN be the irreducible components of X0, with associated points x1, . . . , xN ∈ XShi.
We may assume x1 = x. Write X0 =

∑N
1 biEi, where bi ≥ 1.
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Set Li = L and ψi = ψ for 2 ≤ i ≤ N . Given t ∈ QN , set Mt = L+ t1E1 + · · ·+ tNEN ,
χt = φMt , and µt = ddcχt ∧ ddcψ2 ∧ · · · ∧ ddcψN . We claim that we can pick t such that
µt = (Ln)δx1 . Then (Ln)f(x) =

∫
fµt = 0, completing the proof.

Define a map g = (g1, . . . , gN ) : QN → QN by gi(t) = µt{xi}. We claim that the image
of g is the set W of z ∈ QN such that

∑
i zi = (Ln). Clearly the image of g is contained

in W . To prove the converse, note that g is an affine function, with linear part given by
h : QN → QN , where hi(t) = bi(Mt|Ei ·L|

n−1
Ei

). It suffices to prove that h has 1-dimensional

kernel. But h(t) = 0 implies that the divisor Dt =
∑
tiEi satisfies (D2

t · Ln−1) = 0. By the
Hodge Index Theorem, this implies that ti = cbi, 1 ≤ i ≤ N , for some c ∈ Q, completing
the proof. �

3.7. Normalized Monge-Ampère operator. For the rest of this section, we fix a semi-
ample line bundle L that we furthermore suppose is big, i.e.

V := (Ln) > 0.

It is convenient to normalize the Monge-Ampère operator. Given FS metrics φ1, . . . , φn on
L, we set

MA(φ1, . . . , φn) := V −1ddcφ1 ∧ · · · ∧ ddcφn.
This is then a probability measure on X. We also write

MA(φ) := MA(φ, . . . , φ) = V −1(ddcφ)n.

When k is trivially valued, Proposition 3.3 implies MA(φt) = t∗MA(φ) for φ ∈ DFS(L) and
t ∈ Q×+. Further, (3.6) shows that MA(φtriv) is a Dirac mass at the generic point of X.

3.8. The Monge-Ampère energy functional. Define the Monge-Ampère energy13 of a
metric φ ∈ DFS(L) relative to another metric ψ ∈ DFS(L) as

E(φ, ψ) =
1

n+ 1

n∑
j=0

V −1

∫
(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j . (3.11)

The energy functional has many nice properties. First, it is evidently antisymmetric:

E(ψ, φ) = −E(φ, ψ)

for φ, ψ ∈ DFS(L). Second, it satisfies the following cocycle property

E(φ, ψ) = E(φ, χ) + E(χ, ψ), (3.12)

for φ, ψ, χ ∈ DFS(L), as follows from integration by parts (Proposition 3.4). Since evidently
E(φ+ c, φ) = c for φ ∈ DFS(L) and c ∈ Q, this implies the following translation property

E(φ+ c, ψ) = E(φ, ψ) + c for any c ∈ Q.

Third, it is antiderivative of the Monge-Ampère operator in the sense that

d

dt

∣∣∣∣
t=0

E(φ+ tf, ψ) =

∫
f MA(φ), (3.13)

for any metrics φ, ψ ∈ DFS(L) and any function f ∈ DFS(X). Note that φ+ tf is a priori
only a DFS metric for t ∈ Q. However, t → E(φ + tf, ψ) is a polynomial in t of degree at
most n+1, and the left hand side of (3.13) means the derivative of this polynomial at t = 0.

13This functional is known under several different names (and notation), e.g. the Aubin-Mabuchi energy.
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Differentiating once more, we see that

d2

dt2

∣∣∣∣
t=0

E(φ+ tf) = V −1

∫
fddcf ∧ (ddcφ)n−1. (3.14)

When restricted to FS metrics, the Monge-Ampère operator has even more properties.
First, we have E(φ1, φ2) ≤ 0 when φ1, φ2 ∈ FS(L) and φ1 ≤ φ2. By the cocycle property, this
implies that E is increasing in the first argument: E(φ1, ψ) ≤ E(φ2, ψ), for φ1, φ2 ∈ FS(L)
and ψ ∈ DFS(L) when φ1 ≤ φ2.

Second, if φ, ψ ∈ FS(L), the terms in (3.11) are nonincreasing in j, since∫
(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j −

∫
(φ− ψ)(ddcφ)j+1 ∧ (ddcψ)n−1−j

= −
∫

(φ− ψ)ddc(φ− ψ) ∧ (ddcφ)j−1 ∧ (ddcψ)n−1−j ≥ 0.

by the Cauchy-Schwartz inequality (Proposition 3.5). This implies that∫
(φ− ψ) MA(φ) ≤ E(φ, ψ) ≤

∫
(φ− ψ) MA(ψ) (3.15)

for φ, ψ ∈ FS(L). Third, the right-hand side of (3.14) is nonpositive when φ ∈ FS(L). This
implies that for any ψ ∈ FS(L), E(·, ψ) is Q-concave on FS(L), in the sense that

E(θ1φ1 + θ2φ2, ψ) ≥ θ1E(φ1, ψ) + θ2E(φ2, ψ)

for φ1, φ2 ∈ FS(L), ψ ∈ DFS(L), and θ1, θ2 ∈ Q+ such that θ1 + θ2 = 1.

3.9. The I and J-functionals. Next we introduce two other functionals based on the
Monge-Ampère operator. Given two FS metrics φ and ψ on L, set

I(φ, ψ) =

∫
(φ− ψ)(MA(ψ)−MA(φ)).

Clearly, I is symmetric, I(φ, ψ) = I(ψ, φ), and translation invariant, I(φ+c, ψ+d) = I(φ, ψ)
for any constants c, d. By (3.15), we have I(φ, ψ) ≥ 0, as can also be seen from

I(φ, ψ) = −
n−1∑
j=0

V −1

∫
(φ− ψ)ddc(φ− ψ) ∧ (ddcφ)j ∧ (ddcψ)n−1−j . (3.16)

The closely related J-functional is defined by

Jψ(φ) := −E(φ, ψ) +

∫
(φ− ψ) MA(ψ).

By (3.11), this is also nonnegative, and it can be written as

Jψ(φ) = −
n−1∑
j=0

j + 1

n+ 1
V −1

∫
(φ− ψ)ddc(φ− ψ) ∧ (ddcφ)n−1−j ∧ (ddcψ)j . (3.17)

The Q-concavity of φ 7→ E(φ, ψ) implies that φ 7→ Jψ(φ) is Q-convex on FS(L).
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Lemma 3.9. For any FS metrics φ, ψ ∈ FS(L) we have

I(φ, ψ) = Jψ(φ) + Jφ(ψ) (3.18)

and
n−1Jφ(ψ) ≤ Jψ(φ) ≤ I(φ, ψ) ≤ (n+ 1)Jψ(φ). (3.19)

Proof. The equality (3.18) is immediate from the definition, and implies Jψ(φ) ≤ I(φ, ψ)
since Jφ(ψ) ≥ 0. The last inequality in (3.19) follows from (3.16) and (3.17). It remains to
prove the first inequality. But

nJφ(ψ)− Jψ(φ) = (n+ 1)(E(φ)− E(ψ)) + n

∫
(ψ − φ) MA(φ) +

∫
(ψ − φ) MA(ψ),

which is nonnegative since the terms in (3.12) are decreasing. �

We will prove in Corollary 6.28 that I(φ, ψ) = 0 iff φ− ψ is a constant.

3.10. Reference metric. The functionals E, I and J above depend on two arguments.
It will be convenient to fix a reference metric φref ∈ FS(L) and use this as the second
argument.14 In the trivially valued case, we will always pick φref = φtriv, the trivial metric
on L. In the discretely valued case, there is no canonical choice of a reference metric.

Thus we set

E(φ) := E(φ, φref) =
1

n+ 1

n∑
j=0

V −1

∫
(φ− φref)(dd

cφ)j ∧ (ddcφref)
n−j .

J(φ) := Jφref (φ) =

∫
(φ− φref) MA(φref)− E(φ). (3.20)

and

I(φ) := I(φ, φref) =

∫
(φ− φref) MA(φref)−

∫
(φ− φref) MA(φ).

From (3.18) and (3.19) it then follows that

n−1J ≤ I − J ≤ nJ. (3.21)

3.11. Ground field extension and scaling. Consider a non-Archimedean field extension
k′/k. Write X ′ = Xk′ and L′ := Lk′ , and let π : X ′ → X and π : L′ → L be the canonical
maps. From Lemma 3.1 we get

Corollary 3.10. If φ, ψ ∈ FS(L) and φ′ := φ ◦ π, ψ′ := ψ ◦ π, then

E(φ′, ψ′) = E(φ, ψ), I(φ′, ψ′) = I(φ, ψ) and Jψ′(φ
′) = Jψ(φ).

With ψ = φref and ψ′ = φref ◦ π, we get E(φ′) = E(φ), I(φ′) = I(φ), and J(φ′) = J(φ).

Similarly, Proposition 3.3 implies the following result, which generalizes Lemma 7.3 and
Proposition 7.8 of [BHJ17], and shows that the energy functionals are homogeneous with
respect to the scaling action by Q×+.

Corollary 3.11. If k is trivially valued, φ, ψ ∈ FS(L) and t ∈ Q×+, then

E(φt, ψt) = tE(φ, ψ), I(φt, ψt) = tI(φ, ψ), and Jψt(φt) = tJψ(φ).

Setting ψ = φtriv, this yields E(φt) = tE(φ), I(φt) = tI(φ), and J(φt) = tJ(φ).

14Alternatively, the functionals could be considered as metrics on suitable line bundles over a point. This
would remove the need for a reference metric; see e.g. [BHJ16] or [BE17].
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3.12. Estimates. The results in this section will be used for studying the Monge-Ampère
operator on the class of metrics of finite energy. They typically have a closely related
analogue in the complex setting; for the convenience of the reader we indicate some of the
precise results from [BBGZ13, BBEGZ16] below. The proofs, which are surprisingly similar
in the complex and non-Archimedean case, appear in Appendix A.

We will let Cn denote various constants (that can easily be made explicit) depending only
on n. Similarly, Dref is a constant that depends on n, X, L, and on the choice of reference
metric φref ∈ FS(L). When k is trivially valued and φref = φtriv, we can choose Dref = 0.

Lemma 3.12. If φ ∈ FS(L), then 0 ≤ sup(φ− φref)−
∫

(φ− φref) MA(φref) ≤ Dref .

Corollary 3.13. If φ ∈ FS(L) and sup(φ− φref) = 0, then −E(φ)−Dref ≤ J(φ) ≤ −E(φ).

Lemma 3.14. [BBGZ13, Proposition 2.3]. If φ, ψ ∈ FS(L) and t ∈ [0, 1] ∩Q, then

I(tφ+ (1− t)ψ,ψ) ≤ nt2I(φ, ψ).

Lemma 3.15. [BBEGZ16, Lemma 1.9]. For any FS metrics φ1, φ2, ψ on L we have

−V −1

∫
(φ1 − φ2)ddc(φ1 − φ2) ∧ (ddcψ)n−1 ≤ CnI(φ1, φ2)

1
2n−1 max

i=1,2
I(φi, ψ)1− 1

2n−1 .

Lemma 3.16. [BBEGZ16, Theorem 1.8]. For any FS metrics φ1, φ2, φ3 on L, we have

I(φ1, φ3) ≤ Cn max{I(φ1, φ2), I(φ2, φ3)}.

Corollary 3.17. For any FS metrics φ, ψ on L we have

I(φ, ψ) ≤ Cn max{J(φ), J(ψ)}.

Corollary 3.18. For any FS metrics φ1, φ2, ψ1, . . . , ψn−1 on L we have

− V −1

∫
(φ1 − φ2)ddc(φ1 − φ2) ∧ ddcψ1 ∧ · · · ∧ ddcψn−1

≤ CnI(φ1, φ2)
1

2n−1 max{max
i=1,2

J(φi), max
1≤i≤n−1

J(ψi)}1−
1

2n−1 .

Corollary 3.19. For any FS metrics ψ1, ψ2 and φi, φ
′
i, 1 ≤ i ≤ n on L we have

V −1

∣∣∣∣∫ (ψ1 − ψ2)ddcφ′1 ∧ · · · ∧ ddcφ′n −
∫

(ψ1 − ψ2)ddcφ1 ∧ · · · ∧ ddcφn
∣∣∣∣

≤ CnI(ψ1, ψ2)
1
2n max

1≤p≤n
I(φp, φ

′
p)

1
2nM1− 1

2n−1 ,

where M = max{J(ψ1), J(ψ2),maxp J(φp),maxp J(φ′p)}.

Corollary 3.20. For any FS metrics φ1, φ2, ψ1, ψ2 on L we have∫
(ψ1 − ψ2)(MA(φ1)−MA(φ2)) ≤ CnI(ψ1, ψ2)

1
2n I(φ1, φ2)

1
2nM1− 1

2n−1 ,

where M = max{J(φ1), J(φ2), J(ψ1), J(ψ2)}.

Corollary 3.21. For any FS metrics φ, ψ on L, we have

max{|I(φ)− I(ψ)|, |J(φ)− J(ψ)|} ≤ CnI(φ, ψ)
1
2n max{J(φ), J(ψ)}1−

1
2n .
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Lemma 3.22. [BBGZ13, Lemma 2.7]. If φ0, φ1, . . . , φn are FS metrics on L, then∫
(φ0 − φref) MA(φ1, . . . , φn) ≥

∫
(φ0 − φref) MA(φref)− Cn(Dref + max

i
J(φi)).

Lemma 3.23. [BBGZ13, Lemma 3.13]. For any FS metrics φ1, φ2, ψ on L, we have∣∣∣∣∫ (ψ − φref) MA(φ1)−
∫

(ψ − φref) MA(φ2)

∣∣∣∣
≤ CnI(φ1, φ2)

1
2 (Dref + max{J(ψ), J(φ1), J(φ2)})

1
2 .
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4. Dual complexes

In this section, k is discretely or trivially valued, of residue characteristic zero, and X
is smooth and projective. Following [BFJ16a], we will show how X can be described using
dual complexes. This technique will be crucial to understanding the deeper properties of
singular semipositive metrics on ample line bundles.

4.1. Snc models and test configurations. If k is discretely valued, a model X of X is
an snc model if X is regular and the special fiber X0 has strict normal crossing support. Let
Ei, i ∈ I be the irreducible components of X0. A stratum of X0 is a connected component
of a nonempty intersection

⋂
j∈J Ej , where J ⊂ I. By Hironaka’s theorem, the set SNC(X)

of snc models is directed and cofinal in the set of all models.
Similarly, if k is trivially valued, a test configuration X for X is an snc test configuration

if X dominates the trivial test configuration and the central fiber X0 has strict normal
crossing support. As above we define the notion of a stratum of X0. Again, Hironaka’s
theorem implies that the set SNC(X) of snc test configurations is directed and cofinal in the
set of all test configurations.

If k is trivially valued and X is an snc test configuration for X, then the base change
X ′ = X ×A1

k
Spec k′◦ is an snc model of X ′ = Xk′ . Further, the strata of X0 and X ′0 are in

1-1 correspondence.

4.2. Dual complexes of snc models. First assume k is discretely valued, i.e. |k×| = rZ,
where 0 < r < 1. The discussion below follows [BFJ16a, §2.4]. Let X be an snc model,
with special fiber X0 =

∑
i∈I biEi. The dual complex ∆X of X is the (generalized) simplicial

complex with one vertex for each Ei and a p-dimensional face for each stratum of X0 of
codimension p. We equip ∆X with an integral affine structure, and define an embedding
embX : ∆X ↪→ X as follows.

Consider the simplex σY of ∆X corresponding to a stratum Y of X0. Let E0, . . . , Ep be

the irreducible components of X0 containing Y . Identify σY with the simplex {w ∈ Rp+1
+ |∑p

0 biwi = 1} and equip it with the integral affine structure induced by Zp+1 ⊂ Rp+1.
Now let η ∈ X0 be the generic point of Y and pick a system (zj)0≤j≤p of regular parameters

for OX ,η with zj defining Ej . By Cohen’s structure theorem, ÔX ,η ' κ(η)[[z0, . . . , zp]]. Let
valw be the restriction to OX ,η of the monomial valuation on this power series ring, taking
value wj on zj , i.e. valw

(∑
α∈Np+1 cαz

α
)

= min {
∑p

0 wjαj | cα 6= 0}, and set embX (w) :=

rvalw . Then embX (∆X ) ⊂ Xqm. If w ∈ ∆X , then embX (w) ∈ XShi iff w is a rational point;
in particular, Shilov points are dense in embX (∆X ).

There is also an evaluation map evX : X → ∆X , defined as follows. Given x ∈ X, set
ξ := redX (x) ∈ X0, so that |f(x)| ≤ 1 for f ∈ OX ,ξ and |f(x)| < 1 for f ∈ mX ,ξ. Let
E0, . . . , Ep be the irreducible components of X0 containing ξ, and let Y be the minimal
stratum of X0 containing ξ. Then evX (x) ∈ σY is the point with weight w = (w0, . . . , wp)
given by wj = log |zj(x)|/ log r, where zj is a local equation for Ej , 0 ≤ j ≤ p.

The composition pX := embX ◦ evX : X → X is continuous and equal to the identity on
embX (∆X ); in other words, it is a retraction of X onto embX (∆X ).

4.3. Dual complexes of snc test configurations. Now assume k is trivially valued.
For any snc test configuration X of X, we define the dual complex ∆X exactly as in the
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discretely valued case. For example, the dual complex of the trivial test configuration has a
single vertex, corresponding to X × {0}.

Pick any r ∈ (0, 1) and set k′ = kr = k(($)). The base change X ′ of X is then an snc
model of X ′ = Xk′ and we can identify the dual complexes of X and X ′.

The image of ∆X under embX ′ : ∆X ↪→ X ′ consists of k×-invariant points. Hence there
exists an embedding embX : ∆X ↪→ X such that embX ′ = σ ◦ embX , where σ = σr : X → X ′

is the Gauss extension. Here embX (w) ∈ Xdiv iff w ∈ ∆X is a rational point, so divisorial
points are dense in embX (∆X ).

We also define the evaluation map evX : X → ∆X as the composition evX = evX ′ ◦σ. As
before, the composition pX := embX ◦ evX : X → X is a retraction onto embX (∆X ). The
maps embX and evX depend on r, but only up to scaling. Note that σ ◦ pX = pX ′ ◦ σ.

4.4. Limits of dual complexes. In both the discretely valued and trivially valued case
we shall, for convenience, view a dual complex ∆X , where X ∈ SNC(X), as a subset of the
Berkovich space X. Thus embX : ∆X ↪→ X is simply the inclusion, pX = evX is a retraction
of X onto ∆X , and Shilov points are dense in ∆X . For example, the dual complex of the
trivial test configuration of X is a singleton, consisting of the generic point of X.

Theorem 4.1. The following properties hold in both the discretely and trivially valued case.

(i) We have Xqm =
⋃
X ∆X , where X runs over elements of SNC(X).

(ii) If X ,Y ∈ SNC(X) and X dominates Y, then:
(a) pY ◦ pX = pY on X;
(b) ∆Y ⊂ ∆X , and hence pX = id on ∆Y .

(iii) For every x ∈ X, we have limX pX (x) = x.

Proof. In the discretely valued case, all the statements are proved in [BFJ16a, §3.2]. Now
suppose k is trivially valued.

The statements in (ii) follow from the discretely valued case. Indeed, if X ≥ Y, then the
model X ′ dominates Y ′. This first gives pY ′ ◦ pX ′ = pY ′ on X ′, and hence

σ ◦ pY ◦ pX = pY ′ ◦ σ ◦ pX = pY ′ ◦ pX ′ ◦ σ = pY ′ ◦ σ = σ ◦ pY .

This implies pY ◦ pX = pY since σ is injective. Similarly, ∆Y ′ ⊂ ∆X ′ as subsets of X ′, and
hence ∆Y ⊂ ∆X , again by the injectivity of σ. This proves (ii).

To prove (i) and (iii) we need to revisit the arguments in [BFJ16a]. First consider (i).
If x ∈ ∆X , then σ(x) ∈ ∆X ′ ⊂ X ′qm, and hence x ∈ Xqm by Corollary 1.5. Now suppose
x ∈ Xqm. We have x′ := σ(x) ∈ X ′qm, and hence x′ ∈ ∆X ′ for some X ′ ∈ SNC(X), but
there is a priori no reason for the model X ′ to be Gm-invariant and hence arise from a test
configuration. However, we can adapt the proof of [JM12, Proposition 3.7] (itself based on
the proof of [ELS03, Proposition 2.8]) to x′ = σ(x), viewed as a k×-invariant valuation in
X ×A1, to construct a test configuration X ∈ SNC(X) such that x′ ∈ ∆X ′ , where X ′ is the
associated snc model, and then x ∈ ∆X .

Finally consider (iii). By Proposition 2.18 it suffices to prove that limX ϕ ◦ pX = ϕ
pointwise on X for every function ϕ of the form ϕ = log |a| ◦ σ, where a is a flag ideal
on X × A1. But ϕ = ϕ ◦ pX as soon X ∈ SNC(X) dominates the blowup of Xsch × A1

k
along a. �
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4.5. Valuations and dual cone complexes. When k is trivially valued, we can, as a
special case of [JM12], describe both Xval and Xqm in terms of cone complexes.

Let π : Y → Xsch be a proper birational morphism with Y smooth, and D a reduced
simple normal crossings divisor on Y such that π is an isomorphism outside the support of
D. To such a log smooth pair (Y,D) over Xsch we associate a dual cone complex ∆(Y,D),
and embed the latter into Xval as the set of monomial points with respect to coordinates
associated to irreducible components of D. The apex of ∆(Y,D) is the trivial valuation on
X. We have x ∈ Xqm iff x ∈ ∆(Y,D) for some log smooth pair (Y,D) over Xsch, see [JM12,
§3.2], and Xval is naturally an inverse limit of cone complexes over all log smooth pairs.

Thus we have two different descriptions of Xqm: as a union of simplicial complexes or as
a union of simplicial cone complexes. Figure 2 illustrates the situation in dimension 1.

Question 4.2. Suppose ∆ = ∆X ⊂ X is a dual complex in the sense of §4.3. Does there
exist a log smooth pair (Y,D) over Xsch such that ∆ ⊂ ∆(Y,D)? Conversely, suppose K is
a compact subset of some punctured cone complex ∆(Y,D)×. Does there exist an snc test
configuration X such that K ⊂ ∆X .

We expect the answers to be ‘yes’, but cannot prove this. In this paper, we shall work
with dual complexes of test configurations rather than dual cone complexes.

Figure 2. The left picture shows the Berkovich analytification X of a
smooth curve Xsch over a trivially valued field. The middle picture shows
the dual cone cone complex ∆(X,D) of a reduced divisor D of degree 8 on
Xsch. The right picture shows the dual complex ∆X associated to an snc test
configuration X for X

Finally, various subsets of Berkovich analytifications can be analyzed using a different
kind of dual complexes. For example, consider the affine space An

k over a trivially valued
field. In [BFJ08b], it was shown that the open subset of points centered at a given closed
point ξ ∈ Ank is a cone over a compact space Vξ, the valuation space at ξ. This space is
homeomorphic to the inverse limit of dual complexes of log smooth pairs (Y,D) over Ank ,
with D lying over ξ. In dimension n = 2, the valuation space has a natural tree structure
and is called the valuative tree [FJ04]. These spaces, as well as their cousins “at infinity”
have proved useful in dynamics [FJ07, FJ11] and singularity theory [FJ05a, FJ05b], but we
shall not consider them further here.
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5. Plurisubharmonic metrics

Let k be a non-Archimedean field, X the analytification of a geometrically integral pro-
jective k-variety, and L a semiample line bundle on X. In this section, we define and study
a class PSH(L) of singular metrics on L that we call plurisubharmonic (psh) or semipositive.
They are defined as decreasing limits of FS metrics.

When k is discretely or trivially valued and of residue characteristic zero, X is smooth,
and L is ample, we use dual complexes to prove that PSH(L)/R is compact, and that the psh
envelope of a continuous metric is continuous. In the discretely valued case, we show that
PSH(L) coincides with the class of singular semipositive metrics used in [BFJ16a, BFJ15].

5.1. Definitions and basic properties. Let k, X and L be as above.

Definition 5.1. A singular metric φ on L is plurisubharmonic (psh) if it is the pointwise
limit of a decreasing net of FS metrics on L, and φ 6≡ −∞ on L×. We write PSH(L) for
the set of psh singular metrics on L.

We sometimes say semipositive instead of plurisubharmonic to conform with usage else-
where in the literature.

If φ ∈ PSH(L), then a decreasing net (φj)j in FS(L) such that φ = limj φj is called a
regularization of φ. Such nets always exist by our definition of PSH(L).

For brevity we will often refer to the elements of PSH(L) as metrics rather than singular
metrics, unless the distinction is important. In any case, there are no singularities above
quasimonomial points.

Proposition 5.2. If φ ∈ PSH(L), then φ > −∞ on p−1(Xqm), where p : L → X is the
canonical map.

Proof. Pick any metric ψ ∈ DFS(L). It suffices to prove that φ − ψ > −∞ on Xqm. But
this follows the Izumi inequality (Theorem 2.21) applied to a regularization of φ. �

The topology on PSH(L) is defined in terms of pointwise convergence on Xqm: φj → φ
iff the functions φj − φ on Xqm converge pointwise to 0. We sometimes call this the weak
topology, and refer to pointwise convergence on Xqm as weak convergence. It plays the role
of L1-convergence in the Archimedean case.15 We will see in §5.2 that PSH(L) is Hausdorff.

When k is discretely or trivially valued, and of residue characteristic zero, PSH(L)/R is
compact, see Corollary 5.35. In the discretely valued case, PSH(L) coincides with the class
of semipositive singular metrics defined in [BFJ16a], see Corollary 5.36.

Remark 5.3. Our definition of PSH(L) is global. One could define a (potentially) more
general notion of singular semipositive limits using decreasing limits of smooth psh metrics
in the sense of [CD12], see §2.5. However, the class PSH(L) is sufficiently large for the
purposes of this paper.

Definition 5.4. A function ϕ : X → [−∞,+∞) is quasi-plurisubharmonic, or qpsh, if there
exists a semiample line bundle L such that ϕ = φ−ψ, where φ ∈ PSH(L) and ψ ∈ DFS(L).
We write QPSH(X) for the set of quasi-psh functions on X.

In the trivially valued case we have the following more precise notion.

15In contrast, the convergence in Definition 5.1 is supposed to hold pointwise on all of X (or L×).



SINGULAR SEMIPOSITIVE METRICS 39

Definition 5.5. When k is trivially valued, a function ϕ : X → [−∞,+∞) is L-psh if
φtriv + ϕ ∈ PSH(L), where φtriv is the trivial metric on L.

Note that any semipositive metric is upper semicontinuous (usc) since it is the decreasing
limit of continuous metrics. Thus any qpsh function is usc.

Proposition 5.6. The following properties hold:

(i) if φ ∈ PSH(L), then φ+ c ∈ PSH(L) for any c ∈ R;
(ii) if φi ∈ PSH(Li), i = 1, 2, then φ1 + φ2 ∈ PSH(L1 + L2);

(iii) if φ1, φ2 ∈ PSH(L), then max{φ1, φ2} ∈ PSH(L);
(iv) if φ is a singular metric on L, m ≥ 1, and mφ ∈ PSH(mL), then φ ∈ PSH(L);
(v) if φ1, φ2 ∈ PSH(L), θ1, θ2 ∈ R+, and θ1 + θ2 = 1, then θ1φ1 + θ2φ2 ∈ PSH(L);

(vi) If (φj)j is a decreasing net in PSH(L) and φ := limj φj 6≡ −∞, then φ ∈ PSH(L);
(vii) If (φj)j is a net of psh metrics in PSH(L) and φj converges uniformly to a metric

φ, then φ ∈ PSH(L).

Proof. The statements in (i)–(iv) follow from the corresponding statements in Lemma 2.4.
Using (i), we see that (vi) implies (vii). Further, (vi) and (vii) imply (v). Indeed, Lemma 2.4
shows that (v) holds when φi ∈ FS(Li) and θi ∈ Q+. Using (vii) and that Q+ is dense in
R+, we conclude (v) when φi ∈ FS(Li) and θi ∈ R+; the general case then follows from (vi).

It remains to prove (vi). For each j, let (φj,l)l∈Lj be a decreasing net in FS(L) converging

to φj , and for m ∈ N×, set φj,l,m := φj,l +m−1 ∈ FS(L). Let I be the set of triples (j, l,m),
where j ∈ J , l ∈ Lj and m ∈ N×. Define a partial order on I by (j1, l1,m1) ≥ (j2, l2,m2)
iff φj1,l1,m1 ≤ φj2,l2,m2 . Let us show that I is directed, i.e. any two elements (j1, l1,m1)
and (j2, l2,m2) can be dominated by a third. To see this, first pick j ≥ j1, j2 so that
φj ≤ φj1 and φj ≤ φj2 . Also pick m = 2 max{m1,m2}. We claim that φj,l,m ≤ φj1,l1,m1 and
φj,l,m ≤ φj2,l2,m2 for l ∈ Lj large enough. To see this, note that the set

Ul := {x ∈ X | (φj,l − φji,li)(x) < (2mi)
−1 for i = 1, 2}

is open for all l ∈ Lj . Further, (Ul)l is an increasing family and
⋃
l Ul = X, so by compact-

ness of X there exists l ∈ Lj such that Ul = X, and then φj,l,m ≤ maxi=1,2 φji,li,mi . By
construction, (φi)i∈I is now a decreasing net in FS(L) converging to φ, so since φ 6≡ −∞,
we have φ ∈ PSH(L). �

Proposition 5.7. Let f : X ′ → X be induced by a morphism of projective k-varieties, and
set L′ := f∗L. If φ ∈ PSH(L) and φ′ := φ◦f , then either φ′ ≡ −∞ on L′× or φ′ ∈ PSH(L′).
When f is surjective, φ′ ∈ PSH(L′).

Proof. Let (φj)j be a decreasing net in FS(L) converging to φ. By Lemma 2.4, (f∗φj) is
a decreasing net in FS(L′) converging to φ′. Thus either φ′ ∈ PSH(L′) or φ′ ≡ −∞ on
L′× by Proposition 5.6. Now suppose f is surjective and pick x′ ∈ X ′qm. By Lemma 1.1,
x := f(x′) ∈ Xqm, so since φ 6= −∞ on L×x , see Proposition 5.14, it follows that φ′ 6= −∞
on L′×x′ . �

Proposition 5.8. Any (possibly singular) metric of the form

φ := max
α∈A

(m−1 log |sα|+ λα), (5.1)

where m ≥ 1, (sα)α∈A is a finite set of nonzero global sections of mL, and λα ∈ R, is
semipositive.
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Here the sections sα are allowed to have common zeros.

Proof. After replacing m by a multiple, and the sections sα by the corresponding tensor
powers, we may assume L is base point free. Pick global sections sα, α ∈ A′ of L such that
(sα)α∈A∪A′ have no common zero, and set

φj := max{max
α∈A

(m−1 log |sα|+ 2−jd2jλαe),max
α∈A′

(m−1 log |sα| − j)}

for j ∈ Z>0. Then (φj)j is a decreasing sequence of FS metrics on L converging to φ. �

Corollary 5.9. If k is trivially valued and a is any ideal on X, then the function log |a| is
qpsh. More precisely, it is L-psh for any L such that the sheaf L⊗ a is globally generated.

Proof. Suppose L ⊗ a is globally generated, say by sections sα, α ∈ A. If φtriv denotes the
trivial metric on L, then φtriv + log |a| = maxα log |sα| ∈ PSH(L) by Proposition 5.8. �

We can now show that the space PSH(L) can be described as in the introduction.

Corollary 5.10. PSH(L) is the smallest class of singular metrics on L that:

(i) contains all singular metrics of the form m−1 log |s|, where m ≥ 1 and s is a nonzero
section of mL;

(ii) is closed under maxima, addition of constants, and decreasing limits.

By “closed under decreasing limits” we mean that (vi) of Proposition 5.6 holds.

Proof. That PSH(L) satisfies (i) follows from Proposition 5.8. Similarly, Proposition 5.6
implies that PSH(L) satisfies (ii). Conversely, any class of singular metrics satisfying (i)
and (ii) must contain all FS metrics, and, more generally, all decreasing limits of FS metrics.
Hence it must contain PSH(L). �

Corollary 5.11. If ψ ∈ DFS(L), the function φ 7→ supX(φ− ψ) is continuous on PSH(L).

Proof. By Lemma 2.20 there exists a finite subset Z = Z(ψ) ⊂ XShi such that supX(φ−ψ) =
maxZ(φ− ψ) for every φ ∈ FS(L). Considering regularizations, the same equality holds for
all φ ∈ PSH(L). This completes the proof, since the topology on PSH(L) is defined by
pointwise convergence on Xqm ⊃ XShi. �

Proposition 5.12. Consider a non-Archimedean field extension k′/k and set L′ = Lk′.

(i) If φ ∈ PSH(L), then φ ◦ π ∈ PSH(L′), where π : L′ → L is the canonical map.
(ii) if k is trivially valued, k′ := k(($)), and σ : L→ L′ is the Gauss extension, then:

(a) φ′ ◦ σ ∈ PSH(L) and φ′ ≤ φ′ ◦ σ ◦ π for any φ′ ∈ PSH(L′).
(b) the maps φ→ φ ◦ π and φ′ → φ′ ◦ σ above are continuous.

Proof. Proposition 2.10 shows that (i) holds when φ ∈ FS(L). This implies the general
case: if (φj)j is a decreasing net in FS(L), then (φj ◦ π)j is a decreasing net in FS(L′), and
limj(φj◦π) = (limj φj)◦π. The argument for (ii) (a) is similar, using Proposition 2.11 (i), and

the continuity statements in (b) follows from the fact that π(X
′qm) ⊂ Xqm and σ(Xqm) ⊂

X
′qm, see Corollary 1.3 and Corollary 1.5 (ii). �

Finally we prove that in the trivially valued case, PSH(L) is invariant under the scaling
action on metrics on line bundles defined in (2.1).
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Proposition 5.13. If k is trivially valued and φ ∈ PSH(L), then φt ∈ PSH(L) for all
t ∈ R×+. Further, the function t 7→ φt(v) is convex for all v ∈ L×. It is decreasing if
φ ≤ φtriv.

Proof. By definition, there exists a decreasing net (φj)j in FS(L) converging to φ. For any
t ∈ R×+, the net (φj,t)j of scaled metrics decreases to φt. By (2.5) and Proposition 5.8 we
see that φj,t ∈ PSH(L), so Proposition 5.6 (vi) implies that φt ∈ PSH(L).

The fact that t → φt(v) is convex is clear from (2.5) if φ ∈ FS(L), and the general case
follows by approximation. Now suppose that φ ≤ φtriv. If φ ∈ FS(L), this means that φ is of
the form (2.2) with λj ≤ 0 for all j. From (2.5) it is then clear that t 7→ φt(v) is decreasing.
For a general φ ∈ PSH(L) with φ ≤ φtriv, pick a decreasing net (φj)j in FS(L) converging
to φ. Pick εj ∈ Q×+ such that εj → 0 and φj −φtriv ≤ εj . Then φj − εj ∈ FS(L), so by what
precedes, we get that t 7→ φj,t − tεj is pointwise decreasing. Since φj,t decreases pointwise
to φt, and εj → 0, this completes the proof. �

5.2. Hausdorff property. It is not obvious that the topology on PSH(L) is Hausdorff,
since it is defined in terms of pointwise convergence on Xqm only. Nevertheless, we have

Proposition 5.14. For any semiample line bundle L, the weak topologies on PSH(L) and
PSH(L)/R are Hausdorff.

Corollary 5.15. If φj is a decreasing net in PSH(L) converging weakly to φ ∈ PSH(L),
then the convergence holds pointwise everywhere on L×.

Proof. Let φ̃ be the pointwise limit of φj . We know from Proposition 5.25 (vii) that φ̃ ∈
PSH(L). Since φ̃− φ = 0 on Xqm, it follows that ϕ̃ = φ̃. �

The proof of Proposition 5.14 relies on the following result.

Lemma 5.16. Given any function ϕ ∈ QPSH(X) and any point x ∈ X, there exists a net
(xα)α∈A in Xqm such that limα xα = x and limα ϕ(xα) = ϕ(x).

Proof. First assume k is nontrivially valued. There exists an ample line bundle L such that
ϕ = φ − ψ, where ψ ∈ DFS(L) and φ ∈ PSH(L). Then ψ is a model metric, determined
by a Q-line bundle L on a model X of X. After replacing ψ and φ by multiples, we may
assume L is an actual line bundle. We may cover X by open affine subsets U on which
L admits trivializing sections. Then X is covered by the corresponding Zariski open sets
U = (U ∩ Xsch)an. Pick U such that x ∈ U and let τ be a trivializing section of L on
U . Given s ∈ H0(X,mL), we can write s = fτm on U , where f ∈ OX(U), and then
m−1 log |s| − ψ = m−1 log |f | on U .

We can write φ as the limit of a decreasing net (φj)j∈J of FS metric on L, for some directed

set J . For each j, write φj = m−1
j maxl∈Lj log |sj,l|, where mj ≥ 1 and sj,l, l ∈ Lj , is a finite

set of global sections of mjL without common zero. As above we can write m−1
j log |sj,l|−ψ =

m−1
j log |fj,l|, where fj,l ∈ OX(U). Hence ϕj := φj − ψ = m−1

j maxl∈Lj,l log |fj,l| on U .

Now let (Vα)α∈A be a decreasing net of strictly affinoid neighborhoods of x in U , with
intersection equal to {x}. Let Γα ⊂ XShi be the Shilov boundary of Vα. This is a finite set,
and for each (j, l) there exists a point in Γα at which the maximum of |fj,l| over Vα occurs.
Thus, for each j, the maximum of ϕj over Vα occurs at some point xj,α ∈ Γα; in particular,
ϕj(xj,α) ≥ ϕj(x). Passing to a subnet, we may assume that xα := xj,α is independent of
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j. This implies ϕ(xα) ≥ ϕ(x) for all α, which completes the proof when k is nontrivially
valued.

Now suppose k is trivially valued. Set k′ = k(($)) and X ′ := Xk′ . Write π : X ′ → X for
the canonical map and σ : X → X ′ for the Gauss extension. Then ϕ′ := ϕ ◦ π ∈ QPSH(X),
so by what precedes there exists a net (x′α)α in X ′qm such that x′α → x′ := σ(x) and
limα ϕ

′(x′α) = ϕ′(x′). By Corollary 1.3, we have xα := π(x′α) ∈ Xqm. Further, ϕ′(x′α) =
ϕ(xα) and ϕ′(x′) = ϕ(x), and since π is continuous, we have limα xα = x. This completes
the proof. �

Proof of Proposition 5.14. Consider metrics φ1, φ2 ∈ PSH(L) with φ1 6= φ2. Pick any ψ ∈
DFS(L), and set ϕi := φi − ψ ∈ QPSH(X), i = 1, 2. Then there exists x ∈ X such that
ϕ1(x) 6= ϕ2(x), say ϕ1(x) > ϕ2(x). By Lemma 5.16 there exists a net (xα)α in Xqm such
that xα → x and ϕ1(xα) → ϕ(x). Now ϕ2 is usc, so lim supα ϕ2(xα) ≤ ϕ2(x). Thus there
exists α such that ϕ1(xα) > ϕ2(xα). This implies that φ1 and φ2 belong to disjoint open
subsets of PSH(L).

Similarly, suppose that φ1 6= φ2 in PSH(L)/R. We may assume there exists x ∈ X
and y ∈ Xqm such that ϕ1(y) = ϕ2(y) but ϕ1(x) 6= ϕ2(x). As above, there must then
exist x′ ∈ Xqm such that ϕ1(x′) 6= ϕ2(x′), which means φ1 and φ2 belong to disjoint open
neighborhhods of PSH(L)/R. �

5.3. Continuous plurisubharmonic metrics. The subset of PSH(L) consisting of con-
tinuous metrics play an important role in the theory. Following Gubler and Martin [GM16],
we now characterize this class. In particular, we show that the continuous metrics in PSH(L)
are exactly the semipositive metrics studied by Zhang [Zha95] and Gubler [Gub98].

We start by characterizing psh DFS metrics on ample line bundles.

Proposition 5.17. Let φ ∈ PSH(L) be a psh metric, where L is ample.

(i) If k is nontrivially valued, then φ ∈ DFS(L) iff φ is a model metric associated to a
nef model of L.

(ii) If k is trivially valued, then φ ∈ DFS(L) iff φ is a metric defined by a nef test
configuration for L.

As a direct consequence of (i) we have:

Corollary 5.18. When k is discretely valued and of residue characteristic zero, X is smooth,
and L is ample, the class DFS(L) ∩ PSH(L) coincides with the class of semipositive model
metrics defined in [BFJ16a].

Proof of Proposition 5.17. First consider the nontrivially valued case. In the terminology
of [GM16], a model metric on L is then semipositive if it is defined by a nef model of L.

Suppose φ ∈ DFS(L). In particular, φ is a model metric by Proposition 2.13 (i). Now φ
is the limit of a decreasing net (φj)j in FS(L). By Proposition 2.13 (ii), each φj is a model
metric associated to an semiample (and hence nef) model of L. Thus [GM16, Theorem 1.3]
implies that φ is a model metric associated to a nef model of L.

Conversely, suppose φ is a model metric defined by a nef model (X ,L) for (X ,L). Arguing
as in the proof of [GM16, Proposition 4.14] we may (after passing to a different model) as-
sume that for every m ≥ 1 there exists a model metric φm on L associated to an ample model
(X ,Lm) on L, such that 0 ≤ φm − φ ≤ 2−m. Then φm ∈ FS(L) by Proposition 2.13 (iii).
Now (φm + 2−m)m is a decreasing sequence in FS(L) converging to φ, so φ ∈ PSH(L).
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Now consider the case when k is trivially valued. First assume φ is defined by a nef test
configuration. Then φ′ := φ ◦ π ∈ PSH(L′) is defined by the nef model L′ of L′. By what
precedes, φ′ ∈ DFS(L′), and this implies φ ∈ DFS(L) by Proposition 2.10.

Conversely, suppose φ ∈ DFS(L). By Proposition 2.12 (i), φ = φL, where (X ,L) is a test
configuration for (X,L). The base change (X ′,L′) is a model of (X ′, L′), and φ′ := φ ◦ π =
φL′ . Since φ′ ∈ PSH(L) by Proposition 5.12, the Q-line bundle L′ must be relatively nef.
Since the central fiber X0 of X can be identified with the special fiber X ′0 of X ′, it follows
that L is also relatively nef, completing the proof. �

The following theorem is the main result of [GM16].

Theorem 5.19. Let (φj)j be a net in PSH(L)∩DFS(L) converging in PSH(L) to a metric
φ ∈ PSH(L). Then φ ∈ PSH(L) ∩DFS(L).

Proof. If k is nontrivially valued, this is a special case of [GM16, Theorem 1.3]. Now suppose
k is trivially valued and consider the non-Archimedean field extension k′ = kr = k(($)) of
k. Write L′ = Lk′ , let π : L′ → L be the canonical map and σ : L→ L′ the Gauss extension.
Write φ′ := φ ◦ π and φ′j := φj ◦ π. By Proposition 5.12, we have φ′, φ′j ∈ PSH(L′) and

φ′j → φ′. Since φ′j ∈ DFS(L′) by Proposition 2.10, we have φ′ ∈ DFS(L) by what precedes.

This implies φ = φ′ ◦ σ ∈ DFS(L) by Proposition 2.11. �

We now turn to more general continuous psh metrics.

Proposition 5.20. If φ is a continuous metric on L, the following conditions are equivalent:

(i) φ ∈ PSH(L);
(ii) φ is a uniform limit of metrics in FS(L);
(iii) φ is a uniform limit of metrics in PSH(L) ∩DFS(L).
(iv) φ is a uniform limit of continuous metrics in PSH(L);

In view of Proposition 5.17, it follows that φ is a continuous semipositive metric in the
sense of Zhang [Zha95] iff it is a continuous psh metric. See also [GM16] for a discussion.

Proof. That (i) implies (ii) follows from Dini’s theorem, and the reverse implication is ele-
mentary: if φj ∈ FS(L) and φj converges uniformly to φ, then we can find εj ∈ Q+ such that
εj → 0 and φj + εj decreases to φ. Knowing that (i) and (ii) are equivalent, we immediately
see that (iv) implies (i). Since the implications (ii) =⇒ (iii) and (iii) =⇒ (iv) are obvious,
this completes the proof. �

5.4. Envelopes. The class PSH(L) is closed under decreasing nets. It is useful to also
consider increasing nets. This leads to the various types of envelopes.

Definition 5.21. We define the psh envelope of a continuous metric ψ on L by

P (ψ) = sup{φ ∈ PSH(L) | φ ≤ ψ}.

Despite the terminology, it is not obvious that P (ψ) is psh, see the discussion below. At
any rate, the psh envelope can be computed using only FS metrics.

Lemma 5.22. For any continuous metric ψ on L, we have P (ψ) = sup{φ ∈ FS(L) | φ ≤ ψ}.
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Proof. Set P ′(ψ) = sup{φ ∈ FS(L) | φ ≤ ψ}. Clearly P ′(ψ) ≤ P (ψ). For the reverse
inequality, fix ε ∈ Q×+. Given x ∈ X, pick φ ∈ PSH(L) such that φ ≤ ψ and (φ−P (ψ))(x) ≥
−ε. Then pick a decreasing net (φj)j in FS(L) converging to φ. Since (φj−ψ)j is a decreasing
net of usc functions on a compact space, whose limit is nonpositive, there exists j such that
φj − ψ ≤ ε. Then φj − ε ∈ FS(L), φj − ε ≤ ψ, and (φj − ε − P (ψ))(x) ≥ −2ε. It follows
that P ′(ψ) ≥ P (ψ)− 2ε, which completes the proof. �

Following [BE17], we now discuss whether the psh envelope is indeed psh. This question
admits several equivalent reformulations. Given a bounded metric ψ on L, write ψ∗ for the
usc regularization of ψ, i.e. the smallest usc metric bounded below by ψ.

Proposition 5.23. Given k, X and L, the following conditions are equivalent:

(i) for any continuous metric ψ on L, the psh envelope P (ψ) is continuous and psh;
(ii) for any continuous metric ψ on L, the psh envelope P (ψ) is psh;
(iii) for any DFS metric ψ on L, the psh envelope P (ψ) is psh;
(iv) for any DFS metric ψ on L, the psh envelope P (ψ) is continuous and psh;
(v) for any family (φα)α∈A of metrics in PSH(L) that is uniformly bounded from above,

the usc upper envelope (supα φα)∗ is psh.
(vi) for any increasing net (φj)j of metrics in PSH(L) that is uniformly bounded from

above, the usc limit (limj φj)
∗ is psh.

We shall show in Theorem 5.27 that (i)–(vi) hold when k is discretely or trivially valued,
of residue characteristic zero, X is smooth, and L is ample It would be very interesting to
know if they hold more generally.

To prove Proposition 5.23, we need the following elementary but useful lemma.

Lemma 5.24. The psh envelope has the following properties:

(i) if ψ1 and ψ2 are continuous metrics on L and ψ1 ≤ ψ2, then P (ψ1) ≤ P (ψ2);
(ii) if ψ is a continuous metric on L and c ∈ R, then P (ψ + c) = P (ψ) + c;
(iii) supX |P (ψ1)− P (ψ2)| ≤ supX |ψ1 − ψ2| for any continuous metrics ψ1, ψ2 on L.

Proof. That (i) holds is obvious, and (ii) follows from the fact that PSH(L) is closed under
addition of constants. Finally (iii) is a formally consequence of this remark and of (i)–(ii). �

Proof of Proposition 5.23. From Lemma 5.22 it follows that P (ψ) is lsc, since FS metrics
are continuous. Hence (i) and (ii) are equivalent, as are (iii) and (iv). Further, (v) obviously
implies (vi), and the reverse implication holds by considering the net (ψj)j∈J , where J is
the set of finite subsets of A and ψj := maxα∈j ϕα. Clearly, (i) implies (iii) and the reverse
implication follows from the Lipschitz property of Lemma 5.24 together with the fact that
DFS metrics are dense in the set of continuous metrics on L, see Corollary 2.8 and also
Proposition 5.20. We shall complete the proof by showing that (ii) and (v) are equivalent.

First assume (ii) holds and consider a family as in (v). Since φ := (supα φα)∗ is usc, it can
be written as a decreasing net (τj)j of continuous (not necessarily psh) metrics. By (ii) the
metric ψj := P (τj) is psh for each j. Since φα ≤ τj and φα is psh, it follows that φα ≤ ψj
for each α and j. Thus supα φα ≤ ψj , and since ψj is usc we get φ ≤ ψj for all j. The net
(ψj)j is clearly decreasing. Since φ ≤ ψj ≤ τj and limj τj = φ, we must have limj ψj = φ, so
by Proposition 5.6 (vii) we conclude φ ∈ PSH(L).

Conversely, suppose (v) holds and let ψ be a continuous metric on L. We apply (v) to the
family of all metrics φ ∈ PSH(L) such that φ ≤ ψ. Thus P (ψ)∗ is psh. But since P (ψ) ≤ ψ
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and ψ is usc, we have P (ψ)∗ ≤ ψ. Thus P (ψ)∗ is a competitor in the definition of P (ψ) so
P (ψ)∗ ≤ P (ψ), and hence P (ψ)∗ = P (ψ), since the reverse inequality is obvious. �

Proposition 5.25. Consider a non-Archimedean field extension k′/k and set L′ := Lk′.

(i) If ψ is a continuous metric on L, then P (ψ ◦ π) ≥ P (ψ) ◦ π, where π : L′ → L is the
canonical map.

(ii) if k is trivially valued, k′ = k(($)) and σ : L→ L′ is the Gauss extension, then:
(a) P (ψ′ ◦ σ) ≥ P (ψ′) ◦ σ for every continuous metric ψ′ on L′.
(b) P (ψ ◦ π) = P (ψ) ◦ π for every continuous metric ψ on L.

Proof. If φ ∈ PSH(L) and φ ≤ ψ, then φ ◦ π ∈ PSH(L′) by Proposition 5.12 (i), and
φ ◦ π ≤ ψ ◦ π. Thus P (ψ ◦ π) ≥ P (ψ) ◦ π, proving (i).

Now assume k′ = k(($)). The proof of (a) is the same as that of (i), but using (ii) of
Proposition 5.12. It remains to prove (b), so let ψ be a continuous metric on L. Then

P (ψ ◦ π) ≥ P (ψ) ◦ π = P (ψ ◦ π ◦ σ) ◦ π ≥ P (ψ ◦ π) ◦ σ ◦ π ≥ P (ψ ◦ π).

Here the first two inequalities follow from (i) and (a), whereas the last inequality follows
from from Proposition 5.12 (b) and the definition of P (ψ ◦ π). �

Proposition 5.26. If k is trivially valued, then the scaling operation on metrics commutes
with the psh envelope: if ψ is a continuous metric on L, then P (φt) = P (φ)t for all t ∈ R×+.

Proof. This is a formal consequence of the definition and of Proposition 5.13. �

5.5. Continuity of envelopes. We now study finer properties of psh metrics. For the
rest of this section, assume that k is discretely or trivially valued, of residue characteristic
zero, that X is smooth and that L is ample. The proof of the next theorem uses these
assumptions via the technique of multiplier ideals. However, the theorem may hold more
generally. See [GJKM17] for recent results in equicharacteristic p, obtained using test ideals.

Theorem 5.27. For any DFS metric ψ on L, the psh envelope P (ψ) is continuous.

Corollary 5.28. Properties (i)–(vi) of Proposition 5.23 are all true.

Proof of Theorem 5.27. It suffices to consider the case when k is discretely valued. Indeed,
in the trivially valued case, we consider the non-Archimedean field extension k′ = k(($))/k.
If ψ is a continuous metric on L, then ψ ◦π is continuous metric on L′ = Lk′ and P (ψ ◦π) =
P (φ)◦π by Proposition 5.25 (ii), so if Theorem 5.27 holds in the discretely valued case, then
P (φ) ◦ π is continuous; hence so is P (φ) = P (φ) ◦ π ◦ σ.

Thus suppose k is discretely valued. We only sketch the proof, referring to the proof of
Theorem 8.5 of [BFJ16a] for most of the details. However, some minor details are simpler
here because of an altered order of presentation. Write ψ = φL, where (X ,L) is an snc model
of (X,L). For m sufficiently divisible, let am be the base ideal of mL; this is cosupported
on the special fiber since L is ample, and satisfies al · am ⊂ al+m. Set

φm := ψ +m−1 log |am| = m−1 max{log |s| | s ∈ H0(X ,mL)}.

Then φm ∈ FS(L) and P (ψ) = limm supm φm. We claim that in fact φm converges uniformly,
so that P (ψ) is continuous.
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To prove the uniform convergence, we use multiplier ideals. Let bm be the multiplier
ideal of am. The inclusion am ⊂ bm is elementary, and we have bml ⊂ blm for all m, l by the
subadditivity of multiplier ideals. This implies that

m−1 log |bm| ≥ (ml)−1 log |bml| ≥ (ml)−1 log |aml|
for all sufficiently divisible m and l. Letting l→∞ shows that

ψ +m−1 log |bm| ≥ P (ψ) ≥ ψ +m−1 log |am| (5.2)

for all sufficiently divisible m. We may assume there exists an effective Q-divisor E on X
supported on the special fiber, such that A := L − E is relatively ample. By the uniform
global generation of multiplier ideals there exists m0 ∈ N such that OX ((mL+m0A))⊗ bm
is globally generated for all sufficiently divisible m. This implies that

log |bm| ≤ log |am+m0 |+ C

for a constant C independent of m. Combining this with (5.2) shows that

φm ≤ P (ψ) ≤ m

m−m0
φm +

1

m−m0
C

which shows that φm converges uniformly to P (ψ). �

5.6. Psh metrics and dual complexes. We keep the assumptions on (k,X,L) from §5.5.
As in [BFJ16a], this allows us to use dual complexes of snc models and test configurations.

Recall from §4 that when k is discretely (resp. trivially) valued, SNC(X) denotes the
poset of snc models of X (resp. snc test configurations for X). To each X ∈ SNC(X) is
associated a dual complex ∆X ⊂ X, and we have a retraction pX : X → ∆X . When X ≥ Y,
we have ∆Y ⊂ ∆X and pY = pY ◦ pX . Further, limX pX = id pointwise on X.

When k is trivially valued, consider the non-Archimedean field extension k′ = k(($)). Set
X ′ = Xk′ , L

′ = Lk′ , and write π for the canonical maps X ′ → X and L′ → L, and σ for
the Gauss extensions X → X ′ and L→ L′. Given X ∈ SNC(X), set X ′ := X ×A1

k
Spec k′◦.

Then X ′ ∈ SNC(X ′), and π and σ restrict to affine homeomorphisms between ∆X ′ and ∆X .
Further, pX = π ◦ pX ′ ◦ σ.

Theorem 5.29. Pick a reference metric φref ∈ DFS(L) and Xref ∈ SNC(X) on which φref

is determined.

(i) For every X ∈ SNC(X) we have that {φ− φref | φ ∈ PSH(L)} is an equicontinuous
family of finite-valued functions on ∆X .

(ii) If X ∈ SNC(X), X ≥ Xref and φ ∈ PSH(L), the function ϕ := φ− φref is convex on
each face of ∆X and satisfies ϕ ≤ ϕ ◦ pX on X.

(iii) For any φ ∈ PSH(L), the net ((φ−φref)◦pX )X of continuous functions on X, indexed
by X ∈ SNC(X) with X ≥ Xref , is decreasing, with limit φ− φref .

Proof. First assume that k is discretely valued. All the assertions then essentially follow
from [BFJ16a], but since the definition of singular semipositive metrics in loc. cit. ostensibly
differs from the one here, we need to argue in a somewhat roundabout way.

By Proposition 2.13, φref is a model metric, and hence defines a closed (1, 1)-form θ ∈
Z1,1(X) in the terminology of [BFJ16a, §4.2]. Similarly, any φ ∈ FS(L) is a model metric
associated to an semiample, hence nef, model of L, so the function φ−φref is θ-psh in the sense
of [BFJ16a, §5]. It now follows from [BFJ16a, Corollary 7.8] that {(φ−φref)|∆X | φ ∈ FS(L)}
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is an equicontinuous family of finite-valued functions on ∆X . Since the metrics in PSH(L)
are decreasing limits of metrics in L, the full equicontinuity statement in (i) follows.

Similarly, by [BFJ16a, Proposition 7.5], the properties in (ii) hold for φ ∈ FS(L). The
same properties then carry over to φ ∈ PSH(L). Indeed, this is clear for the second assertion,
and convexity is closed under taking decreasing limits.

Finally [BFJ16a, Proposition 7.6] shows that if φ ∈ FS(L), and ϕ := φ − φref , the net
Xref ≤ X → ϕ ◦ pX is decreasing. The same property then holds for all φ ∈ PSH(L). In
particular, ϕ(x) ≤ lim infX ϕ(pX (x)) for any x ∈ X. But since ϕ is usc and limX pX = id by
Theorem 4.1, we get ϕ(x) ≥ lim supX ϕ(pX (x)). This completes the proof of (iii).

Now assume k is trivially valued and use the notation immediately before the theorem. Set
φ′ref := φref ◦ π ∈ DFS(L′). If φ ∈ PSH(L), then φ′ := φ ◦ π ∈ PSH(L′) by Proposition 5.12.
Further, φ − φref = (φ′ − φ′ref) ◦ σ and σ : ∆ → ∆′ is a homeomorphism, so if {φ′ − φ′ref |
φ′ ∈ PSH(L′)} is an equicontinuous family of finite valued functions on ∆′, then {φ− φref |
φ ∈ PSH(L)} is an equicontinuous family of finite valued functions on ∆. This takes care
of (i), and (ii)–(iii) are treated in the same way, except for the last assertion of (iii), which
is instead proved exactly as above, using Theorem 4.1. �

Corollary 5.30. When k is trivially valued and φ ∈ PSH(L), the function φ− φtriv attains
its maximum at the generic point of X.

Proof. This follows by using φref = φtriv and Xref the trivial test configuration for X. �

Corollary 5.31. Let ϕ ∈ QPSH(X).

(i) For any sufficiently large X ∈ SNC(X), ϕ is continuous on ∆X , convex on each
face, and satisfies ϕ ≤ ϕ ◦ pX .

(ii) Then ϕ is the limit of the eventually decreasing net (ϕ◦pX )X of continuous functions
on X, where X ranges over SNC(X). As a consequence, ϕ is determined by its values
on Xqm, and in fact on its values on XShi (resp. Xdiv) when k is nontrivally valued
(resp. trivially valued).

Proof. Write ϕ = φ − φref , where φ ∈ PSH(L) and φref ∈ DFS(L) for some semiample line
bundle L. Pick Xref ∈ SNC(X) such on which φref is determined. Then (i) immediately
follows, as does (ii), except for the very last assertion, which follows from the fact that Shilov
points (resp. divisorial points) are dense on any dual complex ∆X when k is nontrivially
valued (resp. trivially valued) and the continuity of ϕ on ∆X . �

Corollary 5.32. A net (φj)j in PSH(L) converges weakly to φ ∈ PSH(L) iff φj − φ → 0
pointwise on Shilov points (resp. divisorial points) when k is nontrivially valued (resp.
trivially valued).

Proof. The direct implication is trivial since φj → φ weakly means that φj−φ→ 0 pointwise
on Xqm, which contains all Shilov points (resp. divisorial points). The reverse implication
follows from the fact that any point in Xqm belongs to some dual complex ∆X , together
with the equicontinuity statement in Theorem 5.29 and the fact that Shilov points (resp.
divisorial points) are dense in ∆X . �

5.7. Compactness. Keep the assumptions on (k,X,L) from §5.5. Our next goal is to prove
that PSH(L) is compact modulo constants. For this we use dual complexes as well as the
continuity of envelopes, see Theorem 5.27. The key is the following lemma.
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Lemma 5.33. A singular metric φ on L belongs to PSH(L) iff it is usc, and:

(i) for any X ∈ SNC(X), there exists a sequence (φm)∞1 (depending on X ) in PSH(L)
such that limm(φm − φ) = 0 uniformly on ∆X ;

(ii) given any reference metric φref ∈ DFS(L), we have φ− φref ≤ (φ− φref) ◦ pX on X,
for any sufficiently large X ∈ SNC(X).

Before proving this lemma, we record some consequences.

Corollary 5.34. Fix a reference metric φref ∈ DFS(L). Then φ 7→ ((φ − φref)|∆X )X gives
an embedding of PSH(L) onto a closed subset of

∏
X∈SNC(X)C

0(∆X ). In particular, the

topology on PSH(L) is equivalent to the topology of uniform convergence on dual complexes.

Here the latter topology is the one for which a basis of open subsets of φ ∈ PSH(L) is
given by {ψ ∈ PSH(L) | sup∆X |ψ − φ| < ε}, where X ranges over SNC(X).

Proof. The map is well-defined and injective by Corollary 5.31. It is further continuous
by Theorem 5.29: if (φj)j is a net in PSH(L) converging to φ ∈ PSH(L), then for each
X ∈ SNC(X), (φj −φ)|∆X is an equicontinuous net in C0(∆X ) converging to zero pointwise
on a dense subset, hence must converge to zero uniformly. It now follows that the map
PSH(L) →

∏
X C

0(∆X ) is a homeomorphism onto its image. Let us finally prove that this
image is closed.16 Thus suppose we have a net (φj)j in PSH(L) and an element (gX )X ∈∏
X C

0(∆X ) such that limj ϕj |∆X = gX uniformly on ∆X for every X , where ϕj := φj−φref .
It is clear that if X ′ ≥ X , then gX ′ ≤ gX ◦ rX on ∆X ′ , with equality on ∆X . For any x ∈ X,
the net (gX (rX (x)))X is therefore decreasing, and we set ϕ(x) := limX gX (r∆X (x)). The
singular metric φ := φref + ϕ then satisfies the conditions of Lemma 5.33, so φ ∈ PSH(L).
This completes the proof since the image of φ under the map PSH(L)→

∏
X C

0(∆X ) above
is equal to (gX )X . �

Corollary 5.35. For any φref ∈ DFS(L), the map PSH(L) 3 φ 7→ sup(φ−φref) is continuous
and proper. Hence PSH(L)/R is compact.

Proof. The continuity of φ 7→ sup(φ − φref) was established in Corollary 5.11. To prove
properness, we must prove that the set FC := {φ ∈ PSH(L) | | sup(φ − φref)| ≤ C} is
compact for any C > 0. By Tychonoff’s theorem and Corollary 5.34, it suffices to prove
that for any dual complex ∆ ⊂ X, the set of functions (φ − φref)|∆ for φ ∈ FC , forms a
precompact family of continuous functions on ∆. But this follows from Theorem 5.29 and
the Arzelà-Ascoli theorem. �

Corollary 5.36. If k is discretely valued of residue characteristic zero, then PSH(L) coin-
cides with the class of singular semipositive metrics on L as defined in [BFJ16a].

Proof. In the current language, a singular metric φ is semipositive in the sense of [BFJ16a,
Definition 7.3] if it is usc, satisfies Lemma 5.33 (ii), and satisfies Lemma 5.33 (i) with φm a
model metric associated to a nef model of L, i.e. a φm is a metric in DFS(L) ∩PSH(L), see
Proposition 5.17. It then follows from Lemma 5.33 that φ ∈ PSH(L).

Conversely, if φ ∈ PSH(L), then φ is usc and satisfies Lemma 5.33 (ii) by Theorem 5.29 (ii).
Pick a decreasing net (φj)j in FS(L) converging to φ, and consider any dual complex ∆ ⊂ X.
By Theorem 5.29 (i), the functions φj−φ are continuous on ∆ and hence converge uniformly

16This step was overlooked in the proof of [BFJ16a, Theorem 7.10].
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to zero by Dini’s theorem. We can therefore extract a sequence (φm)m in FS(L) such
that φm − φ converges uniformly to 0 on ∆. By Proposition 2.13 (ii), φm is a model
metric associated to a semiample (hence nef) model of L, so φ is semipositive in the sense
of [BFJ16a]. �

Proof of Lemma 5.33. Let PSH′(L) be the set of usc singular metrics on L satisfying (i)–(ii).
Then PSH(L) ⊂ PSH′(L). Indeed, if φ ∈ PSH(L), then φ is usc by definition, (i) is trivial,
and (ii) follows from Theorem 5.29 (ii), so φ ∈ PSH′(L).

For the reverse inclusion, we consider the following modified envelope:

P ′(ψ) := sup{ϕ ∈ PSH′(L) | ϕ ≤ ψ}
for ψ a continuous metric on L. Let us first prove that P ′(ψ) = P (ψ). The envelope P ′

has the same Lipschitz property as in Lemma 5.24, so by Corollary 2.8 we may assume that
ψ is a DFS metric. Write ϕ = P (ψ) − φref and ϕ′ = P ′(ψ) − φref . We need to prove that
ϕ(x) = ϕ′(x) for all x ∈ X. Clearly ϕ ≤ ϕ′, so it suffices to prove ϕ′(x) ≤ ϕ(x).

First assume x ∈ Xqm, and pick X sufficiently large so that x ∈ ∆X and ψ − φref =
(ψ − φref) ◦ pX ; the latter is possible since ψ ∈ DFS(L). Pick any ε > 0. By the definition
of ϕ′ there exists φ′ ∈ PSH′(L) such that φ′ ≤ ψ and (φ′ − φref)(x) ≥ ϕ(x) − ε. Since
φ′ − ε ∈ PSH′(L), we may further find φ ∈ PSH(L) such that |φ− (φ′ − ε)| ≤ ε on ∆X . In
fact, we may assume φ ∈ FS(L). Indeed, there exists a decreasing net (φj)j in FS(L) such
that φj − φ converges pointwise to 0 on X. By Theorem 5.29, the restriction of φj − φ to
∆X is continuous, so Dini’s theorem implies that φj − φ converges uniformly to 0 on ∆X .
Then

φ− φref ≤ (φ− φref) ◦ pX ≤ (φ′ − φref) ◦ pX ≤ (ψ − φref) ◦ pX = ψ − φref ,

so that φ ≤ ψ. On the other hand, we have

(φ− φref)(x) ≥ (φ′ − φref)(x)− 2ε ≥ ϕ′(x)− 3ε.

This implies that ϕ(x) ≥ ψ′(x)− 3ε. Hence ϕ ≥ ϕ′ on Xqm, as claimed.
Now consider a general point x ∈ X. From the definition of PSH′(L) we have ϕ′ ≤ ϕ′ ◦pX

for every sufficiently large X ∈ SNC(X). Thus

ϕ′(x) ≤ lim
X
ϕ′ ◦ pX (x) = lim

X
ϕ ◦ pX (x) = ϕ(x),

where the last equality follows from Corollary 5.31 since ψ ∈ QPSH(X).

Thus we know that P ′(ψ) = P (ψ) for every continuous metric ψ on L. Let us now show
that in fact PSH′(L) = PSH(L). Consider any singular metric φ′ ∈ PSH′(L). We need to
show that φ′ is the limit of a decreasing net of FS metrics. For this we argue exactly as in
the implication (iii) =⇒ (i) of [BFJ16a, Lemma 8.9]. Namely, we first prove that for every
x ∈ X we have

(φ′ − φref)(x) = inf{(φ− φref)(x) | φ ∈ FS(L), φ ≥ φ′}. (5.3)

Indeed, fix ε > 0. Since φ′ is usc, there exists a continuous metric u on L such that φ′ ≤ u
and (u − φ′)(x) ≤ ε. Since φ′ ∈ PSH′(L), we have φ′ ≤ P ′(u). But P ′(u) = P (u) by
what precedes, and P (u) is continuous by Corollary 5.28. The definition of P (u) and Dini’s
theorem then yields a metric φ ∈ FS(L) such that P (u) ≤ φ ≤ P (u) + ε. Thus we have
φ ≥ φ′ and (φ− φ′)(x) ≤ 2ε, which completes the proof of (5.3).
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Now let J be the set of metrics φ ∈ FS(L) such that φ > φ′. We claim that J is a directed
set. Indeed, given φ1, φ2 ∈ J there exists ε > 0 such that φi−φ′ ≥ 3ε for i = 1, 2, since φi is
continuous and φ′ usc. This implies φ′ ≤ P ′(min{φ1, φ2}) + 3ε = P (min{φ1, φ2}) + 3ε. Now
pick φ ∈ FS(L) such that |φ− P (min{φ1, φ2})| ≤ ε. Then φ′ + ε ≤ φ− ε ≤ min{φ1, φ2}, so
φ ∈ J and φ ≤ φi for i = 1, 2. Thus J is a directed set, and the associated net (φj)j∈J is
decreasing. It now follows from (5.3) that its limit equals φ′, which completes the proof. �
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6. Metrics of finite energy

In §5 we introduced the class PSH(L) of psh metrics17 on L. Here we define the subspace
E1(L) ⊂ PSH(L) of metrics of finite energy, and extend the Monge-Ampère operator and
associated functionals to this space.

To begin with, k is an arbitrary non-Archimedean field, whereas X is a geometrically
integral variety and L an ample line bundle on X. However, for some of the deeper results,
we need further restrictions on k and X.

6.1. Metrics of finite energy. We start by extending the Monge-Ampère energy func-
tional to the space of all psh metrics. Fix a reference metric φref ∈ FS(L).

Definition 6.1. For any metric φ ∈ PSH(L) we set

E(φ) = inf{E(ψ) | ψ ≥ φ, ψ FS metric on L} ∈ R ∪ {−∞}.

We define

E1(L) ⊂ PSH(L)

as the set of psh metrics φ with E(φ) > −∞.

Note that E extends the functional earlier defined on FS metrics, since the latter is
nondecreasing. In particular, FS(L) ⊂ E1(L).

Proposition 6.2. The function E : PSH(L) → [−∞,+∞) is nondecreasing, concave, and
satisfies E(φ+c) = E(φ)+c for any c ∈ R. It is also upper semicontinuous, and continuous
along decreasing nets.

Proof. We follow the proof of [BFJ15, Proposition 6.2]. That E is nondecreasing is obvious.
Similarly, the formula E(φ+c) = E(φ)+c follows since it holds for φ ∈ FS(L) and c ∈ Q. To
prove that E is usc, pick φ0 ∈ PSH(L) and s0 ∈ R such that E(φ0) < s0. By the definition
of E(φ0), there exists ψ0 ∈ FS(L) and t0 < s0 such that ψ0 ≥ φ0 and E(ψ0) < t0. Since
φ 7→ supX(φ − ψ0) is continuous, see Corollary 5.11, there exists an open neighborhood U
of φ0 in PSH(L) such that φ − ψ0 < s0 − t0 for φ ∈ U . Since E is nondecreasing, this
gives E(φ) ≤ E(ψ0 + s0 − t0) = E(ψ0) + s0 − t0 < s0 for φ ∈ U . Now that we know
that E is usc, continuity along decreasing nets follows formally from E being nondecreasing.
Finally we prove that E is concave. Pick φ, ψ ∈ PSH(L) and consider decreasing nets (φi)i
and (ψj)j in FS(L) converging to φ and ψ, respectively. For t ∈ Q ∩ [0, 1] we know that
E((1− t)φi+ tψj) ≥ (1− t)E(φi)+ tE(φj) for all i, j. Since E is continuous under decreasing
nets, this implies E((1 − t)φ + tψ) ≥ (1 − t)E(φ) + tE(φ) for t ∈ [0, 1] ∩ Q. The same
inequality must then hold for all t ∈ [0, 1] since E is usc. Thus E is concave. �

Corollary 6.3. The space E1(L) has the following properties:

(i) E1(L) does not depend on the choice of reference metric φref ;
(ii) if φ ∈ E1(L) and c ∈ R, then φ+ c ∈ E1(L);

(iii) if φ ∈ E1(L), ψ ∈ PSH(L) and ψ ≥ φ, then ψ ∈ E1(L);
(iv) E1(L) is convex;
(v) any bounded psh metric is in E1(L);

17Recall that we refer to the elements of PSH(L) as metrics even though some of them are singular metrics.
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Proof. Statements (ii)-(iii) follow easily from the definition, and imply (v) since FS(L) ⊂
E1(L). That E1(L) is convex follows since E is concave. Finally, (i) is a consequence of (3.12).
Indeed, if E′(φ) denotes the energy with respect to a different reference metric φ′ref , then
E(φ)− E′(φ) = E(φ′ref , φref). �

Corollary 6.4. For any C > 0, the set

E1
C(L) := {φ ∈ E1(L) | φ ≤ φref , E(φ) ≥ −C} ⊂ PSH(L)

is a convex and weakly closed.

Proof. The convexity of E1
C(L) follows from the concavity of E. That E1

C(L) is weakly closed
follows since E is usc and φ 7→ sup(φ−φref) is continuous on PSH(L), see Corollary 5.11. �

Corollary 6.5. If k is trivially or discretely valued, of residue characteristic zero, X is
smooth, and L is ample, then E1

C(L) is weakly compact for any C > 0.

Proof. By Corollary 6.4, E1
C is a closed subset of PC := {φ ∈ PSH(L) | max(φ − φref) ∈

[−C, 0]}, which is compact under the hypotheses on (k,X,L), see Corollary 5.35. �

Proposition 6.6. If φ, ψ ∈ E1(L), then the function [0, 1] 3 t 7→ E((1 − t)φ + tψ) is the
restriction of a polynomial of degree at most n+ 1.

Proof. Note that φt := (1− t)φ+ tψ ∈ E1(L) for 0 ≤ t ≤ 1 by concavity of E.
First assume φ, ψ ∈ FS(L). Then φt ∈ FS(L) for t ∈ [0, 1] ∩Q, and uit follows from the

definition of the functional E that there exists a polynomial p(t) of degree at most n + 1
such that E(φt) = p(t) for t ∈ Q∩ [0, 1]. The same equality must then hold for all t ∈ [0, 1].
Indeed, given t ∈ [0, 1], and a sequence (tm)m in [0, 1] ∩Q with tm → t, there exists εm > 0
with limm εm = 0 such that φtm + εm decreases to φt as m→∞, and then

E(φt) = lim
m
E(φtm + εm) = lim

m
(E(φtm) + εm) = lim

m
p(tm) + εm = p(t).

Now consider any φ, ψ ∈ E1(L). We can find decreasing nets (φj)j and (ψj)j in FS(L), with
the same index set J , converging to φ and ψ, respectively. Then φj,t := (1 − t)φj + tψj
decreases to φt for any t ∈ [0, 1]. Thus the sequence (pj(t))j of functions on [0, 1] decreases
to the finite-valued function p(t) := E(φt). Since pj(t) is given by a polynomial of degree at
most n+ 1 for all j, the same is true for p(t). �

Proposition 6.7. Let k′/k be a non-Archimedean extension, set L′ := Lk′, and let π : L′ →
L be the canonical map.

(i) If φ ∈ PSH(L), then E(φ ◦ π) = E(φ). Thus φ ◦ π ∈ E1(L′) iff φ ∈ E1(L).
(ii) If k is trivially valued, k′ := k(($)), σ : k → k′ is the Gauss extension, and φ′ ∈
E1(L′), then φ′ ◦ σ ∈ E1(L) and E(φ′ ◦ σ) ≥ E(φ′).

Proof. To prove (i), let (φj)j be a decreasing net in FS(L) converging to φ. Then (φj ◦ π)j
is a decreasing net in FS(L′) converging to φ ◦ π. For each j, we have E(φj ◦ π) = E(φj),
see Corollary 3.10. Since E is continuous for decreasing nets, we have E(φ) = E(φ ◦ π).

Now assume k is trivially valued, and let (φ′j)j be a decreasing net in FS(L′) converging

to φ′ ∈ E1(L′). Then (φ′j ◦ σ)j is a decreasing net in FS(L) converging to φ′ ◦ σ. For each j,

we have E(φ′j ◦ σ) = E(φ′j ◦ σ ◦ π) ≥ E(φ′j) since φ′j ≤ φ′j ◦ σ ◦ π, see Proposition 2.11 (i).

Thus (ii) follows, since E is continuous along decreasing nets. �
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Proposition 6.8. Assume k is trivially valued. If φ ∈ E1(L), then φt ∈ E1(L) and E(φt) =
tE(φ) for all t ∈ R×+.

Proof. After adding a constant, we may assume φ ≤ φtriv. Then t → φt is decreasing by
Proposition 5.13, so it suffices to consider t ∈ Q×+. This case follows from regularization and
Corollary 3.11. �

6.2. Monge-Ampère operator. Next we extend the Monge-Ampère operator to the space
E1(L). In the complex case, this is usually done in two steps: first one considers the case
of bounded metrics, following the approach by Bedford-Taylor [BT82, BT87] who treated
bounded plurisubharmonic functions in Cn; then one uses the canonical approximation
φt := max{φ, φref − t}, t ≤ 0 to treat the general case [Ceg98, GZ05]. This approach was
adapted to the case of discretely valued fields of residue characteristic zero in [BFJ15].

Here we follow a different strategy that bypasses the intermediate step of bounded metrics
and instead uses the estimates of §3.12 to directly treat metrics of finite energy.

Theorem 6.9. There exists a unique operator

(φ1, . . . , φn) 7→ MA(φ1, . . . , φn)

taking an n-tuple in E1(L) to a Radon probability measure on X, such that

(i) the definition is compatible with the one for FS metrics in §3.1;
(ii) we have

∫
(ψ − φref) MA(φ1, . . . , φn) > −∞, when ψ, φ1, . . . , φn ∈ E1(L);

(iii) for any decreasing nets ψj → ψ and φji → φi in E1(L) we have∫
(ψj − φref) MA(φj1, . . . , φ

j
n) −→

∫
(ψ − φref) MA(φ1, . . . , φn).

Remark 6.10. Following [Ceg98, GZ05, BEGZ10, BBGZ13] in the complex case and [BFJ15]
in the non-Archimedean case, it is possible to define the Monge-Ampère operator for an even
larger class than E1(L), but we shall not do so here.

We will also prove that the Monge-Ampère operator is continuous also along increasing
nets in E1(L). Note that such a net may not converge pointwise everywhere. This continuity
result is useful since psh metrics can be constructed as usc envelopes, see §5.4.

Theorem 6.11. For any increasing nets ψj → ψ and φji → φi in E1(L) we have∫
(ψj − φref) MA(φj1, . . . , φ

j
n) −→

∫
(ψ − φref) MA(φ1, . . . , φn).

Theorem 6.11 is new also in the setting of [BFJ16a, BFJ15]. In the original work of
Bedford-Taylor [BT82], continuity of the Monge-Ampère operator along increasing sequences
of locally bounded psh functions in Cn was proved using capacity theory. Here we take a
more direct approach, using the estimates in §3.12 and their extensions to metrics of finite
energy (see Corollary 6.16).

The proof of Theorems 6.9 and 6.11 are given in §6.8 below. For now, we deduce some
consequences.

Corollary 6.12. Let (φji )j, 1 ≤ i ≤ n be nets in E1(L), all decreasing or all increasing,

converging to metrics φi ∈ E1(L). Then limj MA(φj1, . . . , φ
j
n) = MA(φ1, . . . , φn).



54 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Proof. In the case of decreasing nets, this follows from Theorem 6.9 (iii) by taking ψj = ψ to
be an FS metric on L and using the fact that any continuous function on X can be uniformly
approximated by differences of FS metrics on L, see Lemma 2.6 and Theorem 2.7.

The case of increasing nets is handled in the same way, using Theorem 6.11. �

Corollary 6.13. For any metrics φi ∈ E1(L) and ci ∈ R, 1 ≤ i ≤ n, we have

MA(φ1 + c1, . . . , φn + cn) = MA(φ1, . . . , φn). (6.1)

Proof. This holds when φi ∈ FS(L) and ci ∈ Q; the general case follows by regularization.
�

Corollary 6.14. If (ψj)j and (φji )j, 1 ≤ i ≤ n, are nets in E1(L) converging uniformly to
metrics ψ and φi, then ψ, φi ∈ E1(L) and∫

ψj MA(φj1, . . . φ
j
n) −→

∫
ψMA(φ1, . . . , φn).

Proof. After adding small constants to the φji and ψj , and invoking Corollary 6.13, we may
assume that all the nets are decreasing. �

Corollary 6.15. The mapping (φ1, . . . , φn) 7→ MA(φ1, . . . , φn) is symmetric in its argu-
ments, and additive in the following sense:

MA(tφ1 + (1− t)φ′1, φ2, . . . , φn) = tMA(φ1, φ2, . . . , φn) + (1− t) MA(φ′1, φ2, . . . , φn)

for 0 ≤ t ≤ 1.

Proof. This holds when φi ∈ FS(L) and t ∈ Q; the general case follows by regularization. �

6.3. Energy functionals. It is straightforward to extend the energy functionals I and J
to E1(L). Namely, we define I(φ, ψ) and Jψ(φ) for φ, ψ ∈ E1(L) using the same formulas
as in §3.9. We see that if (φj)j and (ψj)j are decreasing (or increasing) nets in E1(L)
converging to φ, ψ ∈ E1(L), then limj I(φj , ψj) = I(φ, ψ) and Jψ(φ) = limj Jψj (φ

j). Using
regularization, we also get

Corollary 6.16. All the estimates in §3.12 for FS metrics on L extend to metrics in E1(L).

The estimate in Lemma 3.14 also holds for all real t ∈ [0, 1]. Later we will need a similar
estimate, proved in Appendix A.

Lemma 6.17. [Din88, Remark 2]. For φ, ψ ∈ E1(L) and t ∈ [0, 1] we have

Jψ(tφ+ (1− t)ψ) ≤ t1+ 1
nJψ(φ).

In the rest of this subsection, we deduce consequences of the estimates in §3.12. First
we consider continuity properties. For a general Radon measure µ on X (e.g. for µ = δx,
x ∈ Xrig), the functional φ 7→

∫
(φ− φref)µ may fail to be continuous. However, we have

Proposition 6.18. For any metric ψ ∈ E1(L), the functional φ 7→
∫

(φ − φref) MA(ψ) is
weakly continuous on E1

C(L) for every C > −∞.

Proof. Let (φi)i be a net in E1
C(L) converging weakly to φ ∈ E1

C(L). We must prove that
limi

∫
(φi − φ) MA(ψ) = 0. Pick any ε > 0. Let (ψj)j be a decreasing net of FS met-

rics converging to ψ. Then limj I(ψj , ψ) = 0, whereas supi I(φi, φ) < ∞, supi J(φi) < ∞
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and supj J(ψj) < ∞, see Corollary 3.17. It therefore follows from Corollary 3.20 that

limj supi |
∫

(φi − φ)(MA(ψj) − MA(ψ))| = 0. Since, for every j, we have limi

∫
(φi −

φ) MA(ψj) = 0, see Lemma 6.19 below, this uniform estimate completes the proof. �

Lemma 6.19. Let φ1, . . . , φn be DFS metrics on line bundles L1, . . . , Ln. Then the map

QPSH(X) 3 ϕ→
∫
ϕddcφ1 ∧ · · · ∧ ddcφn

is continuous.

Proof. This follows by the definition of the topology on QPSH(X), since the measure ddcφ1∧
· · · ∧ ddcφn is a finite signed atomic measure supported on quasimonomial valuations. �

6.4. Ground field extension and scaling. Consider a non-Archimedean field extension
k′/k and set X ′ = Xk′ , L

′ = Lk′ . Write π : X ′ → X and π : L′ → L for the canonical maps.
Use φ′ref := φref ◦ π as reference metric on L′.

Corollary 6.20. Consider metrics ψ, φ1, . . . , φn ∈ E1(L).

(i) If we set φ′i = φi ◦ π for 1 ≤ i ≤ n and ψ′ = ψ ◦ π, then∫
X′

(ψ′ − φ′ref) MA(φ′1, . . . , φ
′
n) =

∫
X

(ψ − φref) MA(φ1, . . . , φn).

(ii) If k is trivially valued, then, for any t ∈ R×+ we have∫
(ψt − φtriv) MA(φ1,t . . . , φn,t) = t

∫
(ψ − φtriv) MA(φ1, . . . , φn).

Proof. The equality in (i) follow directly from Proposition 3.2 and regularization. We simi-
larly obtain (ii) when t ∈ Q×+. To treat the general case we may assume that ψ ≤ φtriv and
φi ≤ φtriv for 1 ≤ i ≤ n. In this case, t 7→ ψt and t 7→ φi,t are decreasing, so the result
follows by approximating any t ∈ R×+ by a increasing sequence in Q×+. �

Corollary 6.21. The functionals E, I and J are invariant under ground field extension,
in the sense that all the assertions Corollary 3.10 hold for φ, ψ ∈ E1(L). Further, the
homogeneity properties of Corollary 3.11 hold for all t ∈ R×+.

6.5. Countable regularization. We have the following countable regularization result.

Corollary 6.22. If L is ample, then every metric φ ∈ E1(L) is the limit of a decreasing
sequence in FS(L).

Proof. Let (φj)j∈J be a decreasing net in FS(L) converging to φ. Then limj I(φj , φ) = 0
and limj

∫
(φj − φ) MA(φref) = 0. We can therefore pick an increasing sequence (jm)m

in I such that I(φj(m), φ) ≤ m−1 and 0 ≤
∫

(φj(m) − φ) MA(φref) ≤ m−1 for all m. To
simplify notation, write φm := φj(m). We claim that limm→∞ φm = φ in PSH(L), i.e.
limm(φm − φ)(x) = 0 for every x ∈ Xqm.

In fact, it suffices to consider the case x ∈ XShi. Indeed, there exists a non-Archimedean
field extension k′/k and a point x′ ∈ XShi

k′ such that π(x′) = x. Here π denotes the canonical
map Xk′ → X as well as the corresponding map Lk′ → L. Write φ′m = φm◦π and φ′ = φ◦π.
Then I(φ′m, φ

′) ≤ m−1 and 0 ≤
∫

(φ′m − φ′) MA(φ′ref) ≤ m−1, where φ′ref = φref ◦ π. Further,
Xk′ is geometrically integral and Lk′ ample. If we can prove that limm(φ′m − φ′)(x′) = 0, it
will then follow that limm(φm − φ)(x) = 0.
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Thus suppose x ∈ XShi. Pick a sufficiently large model X of X such that x corresponds
to an irreducible component of X0, and such that L admits an ample model L on X . Let
ψ ∈ FS(L) be the metric induced by L. By Corollary 3.20 (or rather, its version for metrics
in E1(L), see Corollary 6.16), we have limm→∞

∫
(φm − φ)(MA(ψ) − MA(φref)) = 0, and

hence limm→∞
∫

(φm−φ) MA(ψ) = 0. But φm−φ ≥ 0, and MA(ψ) is a probability measure
putting mass on x, so we conclude that limm→∞(φm − φ)(x) = 0. �

Remark 6.23. Suppose k is discretely or trivially valued and of residue characteristic zero,
X is smooth, and L ample. Then we have a countable regularization result also in PSH(L).
In the discretely valued case, this was proved in [BFJ15] using capacity theory. The trivially
valued case follows using ground field extension.

6.6. The strong topology. In this subsection, we assume for simplicity that k is discretely
or trivially valued, of residue characteristic zero and X is smooth. These assumptions are
not necessary for the basic definitions, but we need them for the proofs of the main results.

Following [BBGZ13, §2] we define the strong topology on E1(L) as the coarsest refinement
of the weak topology inhereted from PSH(L) such that E : E1(L)→ R is continuous. Thus
a net (φj)j in E1(L) converges strongly to φ ∈ E1(L) iff limj(φj − φ) = 0 on Xqm and
limj E(φj) = E(φ). Note that this notion does not depend on the choice of reference metric
φref ∈ FS(L). Also note that if φj is a decreasing net in PSH(L) and φ := limj φj ∈ E1(L),
then φj converges strongly to φ.

Lemma 6.24. Every strongly convergent net in E1(L) is eventually contained in E1
C(L) for

some C > 0.

Proof. Let (φj)j be a strongly convergent net, and set φ = limj φj . Then limj sup(φj−φref) =
sup(φ−φref) by Corollary 5.11, and limj E(φj) = E(φ) by definition, so the result follows. �

The strong topology on E1(L)/R is defined as the quotient topology induced by the strong
topology on E1(L). If (φj)j is a net in E1(L) and φ ∈ E1(L), we slightly abusively say that
φj → φ strongly in E1(L)/R if there exist cj , c ∈ R such that limj φj + cj = φ+ c strongly
in E1(L). We can then pick cj = max(φj − φref) and c = max(φ− φref).

Proposition 6.25. Assume k is trivially valued and set k′ = k(($)), L′ := Lk′. Let π : L′ →
L be the canonical map. Then the map E1(L) 3 φ 7→ φ ◦ π ∈ E1(L′) is strongly continuous.
Further, if (φj)j is a net in E1(L) and φ ∈ E1(L), then limφj = φ strongly iff limj φj ◦ π =
φ ◦ π strongly.

Proof. This follows from φ 7→ φ◦π being weakly continuous and from the formula E(φ◦π) =
E(φ) for φ ∈ E1(L), where we use the reference metric φref ◦ π on L′. �

Proposition 6.26. If (φj)j is a net in E1(L) and φ ∈ E1(L), then the following conditions
are equivalent:

(i) φj → φ strongly in PSH(L)/R;
(ii) limj I(φj , φ) = 0;
(iii) limj Jφ(φj) = 0.

Proof. The case when k is trivially valued easily reduces to the discretely valued case using
the field extension k′ = k(($)), so we may assume that k is nontrivially valued.
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The equivalence of (ii) and (iii) follows from (3.19), wo we only need to prove that (i)
and (iii) are equivalent. For this, we use the formula

Jφ(φj) = E(φ)− E(φj) +

∫
(φj − φ) MA(φ). (6.2)

First assume that φj → φ strongly in E1(L)/R. After normalizing φj and φ by max(φj −
φref) = max(φ − φref) = 0, this simply means φj → φ strongly in E1(L). In particular,
E(φj)→ E(φ), and there exists C > 0 such that φj ∈ E1

C(L) for all j. Since φj → φ weakly,
it follows from Proposition 6.18 that

∫
(φj − φ) MA(φ)→ 0. Thus Jφ(φj)→ 0 by (6.2).

Conversely suppose that limj Jφ(φj) → 0. We must prove that φj → φ strongly in
E1(L)/R. In this case, we normalize φj and φ by

∫
(φj − φref) MA(φref) = 0 and

∫
(φ −

φref) MA(φref) = 0, respectively. We then claim that φj → φ weakly. Granted this, we argue
as follows. From Lemma 3.16 and (3.21) we have supj J(φj) <∞, so there exists C > 0 such

that φj ∈ E1
C for all C, and then E(φj)→ E(φ) follows from (6.2) and Proposition 6.18.

Proving that φj → φ weakly amounts to showing φj − φ→ 0 pointwise on Xqm. In fact,

it suffices to prove φj − φ → 0 pointwise on XShi, see Corollary 5.32. Set fj := φj − φ and

view fj as a function on XShi. By the Izumi inequality (Theorem 2.21), there exists, for any

x ∈ XShi a constant C(x) ≥ 0 such that |fi(x)| ≤ C(x) for all i. By Tychonoff’s theorem,
we may, after replacing f by a subnet, assume that fj converges pointwise to a function

f : XShi → R such that |f(x)| ≤ C(x) for all x ∈ XShi. We must then prove f ≡ 0 on XShi.
Given metrics ψi ∈ FS(L), 1 ≤ i ≤ n, we have∫
fddcψ1 ∧ · · · ∧ ddcψn = lim

i

∫
fidd

cψ1 ∧ · · · ∧ ddcψn

= lim
i

(∫
fidd

cψ1 ∧ · · · ∧ ddcψn −
∫
fi(dd

cφref)
n

)
= 0,

where the first equality holds since ddcψ1∧· · ·∧ddcψn is a finite atomic measures supported
on XShi, the second by the normalizations of φ and the φi, and the third by Corollary 3.19
and the assumption limi I(φi, φ) = 0. In view of Proposition 3.8, this implies f ≡ 0. �

Remark 6.27. If Conjecture 3.7 is true, Proposition 6.26 holds for any non-Archimedean
field k, any geometrically integral projective variety X, and any ample line bundle L on X.
Indeed, we only used the assumptions on k and X to prove that limj I(φj , φ) = 0 implies that
φj → φ weakly, i.e. pointwise on Xqm. Using Lemma 2.23, it suffices to prove that (φj−φ)→
pointwise on XShi, and the argument above shows that this follows from Conjecture 3.7.

Since the topology on PSH(L)/R is Hausdorff, the strong topology on E1(L)/R must also
be Hausdorff. We have the following slightly more precise statement.

Corollary 6.28. If φ1, φ2 ∈ E1(L), the following statements are equivalent:

(i) I(φ1, φ2) = 0;
(ii) MA(φ1) = MA(φ2);

(iii) the function φ1 − φ2 is constant on X.

By (3.18)–(3.19), these conditions are also equivalent to Jφ1(φ2) = 0 and to Jφ2(φ1) = 0.

Proof. It is clear that (iii) =⇒ (ii) =⇒ (i). Hence it suffices to show that (i) implies (iii).
But this follows from Proposition 6.18 applied to a constant net. �
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The assignment (φ1, φ2)→ I(φ1, φ2) (presumably) does not define a metric on E1(L)/R,
but it does satisfy the quasi-triangle inequality I(φ1, φ3) ≤ Cn max{I(φ1, φ2), I(φ2, φ3)}, see
Lemma 3.16. It hence defines a uniform structure on E1(L)/R. The next result says that
this structure is complete.

Proposition 6.29. If (φj)j∈J is a net in E1(L) with limi,j I(φi, φj) = 0, then there exists
φ ∈ E1(L), unique up to an additive constant, such that φj → φ strongly in E1(L)/R.

Proof. We may assume sup(φj − φref) = 0 for all j. It follows from Lemma 3.16 that
supj J(φj) <∞. By weak compactness of PSH(L)/R, there exists an accumulation point φ
of the net φj , and it satisfies sup(φ−φref) = 0. We claim that limj I(φj , φ) = 0. Pick a subnet
(φj(α))α∈A converging to φ in PSH(L). Since E is usc, we have E(φ) ≥ lim supαE(φj(α)).
Fix an index i ∈ J . For any α ∈ A we have

Jφi(φj(α)) = E(φi)− E(φj(α)) +

∫
(φj(α) − φi) MA(φi).

Now let α → ∞. The last integral converges to
∫

(φ − φi) MA(φi) by Proposition 6.18, so
by what precedes, we get

Jφi(φ) = E(φi)− E(φ) +

∫
(φ− φi) MA(φi) ≤ lim

α
Jφi(φj(α)).

Since Jφi(φ) ≥ 0, this shows that limi Jφi(φ) = 0, and hence limi I(φi, φ) = 0 by (3.19).
Using Proposition 6.26, we see that limi φi = φ strongly in E1(L)/R. �

6.7. Orthogonality and differentiability. As in §6.6 we assume that k is discretely or
trivially valued, of residue characteristic zero and that X is smooth.

Recall from §5.5 that the psh envelope P (ψ) of a continuous metric ψ on L is a continuous
psh metric on L. In particular, P (ψ) ∈ E1(L). In this subsection we state two key facts
about the interaction of the operator P and the Monge-Ampère operator.

Theorem 6.30. The following two properties hold:

(i) For any continuous metric ψ on L, we have
∫

(ψ − P (ψ)) MA(P (ψ)) = 0.
(ii) The composition E ◦ P is Gateaux differentiable on the space of continuous metrics

on L, with derivative given by (E ◦ P )′ = MA ◦P . Equivalently, we have

E(P (ψ + f)) = E(P (ψ)) +

∫ 1

0
dt

∫
f MA(P (ψ + tf))

for every continuous metric ψ on L and every f ∈ C0(X).

Following [BFJ15] we refer to (i) as the orthogonality property for L, whereas (ii) is the
differentiability property.

Proof. For k discretely valued, the orthogonality property was proved in [BFJ15] under an
additional technical assumption; the general case appears in [BGJKM16, Theorem 6.3.2].
Further, differentiability was shown in [BFJ15, Theorem 7.2] to follow from orthogonality.
Thus Theorem 6.30 holds in the discretely valued case.

Now assume k is trivially valued. Set k′ = k(($)) and consider the base changes X ′ = Xk′

and L′ = Lk′ . Write π for the canonical maps X ′ → X and L′ → L. By Proposition 5.25,
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we have P (ψ ◦ π) = P (ψ) ◦ π. Corollary 6.20 now yields∫
X

(ψ − P (ψ)) MA(P (ψ)) =

∫
X′

(ψ − P (ψ)) ◦ π MA(P (ψ) ◦ π)

=

∫
X′

(ψ ◦ π − P (ψ ◦ π)) MA(P (ψ ◦ π)) = 0,

where the last equality follows from the orthogonality property in the discretely valued
case. This proves (i). As for (ii), write ψ′ := ψ ◦ π, f ′ = f ◦ π. For t ∈ R we then have
P (ψ′+ tf ′) = P (ψ+ tf) ◦ π by Proposition 5.25, and hence E(P (ψ′+ tf ′)) = E(P (ψ+ tf))
by Proposition 6.7. Thus

E(P (ψ + f)) = E(P (ψ′ + f ′))

= E(P (ψ′)) +

∫ 1

0
dt

∫
X′
f ′ MA(P (ψ′ + tf ′))

= E(P (ψ)) +

∫ 1

0
dt

∫
X
f MA(P (ψ + tf)),

where the second equality follows from the differentiability in the discretely valued case, and
the third equality from Corollary 6.20 (i). This completes the proof. �

When solving the Monge-Ampère equation in §7.3 we need a generalized version of the
differentiability property. Given a usc metric ψ on L that dominates some psh metric, set

P (ψ) := sup{φ ∈ PSH(L) | φ ≤ ψ}.

Lemma 6.31. We have P (ψ) ∈ PSH(L). If ψ is continuous, then so is P (ψ).

Proof. We saw in Theorem 5.27 that P (ψ) is psh and continuous when ψ is continuous.
By Corollary 5.28, all the properties in Proposition 5.23 hold. Property (v) applied to the
family of psh metrics bounded above by ψ shows that the usc regularization P (ψ)∗ is psh.
Now u is usc and P (ψ) ≤ u, so P (ψ)∗ ≤ u. Thus P (ψ)∗ is a candidate in the definition of
P (ψ), so P (ψ)∗ ≤ P (ψ), and hence P (ψ) = P (ψ)∗ is psh. �

Corollary 6.32. If φ ∈ E1(L) and f ∈ C0(X), then P (φ + tf) ∈ E1(L) for all t ∈ R.
Further, the function t→ E(P (φ+ tf)) is differentiable, and d

dtE(P (φ+ tf))|t=0 = MA(φ).

Proof. We repeat the proof of [BFJ15, Corollary 7.3]. First note that P (φ+tf) ≥ φ−t inf f ,
so P (φ + tf) ∈ E1(L) for all t. It now suffices to prove that E(P (φ + f)) − E(φ) =∫ 1

0 dt
∫
f MA(P (φ+ tf)) for all f ∈ C0(X). For this, we use Corollary 6.22, which yields a

decreasing sequence (φm)∞1 in FS(L) converging to φ. For each m we have

E(P (φm + f))− E(φm) =

∫ 1

0
dt

∫
f MA(P (φm + tf)) (6.3)

It is easy to see that P (φm + tf) decreases to P (φ+ tf) for all t. Hence the left hand side
of (6.3) converges to E(P (φ+f))−E(φ). Further,

∫
f MA(P (φm+tf)) converges weakly to∫

f MA(P (φ+ tf) by Theorem 6.9. We conclude using the dominated convergence theorem,
since

∫
f MA(P (φm + tf)) is uniformly bounded in m and t ∈ [0, 1]. �
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6.8. Proof of Theorem 6.9. We follow [BFJ16a]. The proof below works in both the
discretely and trivially valued case. Fix 0 ≤ p ≤ n and consider the following statement.

Assertion A(p). To any metrics φ1, . . . , φp in E1(L) and φ′p+1, . . . , φ
′
n in FS(L) is associated

a Radon probability measure

Mp(φ1, . . . , φp) = Mp(φ1, . . . , φp;φ
′
p+1, . . . , φ

′
n)

such that:

(i) if φ1, . . . , φp are FS metrics, then

Mp(φ1, . . . , φp;φ
′
p+1, . . . , φ

′
n) = MA(φ1, . . . , φp, φ

′
p+1, . . . , φ

′
n) (6.4)

as defined in (3.3);
(ii) we have

∫
(ψ − φref) Mp(φ1, . . . , φp) > −∞, when ψ, φ1, . . . , φn ∈ E1(L);

(iii) the mapping

(ψ, φ1, . . . , φp) 7→
∫

(ψ − φref) Mp(φ1, . . . , φp)

is continuous along decreasing nets in E1(L).

We shall prove A(p) by induction on p. For p = n, this proves Theorem 6.9.

The assertion A(0) is clear using Proposition 5.2, since M0 = MA(φ′1, . . . , φ
′
n) is a finite

sum of Dirac masses at points in Xqm in view of Proposition 3.2.
Now assume 1 ≤ p ≤ n, that A(p− 1) holds, and let φ′p+1, . . . , φ

′
n ∈ FS(L). Given metrics

φ1, . . . , φp ∈ E1(L), we define Mp(φ1, . . . , φp) by forcing the integration by parts formula∫
(ψ − φref) Mp(φ1, . . . , φp) :=

∫
(φp − φref) Mp−1(φ1, . . . , φp−1;ψ, φ′p+1, . . . , φ

′
n)

+

∫
(ψ − φp) Mp−1(φ1, . . . , φp1 ;φref , φ

′
p+1, . . . , φ

′
n) (6.5)

for every FS metric ψ on L.

By A(p− 1), the right-hand side of (6.5) is well-defined and continuous along decreasing
nets as a function of (φ1, . . . , φp). Further if the φi are all FS metrics, then equality holds
in (6.5) when Mp(φ1, . . . , φp) is replaced by MA(φ1, . . . , φp, φ

′
p+1, . . . , φ

′
n). It then follows by

regularization that the right-hand side is linear in ψ, and non-negative when ψ ≥ φref .
Since the space of differences of FS metrics on L is dense in C0(X), it follows that

Mp(φ1, . . . , φp) is well-defined as a Radon probability measure on X, and is continuous
along decreasing nets as a function of (φ1, . . . , φp).

Next we prove (ii). We may assume ψ, φi ≤ φref . Set

B := max{−E(ψ),−E(φ1), . . . ,−E(φp),−E(φ′p+1), . . . ,−E(φ′n)} <∞.

Let (ψj)j and (φji )j , 1 ≤ i ≤ p, be decreasing nets of FS metrics converging to ψ and φi,

respectively. Then J(ψj) ≤ B, J(φji ) ≤ B for 1 ≤ i ≤ p, and J(φ′i) ≤ B for p < i ≤ n. Fix
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any index j0. For j ≥ j0 we have∫
(ψj0 − φref) Mp(φ

j
1, . . . , φ

j
p) ≥

∫
(ψj − φref) Mp(φ

j
1, . . . , φ

j
p)

=

∫
(ψj − φref) MA(φj1, . . . , φ

j
p;φ
′
p+1, . . . , φ

′
n)

≥
∫

(ψ − φref) MA(φref)− Cn(Dref +B) ≥ −B − Cn(Dref +B) =: B′,

where the second inequality follows from Lemma 3.22 and the last inequality from
∫

(ψ −
φref) MA(φref) ≥ E(ψ) ≥ −B. Letting j → ∞ we get

∫
(ψj0 − φref) Mp(φ1, . . . , φp) ≥

B′ > −∞ by the continuity of (φ1, . . . , φp) → Mp(φ1, . . . , φp) along decreasing nets. Since
Mp(φ1, . . . , φp) is a Radon probability measure and (ψj)j is a decreasing net of usc metrics,
it follows from [Fol99, 7.12] that∫

(ψ − φref) Mp(φ1, . . . , φp) = lim
j0

∫
(ψj0 − φref) Mp(φ1, . . . , φp) ≥ B > −∞,

which completes the proof of (ii).

Finally we prove (iii). Let (φji )j , i = 1, . . . , p and (ψj)j be decreasing nets in E1(L)

converging, respectively, to metrics φi and ψ in E1(L). Set µj := Mp(φ
j
1, . . . , φ

j
p). Then (µj)j

is a net of Radon measures converging weakly to µ := Mp(φ1, . . . , φp). Further, (ψj − φref)j
is a decreasing net of usc functions converging pointwise to ψ−φref , so it follows from general
integration theory (see [BFJ15, Corollary 2.25]) that

lim
j

∫
(ψj − φref)µj ≤

∫
(ψ − φref)µ. (6.6)

For the reverse estimate, we rely on the following approximate monotonicity property:

Lemma 6.33. Let ψ and χi ≥ φi, i = 1, . . . , p be metrics in E1(L). Then∫
(ψ − φref) Mp(χ1, . . . , χp) ≥

∫
(ψ − φref) Mp(φ1, . . . , φp)

+

p∑
i=1

∫
(φi − χi) Mp(φ1, . . . , φi−1, φref , χi+1, . . . , χp).

The lemma implies that, for each j:∫
(ψj − φref)µ

j ≥
∫

(ψ − φref)µ
j

≥
∫

(ψ − φref)µ+

p∑
i=1

∫
(φi − φji ) Mp(φ1, . . . , φi−1, φref , φ

j
i+1, . . . , φ

j
p).

By the inductive hypothesis, the sum in the right-hand side tends to 0 as j →∞. Thus we
obtain limj

∫
(ψj − φref)µ

j ≥
∫

(ψ − φref)µ. Together with (6.6), this completes the proof
of (iii) and hence the proof of Theorem 6.9.

Proof of Lemma 6.33. Since Mp(χ1, . . . , χp) and Mp(φ1, . . . , φp) are Radon probability mea-
sures, we may after regularization assume that ψ is an FS metric. Further, since we already
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know that (φ1, . . . , φp) 7→ Mp(φ1, . . . , φp) is continuous along decreasing nets, we may by reg-
ularization assume that all φi and χi are FS metrics. Integration by parts (Proposition 3.4)
then yields∫

(ψ − φref) Mp(χ1, χ2, . . . , χp)−
∫

(ψ − φref) Mp(φ1, χ2, . . . , χp) =

=

∫
(χ1 − φ1) M(ψ, χ2, . . . , χp)−

∫
(χ1 − φ1) M(φref , χ2, . . . , χp);

hence ∫
(ψ − φref) Mp(χ1, . . . , χp) ≥

∫
(ψ − φref) Mp(φ1, χ2, . . . , χp)

+

∫
(φ1 − χ1) Mp(φref , χ2, . . . , χp).

We similarly have∫
(ψ − φref) Mp(φ1, χ2, χ3, . . . , χp) ≥

∫
(ψ − φref) Mp(φ1, φ2, χ3, . . . , χp)

+

∫
(φ2 − χ2) Mp(φ1, φref , χ3, . . . , χp).

Iterating this argument and summing up then yields the desired result. �

6.9. Proof of Theorem 6.11. Consider increasing nets ψj → ψ and φji → φi in E1(L).
We must show that∫

(ψj − φref) MA(φj1, . . . , φ
j
n) −→

∫
(ψ − φref) MA(φ1, . . . , φn).

We shall prove this by induction on q, where q is the largest integer such that φjp = φp for
all j and p > q.

First consider the case q = 0. Thus φjp = φp for 1 ≤ p ≤ n. For each p, pick a decreasing
net (φp,l)p of FS metrics on L converging to φp.∫

(ψ − ψj) MA(φ1, . . . , φn) =

∫
(ψ − ψj) MA(φ1,l, . . . , φn,l)

+

(∫
(ψ − ψj) MA(φ1, . . . , φn)−

∫
(ψ − ψj) MA(φ1,l, . . . , φn,l)

)
.

Pick any ε > 0. By Corollary 3.19 we can find l such that the last line is bounded by ε for
all j. Since ddcφ1,l ∧ · · · ∧ ddcφn,l is a finite atomic measure supported on quasimonomial
points, we then have 0 ≤

∫
(ψ − ψj) MA(φ1,l, . . . , φn,l) ≤ ε for j � 0. Thus 0 ≤

∫
(ψ −

ψj) MA(φ1, . . . , φn) ≤ 2ε.
Now assume 0 < q ≤ n. For 0 ≤ p ≤ n set

µjp := ddcφj1 ∧ · · · ∧ dd
cφjp ∧ ddcφp+1 ∧ · · · ∧ ddcφn.

Note that µj0 = µ := ddcφ1 ∧ · · · ∧ ddcφn and that µjq = · · · = µjn. With this notation, we
must prove that

lim
j

∫
(ψj − φref)µ

j
q =

∫
(ψ − φref)µ. (6.7)
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To this end, we first claim that

lim
j

∫
(χ− φref)µ

j
p =

∫
(χ− φref)µ (6.8)

for 0 ≤ p ≤ q and every χ ∈ E1(L). Indeed, this is clear for p = 0, since µj0 = µ, and for
1 ≤ p ≤ q we have∫

(χ− φref)µ
j
p −

∫
(χ− φref)µ

j
p−1

=

∫
(χ− φref)dd

cφj1 ∧ · · · ∧ dd
cφjp−1 ∧ dd

c(φjp − φp) ∧ ddcφp+1 ∧ · · · ∧ ddcφn

=

∫
(φjp − φp)ddcφ

j
1 ∧ · · · ∧ dd

cφjp−1 ∧ dd
c(χ− φref) ∧ ddcφp+1 ∧ · · · ∧ ddcφn,

which tends to zero by the inductive assumption.
Now we turn to (6.7). On the one hand, the fact that ψj ≤ ψ implies that

lim
j

∫
(ψj − φref)µ

j
q ≤ lim

j

∫
(ψ − φref)µ

j
q =

∫
(ψ − φref)µ

where we have used (6.8). On the other hand, for every index j′ we have ψj ≥ ψj′ for j ≥ j′,
and hence

lim
j

∫
(ψj − φref)µ

j
q ≥ lim

j′
lim
j

∫
(ψj

′ − φref)µ
j
q = lim

j′

∫
(ψj

′ − φref)µ =

∫
(ψ − φref)µ,

where the second equality follows from (6.8) and the last equality follows from the inductive
assumption. This completes the proof.
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7. The Calabi-Yau theorem

In this section we study the Calabi-Yau problem, by which we mean finding a solution
φ ∈ E1(L) to the the non-Archimedean Monge-Ampère equation

MA(φ) = µ, (7.1)

for a suitable measure µ. This problem makes sense in the setting of an ample line bundle L
on a projective variety X over any non-Archimedean field k, and we shall work in this setting
as far as possible. However, we will only prove the existence of solutions when the ground
field k is discretely or trivially valued, of residue characteristic zero. and X is smooth.

In the discretely valued case, our result is more general than the ones in [BFJ15, BGJKM16].
In the trivially valued case, it is completely new. The analogous Archimedean result
is [BBGZ13, Theorem A]. See also [GJKM17] for recent (contitional) results in equicharac-
teristic p.

Fix a reference metric φref ∈ FS(L). When k is trivially valued, we assume that φref = φtriv

is the trivial metric on L.

7.1. The Calabi-Yau theorem. The strategy to solve (7.1) is to consider the functional

Fµ : E1(L)→ R ∪ {+∞}
defined by

Fµ(φ) := E(φ)−
∫

(φ− φref)µ. (7.2)

At least formally, we have F ′µ(φ) = MA(φ) − µ, so a metric maximizing Fµ should be a
solution to (7.1). However, it is nontrivial that a maximum φ exists, and even if one does
exist, it is not obvious that it satisfies (7.1). At any rate, for this strategy to work, the
functional Fµ must be bounded from above on E1(L). This leads to the following definition.

Definition 7.1. The energy of a Radon probability measure µ on X is

E∗(µ) := sup
φ∈E1(L)

Fµ(φ) = sup
φ∈E1(L)

(E(φ)−
∫

(φ− φref)µ) ∈ R ∪ {+∞}.

We say that µ has finite energy if E∗(µ) < ∞, and write M1(X) for the set of probability
measures of finite energy.

Changing the reference metric φref only changes Fµ by an additive constant. Hence the
same is true for E∗(µ), so the spaceM1(X) is independent of the choice of reference metric.

Let us give two examples of measures of finite energy. First, the Izumi inequality in
Theorem 2.21 shows that any finite atomic measure supported on quasimonomial points has
finite energy. Second. Monge-Ampère measures of finite energy metrics are of finite energy:

Proposition 7.2. If φ ∈ E1(L) and µ := MA(φ), then E∗(µ) = (I − J)(φ) <∞.

Proof. For any ψ ∈ E1(L) we see, by unwinding the formulas in §3.9 that

E(ψ)−
∫

(ψ − φref)µ− (I − J)(φ) = E(ψ)− E(φ)−
∫

(ψ − φ) MA(φ) = Jφ(ψ) ≥ 0,

with equality if ψ = φ, so taking the supremum over ψ shows that E∗(µ) = (I − J)(φ). �

We can now state the Calabi–Yau theorem.
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Theorem 7.3. Assume k is discretely or trivially valued, of residue characteristic zero, X
is smooth, and L is ample. Then the Monge-Ampère operator defines a bijection

MA: E1(L)/R
∼→M1(X). (7.3)

Further, given a measure µ ∈M1(X) and a metric φ ∈ E1(L), the following two conditions
are equivalent:

(i) MA(φ) = µ;
(ii) φ maximizes the functional Fµ.

When these conditions hold, we have E∗(µ) = Fµ(φ) = (I − J)(φ).

Note that E∗(µ) ≥ 0 for all µ ∈M1(X), since Fµ(φref) = 0.

Corollary 7.4. Under the assumptions of Theorem 7.3, we have E∗(µ) = 0 iff µ =
MA(φref). When k is trivially valued and φref = φtriv is the trivial metric, this means µ
is a Dirac mass at the generic point of X.

Proof. If E∗(µ) = 0, then Fµ is maximized at φref . �

The proof of Theorem 7.3 will be presented in the rest of this section. We start by making
some preliminary remarks. Proposition 7.2, together with the formula MA(φ+ c) = MA(φ)
implies that the map in (7.3) is well-defined. It follows from Corollary 6.28 that it is injective,
under the assumptions on k and X. We shall prove surjectivity shortly.

7.2. Measures of finite energy. Before proving the surjectivity of the the map in (7.3), we
record some further properties of the energy operator E∗ and the spaceM1(X) of measures
of finite energy. In this subsection, k is arbitrary and X is an arbitrary variety. We first
prove that the energies E and E∗ are Legendre dual, in the following sense.

Proposition 7.5. For φ ∈ E1(L) we have

E(φ) = inf
µ∈M1(X)

(
E∗(µ) +

∫
(φ− φref)µ

)
.

Proof. The inequality E(φ) ≤ infµ
(
E∗(µ) +

∫
(φ− φref)µ

)
is definitional, and by Proposi-

tion 7.2, the reverse inequality follows by choosing µ = MA(φ). �

Lemma 7.6. The function µ 7→ E∗(µ) on the space of Radon probability measures on X is
lsc and convex in the sense that E∗(t1µ1+t2µ2) ≤ t1E∗(µ1)+t2E

∗(µ2) for ti ≥ 0, t1+t2 = 1.

Proof. Convexity is clear since E∗(µ) = supφ∈E1(L) Fµ(φ) and µ→ Fµ(φ) is linear for every

φ ∈ E1(L). To prove that E∗ is lsc, it suffices, for the same reason, to prove that µ 7→∫
(φ− φref)µ is usc for each φ ∈ E1(L). But this follows from φ− φref being usc. �

Corollary 7.7. The set M1(X) is convex.

The following characterization of measures of finite energy, closely related to [BBGZ13,
Proposition 3.4], is quite useful. Recall that E1

C(L) denotes the set of metrics φ ∈ PSH(L)
with sup(φ− φref) = 0 and E(φ) ≥ −C.

Proposition 7.8. For a Radon probability measure µ on X, the following assertions are
equivalent:

(i) E∗(µ) < +∞;
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(ii) inf{
∫

(φ− φref)µ | φ ∈ E1
C(L)} > −∞ for every C ∈ R;

(iii)
∫

(φ− φref)µ > −∞ for every φ ∈ E1(L).

(iv) there exists A,B > 0 such that
∫

(φ− φref)µ ≥ −A− BJ(φ)1/2 for every φ ∈ E1(L)
with sup(φ− φref) = 0.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are trivial. Further, (iv) implies (i) since in the
definition of E∗(µ), it suffices to consider φ normalized by sup(φ− φref) = 0, and for such φ
we have J(φ) ≤ −E(φ) and E(φ) ≤ 0.

We will use contradiction arguments to prove (iii) =⇒ (ii) and (ii) =⇒ (iv). To prove
(iii) =⇒ (ii), we may assume there exist C ∈ R and a sequence (φj)

∞
1 in E1

C(L) such that∫
(φj − φref)µ ≤ −2j for all j. Set ψm := 2−mφref +

∑m
j=1 2−jφj for m ≥ 1. Then ψm is

a decreasing sequence in PSH(L) converging to ψ :=
∑∞

j=1 2−jφj . By concavity of E we

have E(ψm) ≥ −C for all m; hence E(ψ) = limm→∞E(ψm) ≥ −C. On the other hand,
monotone convergence gives∫

(ψ − φref)µ = lim
m→∞

∫
(ψm − φref)µ = lim

m→∞

m∑
j=1

2−j
∫

(φj − φref) = −∞,

contradicting (iii).
To prove (ii) =⇒ (iv), we similarly assume that there exists a sequence (φj)j in E1(L)

such that sup(φj − φref) = 0, tj := J(φj)
1/2 → 0, and tj

∫
(φj − φref)µ → −∞. Set

φ̃j := tjφj + (1− tj)φref . Then∫
(φ̃j − φref)µ = tj

∫
(φj − φref)µ→ −∞.

On the other hand, Lemma 3.14 gives I(φ̃j) ≤ nt2jI(φj); hence J(φ̃j) is uniformly bounded

in view of (3.21). Since E(φ̃j) =
∫

(φ̃j−φref) MA(φref)−J(φ̃j), and the first term is uniformly

bounded in j, there exists C > 0 such that φ̃j ∈ E1
C for all j, contradicting (ii). �

Corollary 7.9. If µ ∈M1(X), then there exist A,B > 0 such that

Fµ(φ) ≤ A− J(φ)−BJ(φ)1/2 (7.4)

for all φ ∈ E1(L). Hence there exists C > 0 such that E∗(µ) = supφ∈E1C(L) Fµ(φ).

Proof. To prove (7.4), we may assume φ is normalized by sup(φ − φref) = 0. In this case,
we have E(φ) ≤ −J(φ), so (7.4) follows from Proposition 7.8 (iv).

By (7.4), E∗(µ) equals the supremum of Fµ(φ) normalized as above and such that J(φ) ≤
C ′, for C ′ > 0 large enough. But if φ is normalized, then E(φ) ≥ −J(φ)−Dref , where Dref ≥ 0
only depends on φref , so the last assertion of the Corollary holds for C = C + Dref . �

While the energy E∗(µ) of a probability measure µ depends on the line bundle L, we have
the following result, due to Di Nezza [DiN16, Proposition 4.1] in the Archimedean case.

Corollary 7.10. The set M1(X) does not depend on the choice of ample line bundle L.

Proof. Let L1 and L2 be ample line bundles on X, and µ a Radon probability measure on
X. By symmetry, and by Proposition 7.8 it suffices to prove that if

∫
ϕ1µ > −∞ for every

L1-psh function ϕ1 then
∫
ϕ2µ > −∞ for every L2-psh function ϕ2. But there exists a
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constant C > 0 such that CL2 − L1 is ample. This implies that Cϕ2 is L1-psh for every
L2-psh function ϕ2. Hence

∫
ϕ2µ > −∞. �

Proposition 7.11. Consider a non-Archimedean field extension k′/k. Set X ′ := Xk′,
L′ := Lk′, and let π : X ′ → X be the canonical map.

(i) If µ′ is a Radon probability measure on X ′, then E∗(π∗µ′) ≤ E∗(µ′).
(ii) if k is trivially valued, k′ = k(($)) and σ : X → X ′ is the Gauss extension, then

E∗(σ∗µ) = E∗(µ) for any Radon probability measure µ on X.

Here the energies are computed with respect to L and L′, using reference metrics φref and
φ′ref := φref ◦ π, respectively. In (ii) we use φref = φtriv.

Proof. To prove (i), note that Proposition 6.7 (i) shows that

E∗(π∗µ′) = sup
φ∈E1(L)

(E(φ)−
∫

(φ− φref)π∗µ
′) = sup

φ∈E1(L)

(E(φ ◦ π)−
∫

(φ ◦ π − φ′ref)µ
′)

≤ sup
φ′∈E1(L′)

(E(φ′)−
∫

(φ′ − φ′ref)µ
′) = E∗(µ′),

which proves (i). Similarly, Proposition 6.7 (ii) together with φ′triv ◦ σ = φtriv gives

E∗(σ∗µ) = sup
φ′∈E1(L′)

(E(φ′)−
∫

(φ′ − φ′triv)σ∗µ) ≤ sup
φ′∈E1(L′)

(E(φ′ ◦ σ)−
∫

(φ′ ◦ σ − φtriv)µ)

≤ sup
φ∈E1(L)

(E(φ)−
∫

(φ− φtriv)µ) = E∗(µ),

Combining these two inequalities, and using π∗σ∗ = id, we get E∗(σ∗µ) = E∗(µ). �

Proposition 7.12. If k is trivially valued, and µ is a Radon probability measure on X, then
E∗(t∗µ) = tE∗(µ) for any t ∈ R×+.

Proof. Note that φ 7→ φt is a bijection of E1(L) (with inverse φ 7→ φt−1). Proposition 6.7 (iii)
and (2.1) then yield

E∗(t∗µ) = sup
φ∈E1(L)

(E(φ)−
∫

(φ− φtriv)t∗µ) = sup
φ∈E1(L)

(E(φ)−
∫
t∗(φ− φtriv)µ)

= sup
φ∈E1(L)

(E(φt)−
∫
t∗(φt − φtriv)µ) = sup

φ∈E1(L)

t(E(φ)− (φ− φtriv)µ) = tE∗(µ),

which completes the proof. �

7.3. Proof of Theorem 7.3: general remarks. We now continue the proof of Theo-
rem 7.3. For the rest of this section, k is discretely or trivially valued and X is smooth.
We must show that the equation (7.3) has a solution for every µ ∈ M1(X). We start by
proving that such solutions are exactly minimizers of the functional Fµ. For this we use the
differentiability property in in §6.7.

Lemma 7.13. Given µ ∈ M1(X) and φ ∈ E1(L), the following two conditions are equiva-
lent:

(i) MA(φ) = µ;
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(ii) φ maximizes the functional Fµ.

When these conditions hold, we have E∗(µ) = Fµ(φ) = (I − J)(φ).

Proof. The implication (i) =⇒ (ii) and the last assertion of the lemma both follow from
Proposition 7.2. It remains to prove (ii) =⇒ (i). This is done as in [BBGZ13, Theorem 4.1]
or [BFJ15, §8.2]. Namely, given f ∈ C0(X), define a function g on R by

g(t) = E(P (φ+ tf))−
∫

(φ− φref)µ− t
∫
f µ.

By Corollary 6.32, g is differentiable at t = 0, and g′(0) =
∫
f MA(φ) −

∫
f µ. Now g has

a maximum at t = 0, since Fµ(P (φ + tf)) ≤ Fµ(φ) and P (φ + tf) ≤ φ + tf for all t. Thus
g′(0) = 0, and hence MA(φ) = µ, since f was arbitrary. �

Corollary 7.14. Assume k is trivially valued and use notation as in Proposition 7.11. Let
µ ∈ M1(X), set µ′ := σ∗µ, and assume there exists φ′ ∈ E1(L′) such that MA(φ′) = µ′.
Then φ := φ′ ◦ σ ∈ E1(L), and we have φ′ = φ ◦ π and MA(φ) = µ.

Proof. By Proposition 6.7 we have φ ∈ E1(L) and E(φ) ≥ E(φ′). Further, ψ′ := φ ◦ π ∈
E1(L′), and E(ψ′) = E(φ) ≥ E(φ′). ψ′ ◦ σ = φ = φ′ ◦ σ, so∫

(φ′ − φ′triv)µ′ =
∫

(φ′ − φ′triv) ◦ σ µ =

∫
(ψ′ − φ′triv) ◦ σ µ =

∫
(ψ′ − φ′triv)µ′.

This implies Fµ′(ψ
′) ≥ Fµ(φ′), so Lemma 7.13 gives MA(ψ′) = MA(φ′) = µ′. Since also

sup(φ′ − φ′triv) = sup(φ− φtriv) = sup(ψ′ − φ′triv), Corollary 6.28 now shows that φ′ = ψ′ =
φ ◦ π, as desired. �

Corollary 7.15. Given µ ∈M1(X), the following conditions are equivalent:

(i) there exists φ ∈ E1(L) such that MA(φ) = µ;
(ii) the functional φ 7→

∫
(φ− φref)µ is continuous on E1

C(L) for all C > 0;
(iii) the functional Fµ is usc on E1

C(L) for all C > 0.

Proof. Since E is usc, (ii) implies (iii). Further, (i) implies (ii) by Proposition 6.18. It
remains to see that (iii) implies (i). But (iii) and Corollary 7.9 imply that Fµ attains its
supremum on E1(L), since E1

C(L) is compact for all C > 0, and this implies (i) in view of
Lemma 7.13. �

7.4. Proof of Theorem 7.3: dual complexes. To solve (7.3), we first treat the case
when µ is supported on a dual complex, then treat the general case by approximation.

Corollary 7.16. If µ is a Radon probability measure supported on some dual complex ∆ ⊂
X, then µ ∈M1(X).

Proof. For any φ ∈ E1(L) ⊂ PSH(L), the function φ − φref is finite-valued and continuous
on ∆, see Theorem 5.29. The result therefore follows from Proposition 7.8 (iii). �

Corollary 7.17. If µ ∈M1(X) is supported on a dual complex, then µ = MA(φ) for some
φ ∈ E1(L).

Proof. By Lemma 7.13 it suffices to find a minimizer of Fµ on E1(L). It follows from
Proposition 7.8 that there exists C > 0 such that supE1C(L) Fµ = supE1(L) Fµ. It therefore

suffices to prove that Fµ attains its supremum on E1
C(L). But E is usc on E1(L) and the
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equicontinuity assertion in Theorem 5.29 implies that φ →
∫

(φ − φref)µ is continuous on
E1(L). Since E1

C(L) is weakly compact, the supremum of Fµ is attained. �

In the discretely valued case, Corollary 7.17 was proved in [BFJ15] under an additional
algebraicity assumption on X, that was removed in [BGJKM16]. The proof is essentially
the same as the one given here.

Theorem 7.18. Under the assumptions of Corollary 7.17, the metric φ is continuous.

Proof. In the discretely valued case, this was proved in [BFJ15, §8.3] using capacity theory.
We shall not revisit this proof here. In the trivially valued case, the continuity of the solution
follows from Corollary 7.14. �

To prove Theorem 7.3 in general, we approximate the measure µ ∈ M1(X) by measures
supported on dual complexes. The proof below works in both the discretely and trivially
valued case. Recall that SNC(X) is the directed set of snc models for X (resp. snc test
configurations for X). For any X ∈ SNC(X), set

µX := (pX )∗µ,

where pX : X → ∆X is the retraction. The operation µ → µX should be thought of as a
smoothing procedure.

Lemma 7.19. For any φ ∈ E1(L), the net (
∫

(φ − φref)µX )X is eventually decreasing and
converges to

∫
(φ− φref)µ.

Proof. The net ((φ−φref)◦pX )X of continuous functions is eventually decreasing, see Corol-
lary 5.31. Since µ is a Radon measure and

∫
(φ − φref)µX =

∫
(φ − φref) ◦ pXµ, the result

therefore follows from [Fol99, 7.12]. �

Corollary 7.20. The net (E∗(µX ))X is eventually increasing, and limX E∗(µX ) = E∗(µ).

Pick an increasing sequence (Xj)∞1 in SNC(X). such that E∗(µj)→ E∗(µ), where µj :=
µXj . For each j there exists a unique (continuous) metric φj ∈ E1(L) such that sup(φj −
φref) = 0 and MA(φj) = µj . We shall prove that φj converges to a metric φ ∈ E1(L) such
that MA(φ) = µ. To simplify notation, write φj = φref + ϕj , where ϕj ∈ QPSH(X).

Lemma 7.21. For every j we have J(φj) ≤ nE∗(µ) <∞.

Proof. We have J(φj) ≤ n(I − J)(φj) = nE∗(µj) ≤ nE∗(µ). �

Lemma 7.22. For j ≤ l we have I(φj , φl) ≤ (n+ 1)(E∗(µl)− E∗(µj)).

Proof. We have I(φj , φl) ≤ (n+ 1)Jφl(φj). Using Lemma 7.19 we also have

Jφl(φj) = E(φl)− E(φj) +

∫
ϕjµl −

∫
ϕlµl

≤ E(φl)− E(φj) +

∫
ϕjµj −

∫
ϕlµl

= E∗(µl)− E∗(µj),
completing the proof. �

Lemma 7.23. The sequence (φj)j converges strongly to a metric φ ∈ E1(L) with sup(φ −
φref) = 0. Further, we have J(φ) ≤ nE∗(µ) and I(φj , φ) ≤ (n+ 1)2(E∗(µ)− E∗(µj))→ 0.
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Proof. By Proposition 6.29, φj converges strongly in E1(L) to a metric φ ∈ E1(L) with
sup(φ− φref) = 0. To get the estimate in the proposition, note that

E(φj)− E(φl)−
∫
ϕjµj +

∫
ϕlµj = Jφj (φl) ≤ I(φj , φl) ≤ (n+ 1)(E∗(µ)− E∗(µj))

for j ≤ l. Now let l → ∞. Since E is usc we have E(φ) ≥ limlE(φl), and since µj is
supported on a dual complex, we have

∫
ϕµj = liml

∫
ϕlµj , where ϕ = φ− φref . This yields

Jφj (φ) = E(φj)− E(φ)−
∫
ϕjµj +

∫
ϕµj ≤ (n+ 1)(E∗(µ)− E∗(µj)),

and hence I(φj , φ) ≤ (n+ 1)Jφj (φ) ≤ (n+ 1)2(E∗(µ)− E∗(µl)). �

Proposition 7.24. We have MA(φ) = µ.

Proof. It suffices to show that
∫

(ψ − φref) MA(φ) =
∫

(ψ − φref)µ for every FS metric ψ on
L such that sup(ψ − φref) = 0. By Lemma 3.23 we have∣∣∣∣∫ (ψ − φref) MA(φ)−

∫
(ψ − φref) MA(φj)

∣∣∣∣ ≤ C√I(φj , φ) ≤ C(n+ 1)
√
E∗(µ)− E∗(µj)

for some constant C independent of j. Hence∫
(ψ − φref) MA(φ) = lim

j→∞

∫
(ψ − φref) MA(φj) = lim

j→∞

∫
(ψ − φref)µj =

∫
(ψ − φref)µ,

which completes the proof. �

7.5. The strong topology. In analogy with the strong topology on E1(L) introduced
in §6.6, we define the strong topology on M1(X) as the coarsest refinement of the weak
topology such that E∗ : M1(X) → R is continuous. Thus a net (µj)j in M1(X) converges
strongly to µ ∈ M1(X) iff µj → µ weakly and limj E

∗(µj) = E∗(µ). The Calabi-Yau
theorem can now be supplemented as follows.

Theorem 7.25. The map
MA: E1(L)/R→M1(X)

is homeomorphism in the strong topology.

In the proof we shall use the pairing E1(L)×M1(X)→ R given by (ψ, µ)→
∫

(ψ−φref)µ.
In this way, every measure µ ∈ M1(X) defines a function on E1(L), and every metric
φ ∈ E1(L) a function on M1(X).

Lemma 7.26. For C > 0, set MC(X) := {µ ∈M1(X) | E∗(µ) ≤ C}. Then:

(i) every µ ∈M1(X) defines a continuous function on E1
C(L) for any C > 0;

(ii) every ψ ∈ E1(L) defines a continuous function on MC(X) for any C > 0.

Here continuity is in the weak topology on E1
C(L) and MC(X), respectively.

Proof. The statement in (i) is clear when µ = MA(φ) for φ ∈ FS(L), since µ is then a finite
atomic measure supported on quasimonomial points. Similarly, (ii) is clear when ψ ∈ FS(L),
since ψ − φref is then a continuous function on X. To treat the general case in (i) and (ii)
we use the Calabi-Yau theorem together with the estimates in §3.12.

Specifically, to prove (i) in general, write µ = MA(φ) where φ ∈ E1(L), and pick a
decreasing net (φl)l in FS(L) converging to φ. Then φl → φ strongly, so I(φl, φ) → 0.
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Lemma 3.23 therefore shows that liml

∫
(ψ−φref)(MA(φl)−µ) = 0 uniformly in ψ ∈ E1

C(L),
Since ψ →

∫
(ψ − φref) MA(φl) is continuous on E1

C(L), so is ψ →
∫

(ψ − φref)µ.
Similarly, to prove (ii), let (ψj) be a decreasing net in FS(L) converging to ψ. Then

limj I(ψj , ψ) = 0 and limj

∫
(ψj −ψ) MA(φref) = 0. Further, any µ ∈MC(X) is of the form

µ = MA(φ), where φ ∈ E1(L) and J(φ) ≤ n(I − J)(φ) = nE∗(µ) ≤ nC. Corollary 3.20
now shows that limj

∫
(ψj − ψ)(µ −MA(φref)) = 0 uniformly in µ ∈ MC(X); hence µ 7→∫

(ψ − φref)µ is continuous on MC(X). �

Proof of Theorem 7.25. We already know that the map MA is a bijection. To prove that it
is continuous, consider a net (φj)j in E1(L)/R converging strongly to φ ∈ E1(L). We must
prove that µj := MA(φj) converges weakly to µ := MA(φ), and that E∗(µj)→ E∗(µ). The
latter assertion follows from Corollary 3.21 since E∗(µj) = (I − J)(φj), E

∗(µ) = (I − J)(φ)
and I(φj , φ)→ 0. To prove that µj converges weakly to µ, it suffices to prove that limj

∫
(ψ−

φref)µj =
∫

(ψ−φref)µ for every ψ ∈ FS(L), since differences of functions of the form ψ−φref

are dense in C0(X) by Theorem 2.7. But this equality follows from Lemma 3.23.
It remains to prove that the inverse of MA is continuous. Thus consider a net (φj)j in

E1(L) and assume that the measures µj := MA(φj) converge strongly to µ ∈ M1(X). We
must prove that φj → φ strongly in E1(L), where MA(φ) = µ. Pick C such that µj , µ ∈
MC(X) for all j. Lemma 7.26 (ii) implies that limj

∫
(φ−φref)µj =

∫
(φ−φref)µ, Next, note

that E∗(µ) = (I−J)(φ) = E(φ)−
∫

(φ−φref)µ, and similarly E∗(µj) = E(φj)−
∫

(φj−φref)µj
for all j. Since limj E

∗(µj) = E∗(µ), we conclude that

Jφj (φ) = E(φj)− E(φ)−
∫

(φj − φ)µj → 0,

and hence I(φj , φ) by (3.19), so that φj → φ strongly in E1(L)/R. �

For completeness, we also prove the following result.

Proposition 7.27. Consider a measure µ ∈M1(X) and let (φj)j be a net in E1(L)/R such
that Fµ(φj) → E∗(µ). Then limj φj = φ strongly in E1(L)/R, where φ ∈ E1(L)/R is the
unique solution to MA(φ) = µ.

Proof. We may assume that the φj are normalized by sup(φj − φref) = 0. By Corollary 7.9
there exists C > 0 such that φj ∈ E1

C(L) for large j. By weak compactness of E1
C(L), we

can therefore find a subnet (φj(α))α converging to some φ ∈ E1
C(L). Since Fµ is usc, we have

Fµ(φ) ≥ limα Fµ(φj(α)) = E∗(µ). Hence MA(φ) = µ. �

Remark 7.28. In the Archimedean case, the space M1(X) enjoy certain compactness
properties in the strong topology, see [BBEGZ16, 2.4]. These are not valid in the non-
Archimedean setting. For example, let k be trivially valued, X = P1

k, and L = O(1). Let

(ξn)∞1 be a sequence of pairwise distinct closed points in Xsch, and set xn = rordξn , for some
r ∈ (0, 1). If µn = δxn, then µn ∈ M1(X) and E∗(µn) > 0 is independent of n. Now µn
converges weakly to the measure µ which is the DIrac mass at the generic point of X, but
E∗(µ) = 0, so µn 6→ µ strongly.
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Appendix A. Proof of estimates

In this section we prove the estimates in §3.12.

Proof of Lemma 3.12. The first inequality is trivial. Since MA(φref) is supported on a finite
set of quasimonomial points, the second inequality follows from the Izumi estimate in The-
orem 2.21. When k is trivially valued, MA(φtriv) is a Dirac mass at the generic point of X,
and φ−φtriv attains its supremum at this point by Lemma 2.20, so we can pick Dref = 0. �

Proof of Corollary 3.13. This follows immediately from (3.20) and Lemma 3.12. �

Proof of Lemma 3.14. Adding a constant to φ, we may assume
∫

(φ − ψ)(ddcψ)n = 0. Set
φt := tφ+ (1− t)ψ. Then φt − ψ = t(φ− ψ), so

∫
(φt − ψ)(ddcψ)n = 0, and

I(φt, ψ) = −tV −1

∫
(φ− ψ)(ddcφt)

n

= −tV −1
n∑
j=0

(
n

j

)
tj(1− t)n−j

∫
(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j .

Here the integral vanishes for j = 0 and is bounded below by
∫

(φ− ψ)(ddcφ)n for j > 0, so

I(φt, ψ) ≤ −t(1− (1− t)n)V −1

∫
(φ− ψ)(ddcφ)n ≤ nt2I(φ, ψ),

by the concavity of t→ (1− (1− t)n). �

Proof of Lemma 3.15. Set φ := 1
2(φ1 + φ2), u := φ1 − φ2, and, for 0 ≤ p < n,

bp := −V −1

∫
uddcu ∧ (ddcψ)p ∧ (ddcφ)n−1−p.

We aim to bound bn−1. Set

A := I(φ1, φ2) and B := max
i=1,2

I(φi, ψ).

Note that b0 ≤ A. To get a preliminary bound on bn−1 we write u = (φ1 − ψ) + (ψ − φ2)
and use the triangle inequality resulting from Cauchy-Schwartz:

bn−1 ≤

(
2∑
i=1

(
−V −1

∫
(φi − ψ)ddc(φi − ψ) ∧ (ddcψ)n−1

) 1
2

)2

≤ 4B. (A.1)

For 0 ≤ p ≤ n− 2 we have

bp+1 − bp =− V −1

∫
uddcu ∧ (ddcψ)p ∧ (ddcφ)n−2−p ∧ ddc(ψ − φ)

=− V −1

∫
uddc(ψ − φ) ∧ ddcφ1 ∧ (ddcψ)p ∧ (ddcφ)n−2−p

+ V −1

∫
uddc(ψ − φ) ∧ ddcφ2 ∧ (ddcψ)p ∧ (ddcφ)n−2−p.
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Here we can use Cauchy-Schwartz to bound the each of the last two terms:(
−V −1

∫
uddc(ψ − φ) ∧ ddcφi ∧ (ddcψ)p ∧ (ddcφ)n−2−p

)2

≤
(
−V −1

∫
uddcu ∧ ddcφi ∧ (ddcψ)p ∧ (ddcφ)n−2−p

)
·
(
−V −1

∫
(ψ − φ)ddc(ψ − φ) ∧ ddcφi ∧ (ddcψ)p ∧ (ddcφ)n−2−p

)
Using ddcφi ≤ 2ddcφ we can bound the first factor by 2bp, and the second factor by

−2V −1

∫
(ψ − φ)ddc(ψ − φ) ∧ (ddcψ)p ∧ (ddcφ)n−1−p ≤ 2I(φ, ψ).

Hence bp+1 − bp ≤ 4
√
bpI(φ, ψ). Now

I(φ, ψ) ≤ (n+ 1)Jψ(φ) ≤ (n+ 1) max
i=1,2

Jψ(φi) ≤ (n+ 1) max
i=1,2

I(φi, ψ) = (n+ 1)B

by (3.19) and the convexity of φ→ Jψ(φ). This implies

bp+1 ≤ bp + 4
√

(n+ 1)Bbp (A.2)

for 0 ≤ p ≤ n− 2.

Now we consider two cases. First assume that A ≥ 2−2n−1
B. In this case, (A.1) yields

bn−1 ≤ 4B ≤ 8A
1

2n−1B1− 1
2n−1 .

Now assume A ≤ 2−2n−1
B. In this case, we prove by induction that

bp ≤ Cn,pA
1
2pB1− 1

2p (A.3)

for 0 ≤ p ≤ n− 1. Setting p = n− 1 will complete the proof.
We already know that b0 ≤ A, so (A.3) holds for p = 0 with Cn,0 = 1. When 0 ≤ p ≤ n−2,

we get from (A.2) and the induction hypothesis that

bp+1 ≤ bp + 4
√

(n+ 1)Bbp

≤ Cn,pA
1
2pB1− 1

2p + 4
√

(n+ 1)Cn,pA
1

2p+1B1− 1
2p+1

= A
1

2p+1B1− 1
2p+1

(
Cn,p

(
A

B

) 1
2p+1

+ 4
√

(n+ 1)Cn,p

)
.

By assumption, A ≤ 2−2n−1
B ≤ B, so bp+1 ≤ Cn,p+1A

1
2p+1B1− 1

2p+1 , where Cn,p+1 = Cn,p +

4
√

(n+ 1)Cn,p. The proof is complete. �

Proof of Lemma 3.16. For ψ ∈ FS(L) and u ∈ DFS(X), we set

‖u‖ψ := (−V −1

∫
uddcu ∧ (ddcψ)n−1)1/2.

By Cauchy-Schwartz, this defines a seminorm on DFS(X).
Now set φ := (φ1 + φ2)/2. It follows from (3.16) that

‖φ1 − φ2‖2φ ≤ I(φ1, φ2) ≤ 2n−1‖φ1 − φ2‖2φ.
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Together with the triangle inequality for ‖ · ‖φ, this yields

I(φ1, φ2) ≤ 2n−1‖φ1 − φ2‖2φ ≤ 2n−1(2 max
i=1,2

‖φ1 − φ3‖φ)2 = 2n+1 max
i=1,2

‖φ1 − φ3‖2φ.

We can now use Lemma 3.15 to get, for i = 1, 2,

‖φi − φ3‖2φ ≤ CnI(φi, φ3)
1

2n−1 max{I(φi, φ), I(φ3, φ)}1−
1

2n−1 .

By (2.2) and the convexity of φ 7→ Jψ(φ), we have

I(φi, φ) ≤ (n+ 1)Jφi(φ) ≤ (n+ 1) max{Jφi(φ1), Jφi(φ2)} ≤ (n+ 1)I(φ1, φ2)

and
I(φ3, φ) ≤ (n+ 1)Jφ3(φ) ≤ (n+ 1) max

i=1,2
Jφ3(φi) ≤ (n+ 1) max

i=1,2
I(φi, φ3)

Altogether, this yields

I(φ1, φ2) ≤ C ′n max
i=1,2

I(φi, φ3)
1

2n−1 max{I(φ1, φ2),max
i=1,2

I(φi, φ3)}1−
1

2n−1 , (A.4)

where C ′n = 2n+1(n+ 1)1− 1
2n−1Cn.

If I(φ1, φ2) ≥ maxi=1,2 I(φi, φ3), then (A.4) yields I(φ1, φ2) ≤ (C ′n)2n−1
maxi=1,2 I(φi, φ3).

On the other hand, since C ′n ≥ 1, which we may assume, then the same inequality trivially
holds also when I(φ1, φ2) ≤ maxi=1,2 I(φi, φ3). This completes the proof. �

Proof of Corollary 3.17. This follows from Lemma 3.16 applied to φ1 = φ, φ2 = φref and
φ3 = φ, and using the inequalities I(φ) ≤ (n+ 1)J(φ), I(ψ) ≤ (n+ 1)J(ψ). �

Proof of Corollary 3.18. Note that ψ := 1
n−1

∑n−1
j=1 ψj ∈ FS(L). Expanding (ddcψ)n−1 yields

−
∫

(φ1 − φ2)ddc(φ1 − φ2) ∧ (ddcψ)n−1

≥ − (n− 1)!

(n− 1)n−1

∫
(φ1 − φ2)ddc(φ1 − φ2) ∧ ddcψ1 ∧ · · · ∧ ddcψn−1.

Here the left hand side is bounded above by CnI(φ1, φ2)
1

2n−1 maxi=1,2 I(φi, ψ)1− 1
2n−1 in

view of Lemma 3.15. Now I(φi, ψ) ≤ Cn max{J(φi), J(ψ)} by Corollary 3.17, and J(ψ) ≤
maxi J(ψi) by convexity. This completes the proof. �

Proof of Corollary 3.19. We proceed as in the proof of Lemma 3.15. For 0 ≤ p ≤ n, set

ap := V −1

∫
(ψ1 − ψ2)ddcφ1 ∧ · · · ∧ ddcφp ∧ ddcφ′p+1 ∧ · · · ∧ ddcφ′n.

We want to estimate |an − a0|. Cauchy-Schwartz gives |ap − ap−1|2 ≤ ApBp, where

Ap = −V −1

∫
(ψ1 − ψ2)ddc(ψ1 − ψ2) ∧ ddcφ1 ∧ · · · ∧ ddcφp−1 ∧ ddcφ′p+1 ∧ · · · ∧ ddcφ′n

and

Bp = −V −1

∫
(φp − φ′p)ddc(φp − φ′p) ∧ ddcφ1 ∧ · · · ∧ ddcφp−1 ∧ ddcφ′p+1 ∧ · · · ∧ ddcφ′n.

By Corollary 3.18 we have

Ap ≤ CnI(ψ1, ψ2)
1

2n−1M1− 1
2n−1 and Bp ≤ CnI(φp, φ

′
p)

1
2n−1M1− 1

2n−1 ;
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hence

|ap − ap−1| ≤ CnI(ψ1, ψ2)
1
2n I(φp, φ

′
p)

1
2nM1− 1

2n−1 ,

and the desired bound on |an − a0| follows from the triangle inequality. �

Proof of Corollary 3.20. This is an immediate consequence of Corollary 3.19. �

Proof of Corollary 3.21. We have

I(φ)− I(ψ) = V −1

∫
(φ− ψ)((ddcφref)

n − (ddcψ)n)

+ V −1

∫
(φ− φref)((dd

cψ)n − (ddcφ)n),

and each of the two integrals is easily estimated using Corollary 3.20. Similarly,

J(φ)− J(ψ) =
1

n+ 1

n∑
j=0

V −1

∫
(φ− ψ)((ddcφref)

n − (ddcφ)j ∧ (ddcψ)n−j),

and each term can be bounded using Corollary 3.19. �

Proof of Lemma 3.22. We may assume max(φi − φref) = 0 for all i. To simplify notation,
write ϕi := φi − φref for 0 ≤ i ≤ n and φ = 1

n+1

∑n
0 φi, ϕ = 1

n+1

∑n
0 ϕi. By the concavity of

E we have

E(φ) ≥ 1

n+ 1

n∑
i=0

E(φi) ≥ min
i
E(φi)

= min
i
{
∫

(φi − φref) MA(φref)− J(φi)} ≥ −Dref −max
i
J(φi),

where the last inequality follows from Lemma 3.12. Now expand the left-hand side:

E(φ) =
1

n+ 1

n∑
p=0

V −1

∫
ϕ(ddcφ)p ∧ (ddcφref)

n−p ≤ 1

n+ 1
V −1

∫
ϕ(ddcφ)n

≤ 1

(n+ 1)2
V −1

∫
ϕ0(ddcφ)n ≤ n!

(n+ 1)n+2

∫
ϕ0 MA(φ1, . . . , φn),

which completes the proof. �

Proof of Lemma 3.23. We may assume max(ψ−φref) = max(φi−φref) = 0. For p = 0, . . . , n
set

ap := V −1

∫
(ψ − φref)(dd

cφ1)p ∧ (ddcφ2)n−p.

Our goal is to estimate |an − a0|. Note that

ap+1 − ap = V −1

∫
(ψ − φref)dd

c(φ1 − φ2) ∧ (ddcφ1)p ∧ (ddcφ2)n−p−1,
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so the Cauchy-Schwarz inequality yields |ap+1 − ap|2 ≤ ApBp, where

Ap = −V −1

∫
(ψ − φref)dd

c(ψ − φref) ∧ (ddcφ1)p ∧ (ddcφ2)n−p−1

≤ −V −1

∫
(ψ − φref)dd

cψ ∧ (ddcφ1)p ∧ (ddcφ2)n−p−1

≤ Cn(Dref + max{J(ψ), J(φ1), J(φ2)}),
the last inequality following from Lemma 3.22 and Lemma 3.12, and where

Bp = −V −1

∫
(φ1 − φ2)ddc(φ1 − φ2) ∧ (ddcφ1)p ∧ (ddcφ2)n−p−1 ≤ I(φ1, φ2).

We thus obtain the desired estimate by invoking the triangle inequality. �

Proof of Lemma 6.17. Set φt := tφ+ (1− t)ψ. Then φt − ψ = t(φ− ψ) and

Jψ(φt) = E(ψ)− E(φt) + t

∫
(φ− ψ) MA(ψ)

Differentiating this with respect to t, gives

d

dt
Jψ(φt) = −

∫
(φ− ψ) MA(φt) +

∫
(φ− ψ) MA(ψ) = t−1I(φt, ψ) ≥ n+ 1

n
t−1Jψ(φt)

for 0 < t ≤ 1, where the last inequality follows from (3.21). The desired estimate follows. �
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http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf. 24

[Tia15] G. Tian. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (2015), 1085–
1156. 5
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