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ADDENDUM TO THE ARTICLE ‘GLOBAL PLURIPOTENTIAL
THEORY OVER A TRIVIALLY VALUED FIELD’

SEBASTIEN BOUCKSOM AND MATTIAS JONSSON

ABSTRACT. This note is an addendum to the paper ‘Global pluripotential theory over a
trivially valued field” by the present authors, in which we prove two results. Let X be an
irreducible projective variety over an algebraically closed field field k, and assume that &
has characteristic zero, or that X has dimension at most two. We first prove that when X
is smooth, the envelope property holds for any numerical class on X. Then we prove that
for X possibly singular and for an ample numerical class, the Monge-Ampere energy of a
bounded function is equal to the energy of its usc regularized plurisubharmonic envelope.

INTRODUCTION

The purpose of this note is to strengthen two results in the article [BJ22a], where we
developed global pluripotential on the Berkovich analytification over a trivially valued field.
The results here are used in [BJ22h, [BJ22c]. One should view the current note as an
addendum to [BJ22a], rather than a stand-alone paper.

Let k be an algebraically closed field, and X an irreducible projective variety over k. To
any numerical class § € N'(X) we associate a class PSH(f) of §-psh functions; these are
upper semicontinuous functions ¢: X*" — RU{—o00} on the Berkovich analytification of X
with respect to the trivial absolute value on k. We say that 6 has the envelope property if
for any bounded-above family (¢4 ), in PSH(6), the function sup}, ¢, is 6-psh.

Theorem A. Assume that X is smooth, and that chark = 0 or dim X < 2. Then any
numerical class 0 € NY(X) has the envelope property.

In [BJ22al, Theorem 5.20], this was established for nef classes 6 following [BEJ16], and
the proof here is not so different.

For the second result we allow X to be singular, but work with an ample class w € N'(X).
The w-psh envelope P, () of a bounded function ¢: X*" — R is defined as the supremum
of all functions ¢ € PSH(w) with ¢ < ¢, and the envelope property for w is equivalent to
continuity of envelopes in the sense of P, () being continuous whenever ¢ is continuous. It
is also equivalent to the usc envelope P () being w-psh for any bounded function .

In [BJ22a] we also defined the Monge—Ampére energy E,(¢) € RU{—00} of any bounded-
above function ¢: X* — R U {—oo}. We did this first for w-psh functions in terms of an
energy pairing ultimately deriving from intersection numbers on compactified test configu-
rations, see below, then for general bounded-above functions ¢, setting

Eu(p) :=sup{E,(¥) | ¥ € PSH(w), ¥ < p}.
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We say that (X,w) satisfies the weak envelope property if there exists a projective birational
morphism 7: X — X and an ample class & € Nt ()~( ) such that (X, @) has the envelope prop-
erty and @ > m*w (by which we mean @ — 7*w is nef). It follows from [BJ22al, Theorem 5.20]
that the weak envelope property holds when chark = 0 or dim X < 2.

Theorem B. Assume that w € N'(X) is an ample class, and that the weak envelope property
holds for (X,w). Then, for any bounded function p: X*" — R, we have

Eu(p) = Eu(Pu(p)) = Eu(P5(p))-

The first equality is definitional, see [BJ22al, (8.2)], and the second equality follows
from [BJ22al, Proposition 8.3] if w has the envelope property. The main content of The-
orem B is thus the second equality when the envelope property is unknown or even fails (for
example, when X is not unibranch).

Acknowledgement. The second author was partially supported by NSF grants DMS-
1900025 and DMS-2154380.

1. PRELIMINARIES

Throughout the paper, X is an irreducible projective variety over an algebraically closed
field k.

1.1. The ¢-psh envelope. Fix any numerical class § € N*(X). We refer to [BJ22al, §4]
for the definition of the class PSH(0) of #-psh functions. We have that PSH(6) is nonempty
only if 0 is psef, whereas PSH(#) contains the constant functions iff 6 is nef.

Definition 1.1. The 6-psh envelope of a function p: X** — R U {d+oo} is the function
Py(p): X* — RU{*o0} defined as the pointwise supremum

Py(p) :=sup {¢ € PSH(0) | ¥ < ¢} .

Thus Py(¢) = —oo iff there is no ¢p € PSH(#) with ¢ < ¢. When 6 = ¢;(L) for a Q-line
bundle L, we write Py, := Py. Despite the name, Py(p) is not always 6-psh (and indeed not
even usc in general). However, it is clear that

e ¢ — Py(yp) is increasing;
e Py(p+c) =Py(p) + cfor all c € R.

The envelope operator is also continuous along increasing nets of Isc functions:

Lemma 1.2. If ¢: X* — R U {+oo} is the pointwise limit of an increasing net (v;) of
bounded-below, Isc functions, then Pg(p;) / Po(p) pointwise on X*".

Proof. We trivially have lim; Py(¢;) = sup; Pg(¢;) < Pg(p). Pick e > 0 and 3 € PSH(0)
such that 1) < ¢, and hence ¥ < ¢ + €. Since 9 is usc and the ¢; is Isc, a simple variant
of Dini’s lemma shows that ¢ < ¢; 4 ¢ for all j large enough, and hence 1) < Py(¢p;) + €.
Taking the supremum over 1 yields Py(¢) < sup; Py(y;), and we are done. O

As in [BE21, Lemma 7.30], the envelope property admits the following useful reformula-
tion.

Lemma 1.3. If PSH(6) # (), then the following statements are equivalent:
(i) @ has the envelope property;
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(ii) for any function ¢: X*" — R U {£o0}, we have
Po(p) = —o00, Py(p)* = +00, or Py(p)* € PSH(0);
(iii) ¢ € PL(X) = Py(p) € PSH(9).

Proof. First assume (i). Pick any ¢: X* — R U {%oo0}, and suppose that the set F :=
{yp € PSH(0) | ¥ < ¢} is nonempty, so that Py(¢) # —oo. If the functions in F are uniformly
bounded above, then Py(¢)* € PSH(6), by (i). If not, choose w € Amp(X) with w > 6, and
hence F C PSH(w). By the definition of the Alexander—Taylor capacity, see [B.J22al, §4.6],
we then have

Po(p)(v) =sup{¢(v) | Y € F} >sup{supy |y € F} — T, (v) = o0

for all v € X4 and hence Py(¢)* = +o0, by density of X4V, This proves (i)=(ii).

Next we prove (ii)=-(iii), so pick ¢ € PL(X). Since ¢ is bounded and PSH(#) is nonempty
and invariant under addition of constants, we have Py(p) # —oo. Now Py(p) < ¢ implies
Py(p)* < ¢ since ¢ is usc. In particular, Py(¢)* # +00, so Pg(p)* € PSH(0) by (ii). Thus
Py(p)* is a competitor in the definition of Py(p), so Py(¢) = Pg(p)* is #-psh.

Finally, we prove (iii)=(i), following [BE21, Lemma 7.30]. Let (¢;) be a bounded-above
family in PSH(0), and set ¢ := sup} ;. Since ¢ is usc and X" is compact, we can find a
decreasing net (t;) in C°(X) such that ¢); — ¢. By density of PL(X) in C°(X) wrt uniform
convergence (see [BJ22al, Theorem 2.2]), we can in fact assume v¢; € PL(X), and hence
Po(1;) € PSH(8), by (iii). For all 4,5, we have ¢; < 1, and hence ¢; < Py(v);), which in
turn yields ¢ < Pg(v;) < 1;. We have thus written ¢ as the limit of the decreasing net of
6-psh functions Py(1);), which shows that ¢ is 6-psh. O

Corollary 1.4. Assume that 0 has the envelope property, and consider a usc function
p: X" - RU{—o0}. Then:

(1) PQ(QD) is Q-psh, or Pg((p) = —00;

(ii) if ¢ is the limit of a decreasing net (p;) of bounded-above, usc functions, then

Po(vj) \ Po(p).

Proof. By Lemma either 1 := Py(p)* is -psh, or Py(¢) = —oo (the latter being
automatic if PSH(#) = ). Since Py(p) < ¢ and ¢ is usc, we also have 1 < . If 9 is O-psh,
then ¢ < Py(¢), which proves (i).

To see (ii), note that p := lim; Py(p;) satisfies either p € PSH(f) or p = —o0, by [BJ22al,
Theorem 4.7]. Furthermore, Py(p;) < ¢; yields, in the limit, p < ¢, and hence p < Py(¢p) (by
definition of Py(yp) if p € PSH(#), and trivially if p = —o0). Thus lim; Po(¢;) = p = Pe(¢p).
On the other hand, Pg(p;) > Py(yp) implies p > Py(y), which completes the proof of (ii). O

1.2. The Fubini—Study envelope. Now consider a big Q-line bundle L. Recall [BJ22al

2.4] that for any subgroup A ¢ R, Hgf L) denotes the set of functions Y2 X2 — R of the
g p A
form

¢ =m ' max{log|s;| + \;},
j

where m € Z~q is such that mL is an honest line bundle, (s;); is a finite set of nonzero
global sections of mL, and A\; € A.
We define the Fubini—Study envelope of a bounded function ¢: X** — R as

Qo) =sup {v € HE (L) | ¥ < o} (L1)
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By approximation, Hif(L) can be replaced by ’Hg(L) = H%f(L) in this definition, see [BJ22al
(2.10)]. Note also that Q,(¢): X** — RU{—o0} is bounded above and lsc.
Recall that the augmented base locus of L can be described as

B (L) := ﬂ{suppE | E effective Q-Cartier divisor, L — E ample},
a strict Zariski closed subset of X, see [ELMNPOG].

Lemma 1.5. Suppose ¢: X*" — R is bounded, with lsc regqularization p,: X?** — R. Then
Q) = Qr(px) < Pr(ps), and equality holds outside B, (L).

In particular, Q;(¢) = Pr(px) when L is ample. In this case, Q; coincides with the
envelope Q. () in [BJ22al §5.3].

Proof. Since any function ¢ € H8'(L) is continuous, it satisfies ¢ < ¢ iff ¢ < ¢,. Thus
Q. (¢) = Q. (¢x), and we may therefore assume wlog that ¢ is Isc. Since H8 (L) ¢ PSH(L),
we trivially have Q; (¢) < Pr(¢). Conversely, pick ¢ € PSH(L) such that 1) < ¢. Let E be
an effective Q-Cartier divisor such that A := L — F is ample. By [BJ22al, Theorem 4.15],
we can write ¢ as the pointwise limit of a decreasing net (¢;) in H& (L +£;A) with £; — 0.
Pick € > 0, so that ¢ < ¢ + €. As in the proof of Lemma since 1; is usc and ¢ is
Isc, a simple variant of Dini’s lemma shows that 1; < ¢ + ¢ for all j large enough. Since
log|sp| < 0 lies in H8H(E), it follows that 7; := (14 ;)1 (¢); + ¢jlog|sg|) lies in H8H(L).
Further,
7 <(L+e) (pte) <p+e+tCe
for some uniform C' > 0, since ¢ is bounded, and hence
7 S Qe +e+Cej) = Qplp) + e+ C¢;y.
We have thus proved ¢; + ¢;log|sg| < (1 +¢;)(Qr(¢) + e+ Cej); at any point of
(X — E)* = {log|sp| > —oc},
this yields ¥ < Q;(¢), and hence Pr(p) < Q(¢), which proves the result. O

1.3. Envelopes from test configurations. Let L be a big line bundle. Any test configura-
tion (X, £) for (X, L) defines a function ¢,z € PL, and we seek to compute the Fubini-Study
envelope Q (¢r)-

To this end, we introduce a slight generalization of the definitions in [BJ22al §2.1]. To any
Gu-invariant ideal a C Oy, we attach a function ¢q: X*" — [—00,0] by setting pq(v) :=
—o(v)(a), where 0 = ox denotes Gauss extension (see [BJ22a, Remark 1.9]). In terms of the
weight decomposition a = Z/\EZ>0 ayw N with ay € Ox, we have @, = max,{log |ay| + A}.
If £ is an honest line bundle such that £ ® a is globally generated, one easily checks as
in [BJ22al Proposition 2.25] that ¢, + ¢q lies in ’H%f(L).

Lemma 1.6. Let L be a big line bundle on X, and (X, L) an integrally closed test configu-
ration for (X, L). For each sufficiently divisible m € Z~q, denote by a,, C Ox the base ideal
of mL, and set o, = pr +m Lo, . Then om € ”Hg(L) and (@m)m forms an increasing
net of functions on X*" converging pointwise to Qy (¢r).

Here we consider (¢, )m as a net indexed by the set moZsq for some sufficiently divisible
myo, and partially ordered by divisibility.
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To prove the lemma, recall [BJ22al §1.2] that if £ (and hence L) is an honest line bundle,
then HO(X, L) lies as a k[w]-submodule of HO(X, L)ijw+1). The next result provides a
valuative characterization of this submodule in terms of ¢.

Lemma 1.7. Assume L is an honest line bundle, pick s € H°(X, L)k[wfj:l], and write
s = ez Srxw * with sy € HY(X,L). Then s € HO(X, L) iff max,{log|sx| + A} < ¢z on
xan,

Proof. By Gp-invariance, we have s € HO(X, £) & sy € H(X, £) for all A € Z, and we
may thus assume s = sy for some \ € Z.

Since X is integrally closed, we have p,Oy = O, and hence H(X’, p*£) = HY(X, L), for
any higher test configuration p: X’ — X (see the proof of [BJ22al, Proposition 2.30]). After
pulling back £ to a higher test configuration, we may thus assume that X dominates the
trivial test configuration via pu: X — Xiiy. Set D := L — pu*Lyyiy, so that o = pp. Viewed
as a rational section of L, s is regular outside X;. For any v € X?" with Gauss extension
w = o(v), we further have

w(s) = v(sx) — A+ w(D) = —log|sx| (1) = A+ ¢ (v)
If s is a regular section, then w(s) > 0, and hence log|s\|(v) + A < pp(v) for any v € X",

Conversely, the latter condition implies b,'ordg(s) = —log|sx|(ve) — A + ¢p(ve) > 0
for each irreducible component E of Aj, since o(vg) = bgl ordg; this yields, as desired,
s € HY(X, L) (compare [BJ22a, Lemma 1.23]). O

Proof of Lemma[I.7. Replacing L and £ by sufficiently divisible multiples, we may assume
that L and £ are honest line bundles.

We have a,, -y C gy for all m,m’ € N. This implies that the net (¢, ), is increasing,.

By definition of a,,, mL®a,, is globally generated. Asnoted above, this implies ¢+, €
Hg(mL), and hence ¢, € ’Hg(L). Since g4, < 0, we further have ¢, < ¢, and hence
om < Qr(er), see (1.1).

Conversely, pick ¢ € Hg(L) such that ¢ < ¢,, and write ¢ = %maxi{log |si] + Ai}
for a finite set of nonzero sections s; € H°(X, mL) and \; € Z. For each i, we then have
log |s;| + A\i < m@z = Ome, and hence s;co ™ € HO(X, mL), see Lemma Since a,, is
locally generated by H°(X',mL), this implies in turn log|s;| + i < @mc + @a,,, and hence
¥ < . Taking the supremum over v, we conclude, as desired, Q; (¢r) < sup,,, ©m. O

1.4. The energy pairing. Various incarnations of the energy pairing play a key role
in [BJ22a]. First of all, when 6p,...,0, € N(X) are arbitrary numerical classes and
©0, - -+, pn € PL(X)r are (R-linear combinations of) PL functions, then

(00,@0) et (Qn,(pn) ceR

is defined as an intersection number on a compactified test configuration for X, see [BJ22al,
§3.2]. The following result would naturally belong to [BJ22al Proposition 3.14].

Lemma 1.8. Let 7: Y — X be a projective birational morphism, 0y, ...,0, € N'(X) nu-
merical classes, and @y, ..., on € PL(X) PL functions. Then

(90,(,00) ot (Hn,tpn) = (7r*00,7r*<p0) L— (ﬂ*en,ﬂ'*gon).

Remark 1.9. While we are assuming that X and Y are irreducible, the result holds even
without this assumption, as in [BJ22al, Proposition 3.14].
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Proof. There exists a test configuration X for X that dominates Xy = X x Al, and vertical
Q-Cartier divisor D; € VCar(X')qg that determine the functions ¢;, 0 < i < n. Then

(90,@0) et (Qn,tpn) = (90’2 +D0) et (Qn’/rg —i—Dn),

where the intersection number is computed on the canonical compactification X — P! and
0; x € N1(X) denotes the pullback of §;. The canonical birational map Yy = Y x Al --» X
being G,-equivariant, we can choose a test configuration ) for Y that dominates Vi, such
that 7: Y — X extends to a Gy-equivariant morphism 7: Y — X. Then m*¢p, = @r+p,
for all ¢, and we have

(700, 7 p0) - - ..+ (T*On, T°pn) = (1*0y ¢ + 7" Do) - ... - (770, x + 7" Dy)
= (0o x + Do) ..+ (0% + Dn) = (00,%0) - - - (On, Pn);
where the second equality follows from the projection formula. ([

In [BJ22al, §7], the energy pairing was extended in various ways. First, one can define

(w()v SDO) et (wrn SOTL) €eRU {_OO}
for w; € Amp(X) and ¢; € PSH(w;) by approximation from above by functions in PSH(w;)N
PL(X). Given w € Amp(X), a function ¢ € PSH(w) has finite energy if (w, )" ™! > —o0,
and the set of such functions is denoted by £(w). If ¢ € PSH(w), we set

n+1
(n+1)(w")
The functional E,, is increasing and satisfies E,, (¢ +¢) = E, (¢) + ¢ for any ¢ € PSH(w) and
c € R. We have (wo, @) - .. - (wn, pn) > —oo for any w; € Amp(X) and ¢; € &1 (w;).

For a general bounded-above function ¢: X" — R U {—oo} we set

Eu(p) :=sup{E,(¢) | ¢ € PSH(w), ¥ < }.

Then E,(¢) = Ey(P,(¢)) for any bounded-above function ¢.

A function ¢: X" — R is said to be of finite energy if it is of the form ¢ = T — ¢,
where ¢t € £'(w) for some w € Amp(X). The energy pairing then extends as a (finite)
multilinear pairing (6o, ¢o) - ... - (On, ©n) for arbitrary numerical classes 6; € N'(X) and
functions ¢; of finite energy.

2. THEOREM A

We now prove Theorem A and derive some consequences.

2.1. Proof of Theorem A. The result is trivial if § is not pseudoeffective, as PSH(#) is
then empty. Otherwise, we can write § = lim; ¢1(L;) for a sequence of big Q-line bundles
L; with ¢1(L;) > 0; by [BJ22al, Lemma 5.9], we may thus assume that § = ¢;(L) for a big
Q-line bundle L. Pick ¢ € PL(X). By Lemma 1.3, we need to show that Pr(y) is L-psh.
By [BJ22a, Theorem 2.31], we have ¢ = ¢, for some integrally closed test configuration
(X, L) for (X, L). After replacing L with a multiple, we may further assume that L and £
are honest line bundles.

Since we assume that chark = 0 or dim X < 2 (and hence dim X" < 3), we can rely on
resolution of singularities and assume that X is smooth and Xy has simple normal crossings
support. Assume first that chark = 0, and let b,, be the multiplier ideal of the graded
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sequence a'. The inclusion a,, C by, is elementary, and we have b,,; C bl for all m,[ by
the subadditivity property of multiplier ideals. This implies that

(m) ™ pa,, < (ml) " gy, <My,
for all m and [. Letting [ — oo shows that

om < Qpwr) < Ym =L +m gy, (2.1)
for all m, by Lemmal[I.6] By the uniform global generation property of multiplier ideals, we
can find a Gy-equivariant ample line bundle A on X such that Oy (mL+ A) ® by, is globally

generated for all m. As noted before Lemma this implies @rya + 0o, € HE (ML + A),
with A € Pic(X) the restriction of A, and hence

f
U = Um + =04 € HG (L + 5 A).
After adding to A a multiple of Xy, we may further assume ¢4 > 0, which guarantees that

the net (10],) is decreasing with respect to the divisibility order, and hence that 1 := inf,, ¢},
is either L-psh or identically —oo (see [BJ22al, Theorem 4.5]). By (2.1)), we have

Qrlpr) < vn, < oL+ mpa

and hence Q;(¢r) < ¥ < ¢r. In particular, ¢» Z —oo, so ¢ € PSH(L), and hence 9 <
Pr(pc). Finally, pick 7 € PSH(L) such that 7 < ¢,. By LemmalL.5] we have 7 < Py (¢z) =
Q. (¢r) < on a Zariski open subset of X®, and hence on X4V, Since 7 and 1 are L-psh,
it follows from [BJ22a, Theorem 4.22] that 7 < ¢ on X?*. Taking the sup over 7 yields
Pr(er) <1, and we conclude, as desired, that Py (o) = 1 is L-psh.

When char k > 0, the very same argument applies with test ideals in place of multiplier
ideals, see [GJKMI9| for details.

2.2. Consequences. We now list some consequences of Theorem A. First, we can charac-
terize psef classes, similarly to the complex analytic case.

Corollary 2.1. Assume that X satisfies the assumptions in Theorem A. Then, for any
0 € NY(X), we have PSH(0) # 0 iff 0 is psef. Moreover, in this case, the function

Vp := Py(0)
is 0-psh.
Proof. Tt follows from [BJ22al, Definition 4.1] that PSH(#) # () only if 6 is psef. First suppose
0 is big. By Theorem A, Vpy := Py(0) is #-psh. Note that Vy(viiv) = sup Vp = 0, where vy
is the trivial valuation on X.

Now suppose 6 is merely psef, and pick a sequence (6,,)$° of big classes converging to 6,
such that 0 < 6,41 < 6, for all m. As PSH(0,,+1) C PSH(6,,) for all m, the sequence
(Vi,, )m is pointwise decreasing on X®". Let ¢ be its limit. We have sup ¢ = ¢©(vtiv) = 0,
and ¢ € PSH(0,,) for every m. It now follows from [BJ22al, Theorem 4.5] that ¢ € PSH(0).
Finally, it is easy to see that ¢ = Py(0). Indeed, ¢ < 0, and if ¢ € PSH(6) satisfies ¢ < 0,
then ¢ € PSH(6,,) for all m, so ¢» < Vp_, and hence ¢ < ¢. O

By [BJ22a, Theorem 5.11], Theorem A now implies the following compactness result.

Corollary 2.2. Under the assumptions on X of Theorem A, the set
PSHgup(0) = {¢ € PSH(#) | supp = 0}
is compact for any psef class 6 € N*(X).
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Finally, as an immediate consequence of Theorem A and [BJ22a, Theorem 6.31], we have
the following version of Siu’s decomposition theorem.

Corollary 2.3. Suppose that X satisfies the assumptions of Theorem A. Pick 0 € N'(X)
and an effective Q-Cartier divisor E. Then, for any ¢ € PSH(0), we have:

o <log|sg| +O(1) <= ¢ — log|sg| € PSH(0 — E).

Here log |sp| = m~!log |smE|, where s,z is the canonical global section of Ox(mE) for
any m > 1 such that mFE is integral.

3. PROOF OF THEOREM B
We start by proving:

Lemma 3.1. Let m: X — X be a projective birational morphism, and pick a bounded w-psh
function . Then (w, )"t = (7*w, m )"+,

Here m*w may not be ample, but the right hand side is well-defined, as 7* is a function
of finite energy. In fact 7%¢ € £1(®) for any ample class @ > 7 w.

Proof. The case when 1 € PL(X) follows from Lemma In the general case, write ¢ as
the pointwise limit of a decreasing net (¢;) in PLNPSH(w), and pick @ € Amp(X) such
that @ > m*w. Then 7*; decreases to m*¢ pointwise on Xan_ Moreover, m*; and 7Y
are &-psh, and hence lie in £'(@) as they are bounded. By [BJ22al, Theorem 7.14 (iii)] we
have (w, ;)" — (w,¥)" ™ and (7*w, 7;)" T — (7*w, 7). Now (m*w, m*1;)" 1 =
(w, ;)" for all j by the PL case, and the result follows. O

As stated in the introduction, we introduce:

Definition 3.2. Let X be a projective variety, and w € NY(X) an ample class. We say
that (X,w) has the weak envelope property if there exists a pmjectwe birational morphism
7: X = X, and an ample class & € N'(X), such that @ > n*w and (X,&) has the envelope
property.

Lemma 3.3. If chark = 0 or dim X < 2, then any ample class w € NY(X) has the weak
envelope property.

Proof. In both cases, we can pick 7: X — X as a resolution of singularities, and then pick
any ample class © > 7*w. By [BJ22al, Theorem 5.20] (or Theorem A), the envelope property
holds for (X,@), and we are done. O

Proof of Theorem B. Set T := P, (¢). For any ¢y € PSH(w), we have v < ¢ <= ¢ < T,
and hence E,(p) = E,(7) < E,(7*). Since 7 is the pointwise supremum of the family
F = {¢ € PSH(w) | ¥ < ¢}, and since F is stable under finite max, we can find an
increasing net (1);) of w-psh functions such that sup, ¥; = 7 pointwise on X*". Replacing v;
with max{t;,inf ¢}, we can further assume that v; is bounded.

By assumption, we can find a projective birational morphism 7: X — X, and an ample
class @ € N'(X) such that @ > 7*w and (X,®) has the envelope property. Now 7 :=
T = sup; m*; with 7*¢; € PSH(@), and it follows that 7* is w-psh, and coincides with
7 = sup; m¢; = lim; sup 7*1p; on X4, By [BJ22al Theorem 7.38], we get (7*w, 7%¢;)" ! —
(7*w, 7)"*1. On the other hand, Lemmam yields

(mw, m4)" T = (w,90)" T = (n+ 1) vol(w) Eu (1) < (1 + 1) vol(w) Ew(7),
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and we infer

(W*w,f’*)”"'l < (n+1)vol(w) Ey(7). (3.1)
By [BJ22a, Theorem 5.6] we also have 7% = 7 on X4V, Each ¢ € PSH(w) such that ¢ < 7*
on X2 therefore satisfies 1/ < 7 on X4V (see [BJ22al, Theorem 5.6]); hence 7%y < 7 < 7 on
X9 which implies 7% < 7* on X" (see [BJ22al, Theorem 4.22]). Assuming v bounded,
we get

(w’,(/))n—H — (W*w,ﬂ*1/))n+1 S (7‘('*(.;),7:*)”—"_1,

where the equality follows from Lemma and the inequality from the monotonicity of the
energy pairing, see [BJ22a, Theorem 7.1]. Taking the supremum over ¢ now yields

(n+ 1) vol(w) Ey(77) < (7w, %*)”H.

Combined with (3.1), this implies E,,(7*) < E,,(7), and the result follows. O
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