
ADDENDUM TO THE ARTICLE ‘GLOBAL PLURIPOTENTIAL

THEORY OVER A TRIVIALLY VALUED FIELD’

SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Abstract. This note is an addendum to the paper ‘Global pluripotential theory over a
trivially valued field’ by the present authors, in which we prove two results. Let X be an
irreducible projective variety over an algebraically closed field field k, and assume that k
has characteristic zero, or that X has dimension at most two. We first prove that when X
is smooth, the envelope property holds for any numerical class on X. Then we prove that
for X possibly singular and for an ample numerical class, the Monge–Ampère energy of a
bounded function is equal to the energy of its usc regularized plurisubharmonic envelope.

Introduction

The purpose of this note is to strengthen two results in the article [BJ22a], where we
developed global pluripotential on the Berkovich analytification over a trivially valued field.
The results here are used in [BJ22b, BJ22c]. One should view the current note as an
addendum to [BJ22a], rather than a stand-alone paper.

Let k be an algebraically closed field, and X an irreducible projective variety over k. To
any numerical class θ ∈ N1(X) we associate a class PSH(θ) of θ-psh functions; these are
upper semicontinuous functions ϕ : Xan → R∪{−∞} on the Berkovich analytification of X
with respect to the trivial absolute value on k. We say that θ has the envelope property if
for any bounded-above family (ϕα)α in PSH(θ), the function sup?α ϕα is θ-psh.

Theorem A. Assume that X is smooth, and that char k = 0 or dimX ≤ 2. Then any
numerical class θ ∈ N1(X) has the envelope property.

In [BJ22a, Theorem 5.20], this was established for nef classes θ following [BFJ16], and
the proof here is not so different.

For the second result we allow X to be singular, but work with an ample class ω ∈ N1(X).
The ω-psh envelope Pω(ϕ) of a bounded function ϕ : Xan → R is defined as the supremum
of all functions ψ ∈ PSH(ω) with ψ ≤ ϕ, and the envelope property for ω is equivalent to
continuity of envelopes in the sense of Pω(ϕ) being continuous whenever ϕ is continuous. It
is also equivalent to the usc envelope P?ω(ϕ) being ω-psh for any bounded function ϕ.

In [BJ22a] we also defined the Monge–Ampère energy Eω(ϕ) ∈ R∪{−∞} of any bounded-
above function ϕ : Xan → R ∪ {−∞}. We did this first for ω-psh functions in terms of an
energy pairing ultimately deriving from intersection numbers on compactified test configu-
rations, see §1.4 below, then for general bounded-above functions ϕ, setting

Eω(ϕ) := sup{Eω(ψ) | ψ ∈ PSH(ω), ψ ≤ ϕ}.
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2 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

We say that (X,ω) satisfies the weak envelope property if there exists a projective birational

morphism π : X̃ → X and an ample class ω̃ ∈ N1(X̃) such that (X̃, ω̃) has the envelope prop-
erty and ω̃ ≥ π?ω (by which we mean ω̃−π?ω is nef). It follows from [BJ22a, Theorem 5.20]
that the weak envelope property holds when char k = 0 or dimX ≤ 2.

Theorem B. Assume that ω ∈ N1(X) is an ample class, and that the weak envelope property
holds for (X,ω). Then, for any bounded function ϕ : Xan → R, we have

Eω(ϕ) = Eω(Pω(ϕ)) = Eω(P?ω(ϕ)).

The first equality is definitional, see [BJ22a, (8.2)], and the second equality follows
from [BJ22a, Proposition 8.3] if ω has the envelope property. The main content of The-
orem B is thus the second equality when the envelope property is unknown or even fails (for
example, when X is not unibranch).

Acknowledgement. The second author was partially supported by NSF grants DMS-
1900025 and DMS-2154380.

1. Preliminaries

Throughout the paper, X is an irreducible projective variety over an algebraically closed
field k.

1.1. The θ-psh envelope. Fix any numerical class θ ∈ N1(X). We refer to [BJ22a, §4]
for the definition of the class PSH(θ) of θ-psh functions. We have that PSH(θ) is nonempty
only if θ is psef, whereas PSH(θ) contains the constant functions iff θ is nef.

Definition 1.1. The θ-psh envelope of a function ϕ : Xan → R ∪ {±∞} is the function
Pθ(ϕ) : Xan → R ∪ {±∞} defined as the pointwise supremum

Pθ(ϕ) := sup {ψ ∈ PSH(θ) | ψ ≤ ϕ} .

Thus Pθ(ϕ) ≡ −∞ iff there is no ψ ∈ PSH(θ) with ψ ≤ ϕ. When θ = c1(L) for a Q-line
bundle L, we write PL := Pθ. Despite the name, Pθ(ϕ) is not always θ-psh (and indeed not
even usc in general). However, it is clear that

• ϕ 7→ Pθ(ϕ) is increasing;
• Pθ(ϕ+ c) = Pθ(ϕ) + c for all c ∈ R.

The envelope operator is also continuous along increasing nets of lsc functions:

Lemma 1.2. If ϕ : Xan → R ∪ {+∞} is the pointwise limit of an increasing net (ϕj) of
bounded-below, lsc functions, then Pθ(ϕj)↗ Pθ(ϕ) pointwise on Xan.

Proof. We trivially have limj Pθ(ϕj) = supj Pθ(ϕj) ≤ Pθ(ϕ). Pick ε > 0 and ψ ∈ PSH(θ)
such that ψ ≤ ϕ, and hence ψ < ϕ + ε. Since ψ is usc and the ϕj is lsc, a simple variant
of Dini’s lemma shows that ψ < ϕj + ε for all j large enough, and hence ψ ≤ Pθ(ϕj) + ε.
Taking the supremum over ψ yields Pθ(ϕ) ≤ supj Pθ(ϕj), and we are done. �

As in [BE21, Lemma 7.30], the envelope property admits the following useful reformula-
tion.

Lemma 1.3. If PSH(θ) 6= ∅, then the following statements are equivalent:

(i) θ has the envelope property;
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(ii) for any function ϕ : Xan → R ∪ {±∞}, we have

Pθ(ϕ) ≡ −∞, Pθ(ϕ)? ≡ +∞, or Pθ(ϕ)? ∈ PSH(θ);

(iii) ϕ ∈ PL(X) =⇒ Pθ(ϕ) ∈ PSH(θ).

Proof. First assume (i). Pick any ϕ : Xan → R ∪ {±∞}, and suppose that the set F :=
{ψ ∈ PSH(θ) | ψ ≤ ϕ} is nonempty, so that Pθ(ϕ) 6≡ −∞. If the functions in F are uniformly
bounded above, then Pθ(ϕ)? ∈ PSH(θ), by (i). If not, choose ω ∈ Amp(X) with ω ≥ θ, and
hence F ⊂ PSH(ω). By the definition of the Alexander–Taylor capacity, see [BJ22a, §4.6],
we then have

Pθ(ϕ)(v) = sup {ψ(v) | ψ ∈ F} ≥ sup {supψ | ψ ∈ F} − Tω(v) = +∞

for all v ∈ Xdiv, and hence Pθ(ϕ)? ≡ +∞, by density of Xdiv. This proves (i)⇒(ii).
Next we prove (ii)⇒(iii), so pick ϕ ∈ PL(X). Since ϕ is bounded and PSH(θ) is nonempty

and invariant under addition of constants, we have Pθ(ϕ) 6≡ −∞. Now Pθ(ϕ) ≤ ϕ implies
Pθ(ϕ)? ≤ ϕ since ϕ is usc. In particular, Pθ(ϕ)? 6≡ +∞, so Pθ(ϕ)? ∈ PSH(θ) by (ii). Thus
Pθ(ϕ)? is a competitor in the definition of Pθ(ϕ), so Pθ(ϕ) = Pθ(ϕ)? is θ-psh.

Finally, we prove (iii)⇒(i), following [BE21, Lemma 7.30]. Let (ϕi) be a bounded-above
family in PSH(θ), and set ϕ := sup?iϕi. Since ϕ is usc and Xan is compact, we can find a
decreasing net (ψj) in C0(X) such that ψj → ϕ. By density of PL(X) in C0(X) wrt uniform
convergence (see [BJ22a, Theorem 2.2]), we can in fact assume ψj ∈ PL(X), and hence
Pθ(ψj) ∈ PSH(θ), by (iii). For all i, j, we have ϕi ≤ ψj , and hence ϕi ≤ Pθ(ψj), which in
turn yields ϕ ≤ Pθ(ψj) ≤ ψj . We have thus written ϕ as the limit of the decreasing net of
θ-psh functions Pθ(ψj), which shows that ϕ is θ-psh. �

Corollary 1.4. Assume that θ has the envelope property, and consider a usc function
ϕ : Xan → R ∪ {−∞}. Then:

(i) Pθ(ϕ) is θ-psh, or Pθ(ϕ) ≡ −∞;
(ii) if ϕ is the limit of a decreasing net (ϕj) of bounded-above, usc functions, then

Pθ(ϕj)↘ Pθ(ϕ).

Proof. By Lemma 1.3, either ψ := Pθ(ϕ)? is θ-psh, or Pθ(ϕ) ≡ −∞ (the latter being
automatic if PSH(θ) = ∅). Since Pθ(ϕ) ≤ ϕ and ϕ is usc, we also have ψ ≤ ϕ. If ψ is θ-psh,
then ψ ≤ Pθ(ϕ), which proves (i).

To see (ii), note that ρ := limj Pθ(ϕj) satisfies either ρ ∈ PSH(θ) or ρ ≡ −∞, by [BJ22a,
Theorem 4.7]. Furthermore, Pθ(ϕj) ≤ ϕj yields, in the limit, ρ ≤ ϕ, and hence ρ ≤ Pθ(ϕ) (by
definition of Pθ(ϕ) if ρ ∈ PSH(θ), and trivially if ρ ≡ −∞). Thus limj Pθ(ϕj) = ρ = Pθ(ϕ).
On the other hand, Pθ(ϕj) ≥ Pθ(ϕ) implies ρ ≥ Pθ(ϕ), which completes the proof of (ii). �

1.2. The Fubini–Study envelope. Now consider a big Q-line bundle L. Recall [BJ22a,

§2.4] that for any subgroup Λ ⊂ R, Hgf
Λ (L) denotes the set of functions ϕ : Xan → R of the

form

ϕ = m−1 max
j
{log |sj |+ λj},

where m ∈ Z>0 is such that mL is an honest line bundle, (sj)j is a finite set of nonzero
global sections of mL, and λj ∈ Λ.

We define the Fubini–Study envelope of a bounded function ϕ : Xan → R as

QL(ϕ) := sup
{
ψ ∈ Hgf

R (L) | ψ ≤ ϕ
}
. (1.1)
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By approximation, Hgf
R (L) can be replaced byHgf

Q (L) = Hgf
Z (L) in this definition, see [BJ22a,

(2.10)]. Note also that QL(ϕ) : Xan → R ∪ {−∞} is bounded above and lsc.
Recall that the augmented base locus of L can be described as

B+(L) :=
⋂
{suppE | E effective Q-Cartier divisor, L− E ample},

a strict Zariski closed subset of X, see [ELMNP06].

Lemma 1.5. Suppose ϕ : Xan → R is bounded, with lsc regularization ϕ? : Xan → R. Then
QL(ϕ) = QL(ϕ?) ≤ PL(ϕ?), and equality holds outside B+(L).

In particular, QL(ϕ) = PL(ϕ?) when L is ample. In this case, QL coincides with the
envelope Qc1(L) in [BJ22a, §5.3].

Proof. Since any function ψ ∈ Hgf(L) is continuous, it satisfies ψ ≤ ϕ iff ψ ≤ ϕ?. Thus
QL(ϕ) = QL(ϕ?), and we may therefore assume wlog that ϕ is lsc. Since Hgf(L) ⊂ PSH(L),
we trivially have QL(ϕ) ≤ PL(ϕ). Conversely, pick ψ ∈ PSH(L) such that ψ ≤ ϕ. Let E be
an effective Q-Cartier divisor such that A := L − E is ample. By [BJ22a, Theorem 4.15],
we can write ψ as the pointwise limit of a decreasing net (ψj) in Hgf(L+ εjA) with εj → 0.
Pick ε > 0, so that ψ < ϕ + ε. As in the proof of Lemma 1.2, since ψj is usc and ϕ is
lsc, a simple variant of Dini’s lemma shows that ψj < ϕ + ε for all j large enough. Since

log |sE | ≤ 0 lies in Hgf(E), it follows that τj := (1 + εj)
−1(ψj + εj log |sE |) lies in Hgf(L).

Further,

τj ≤ (1 + εj)
−1(ϕ+ ε) ≤ ϕ+ ε+ Cεj

for some uniform C > 0, since ϕ is bounded, and hence

τj ≤ QL(ϕ+ ε+ Cεj) = QL(ϕ) + ε+ Cεj .

We have thus proved ψj + εj log |sE | ≤ (1 + εj)(QL(ϕ) + ε+ Cεj); at any point of

(X − E)an = {log |sE | > −∞},

this yields ψ ≤ QL(ϕ), and hence PL(ϕ) ≤ QL(ϕ), which proves the result. �

1.3. Envelopes from test configurations. Let L be a big line bundle. Any test configura-
tion (X ,L) for (X,L) defines a function ϕL ∈ PL, and we seek to compute the Fubini–Study
envelope QL(ϕL).

To this end, we introduce a slight generalization of the definitions in [BJ22a, §2.1]. To any
Gm-invariant ideal a ⊂ OX , we attach a function ϕa : Xan → [−∞, 0] by setting ϕa(v) :=
−σ(v)(a), where σ = σX denotes Gauss extension (see [BJ22a, Remark 1.9]). In terms of the
weight decomposition a =

∑
λ∈Z≥0

aλ$
−λ with aλ ⊂ OX , we have ϕa = maxλ{log |aλ|+ λ}.

If L is an honest line bundle such that L ⊗ a is globally generated, one easily checks as

in [BJ22a, Proposition 2.25] that ϕL + ϕa lies in Hgf
Q (L).

Lemma 1.6. Let L be a big line bundle on X, and (X ,L) an integrally closed test configu-
ration for (X,L). For each sufficiently divisible m ∈ Z>0, denote by am ⊂ OX the base ideal

of mL, and set ϕm := ϕL + m−1ϕam. Then ϕm ∈ Hgf
Q (L) and (ϕm)m forms an increasing

net of functions on Xan converging pointwise to QL(ϕL).

Here we consider (ϕm)m as a net indexed by the set m0Z>0 for some sufficiently divisible
m0, and partially ordered by divisibility.
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To prove the lemma, recall [BJ22a, §1.2] that if L (and hence L) is an honest line bundle,
then H0(X ,L) lies as a k[$]-submodule of H0(X,L)k[$±1]. The next result provides a
valuative characterization of this submodule in terms of ϕL.

Lemma 1.7. Assume L is an honest line bundle, pick s ∈ H0(X,L)k[$−±1], and write

s =
∑

λ∈Z sλ$
−λ with sλ ∈ H0(X,L). Then s ∈ H0(X ,L) iff maxλ{log |sλ| + λ} ≤ ϕL on

Xan.

Proof. By Gm-invariance, we have s ∈ H0(X ,L)⇔ sλ$
−λ ∈ H0(X ,L) for all λ ∈ Z, and we

may thus assume s = sλ$
−λ for some λ ∈ Z.

Since X is integrally closed, we have ρ?OX ′ = OX , and hence H0(X ′, ρ?L) = H0(X ,L), for
any higher test configuration ρ : X ′ → X (see the proof of [BJ22a, Proposition 2.30]). After
pulling back L to a higher test configuration, we may thus assume that X dominates the
trivial test configuration via µ : X → Xtriv. Set D := L− µ?Ltriv, so that ϕL = ϕD. Viewed
as a rational section of L, s is regular outside X0. For any v ∈ Xan with Gauss extension
w = σ(v), we further have

w(s) = v(sλ)− λ+ w(D) = − log |sλ|(v)− λ+ ϕD(v).

If s is a regular section, then w(s) ≥ 0, and hence log |sλ|(v) + λ ≤ ϕD(v) for any v ∈ Xan.
Conversely, the latter condition implies b−1

E ordE(s) = − log |sλ|(vE) − λ + ϕD(vE) ≥ 0

for each irreducible component E of X0, since σ(vE) = b−1
E ordE ; this yields, as desired,

s ∈ H0(X ,L) (compare [BJ22a, Lemma 1.23]). �

Proof of Lemma 1.7. Replacing L and L by sufficiently divisible multiples, we may assume
that L and L are honest line bundles.

We have am ·am′ ⊂ am+m′ for all m,m′ ∈ N. This implies that the net (ϕm)m is increasing.
By definition of am, mL⊗am is globally generated. As noted above, this implies ϕL+ϕam ∈

Hgf
Q (mL), and hence ϕm ∈ Hgf

Q (L). Since ϕam ≤ 0, we further have ϕm ≤ ϕL, and hence

ϕm ≤ QL(ϕL), see (1.1).

Conversely, pick ψ ∈ Hgf
Q (L) such that ψ ≤ ϕL, and write ψ = 1

m maxi{log |si| + λi}
for a finite set of nonzero sections si ∈ H0(X,mL) and λi ∈ Z. For each i, we then have
log |si| + λi ≤ mϕL = ϕmL, and hence si$

−λi ∈ H0(X ,mL), see Lemma 1.7. Since am is
locally generated by H0(X ,mL), this implies in turn log |si| + λi ≤ ϕmL + ϕam , and hence
ψ ≤ ϕm. Taking the supremum over ψ, we conclude, as desired, QL(ϕL) ≤ supm ϕm. �

1.4. The energy pairing. Various incarnations of the energy pairing play a key role
in [BJ22a]. First of all, when θ0, . . . , θn ∈ N1(X) are arbitrary numerical classes and
ϕ0, . . . , ϕn ∈ PL(X)R are (R-linear combinations of) PL functions, then

(θ0, ϕ0) · . . . · (θn, ϕn) ∈ R

is defined as an intersection number on a compactified test configuration for X, see [BJ22a,
§3.2]. The following result would naturally belong to [BJ22a, Proposition 3.14].

Lemma 1.8. Let π : Y → X be a projective birational morphism, θ0, . . . , θn ∈ N1(X) nu-
merical classes, and ϕ0, . . . , ϕn ∈ PL(X) PL functions. Then

(θ0, ϕ0) · . . . · (θn, ϕn) = (π?θ0, π
?ϕ0) · . . . · (π?θn, π?ϕn).

Remark 1.9. While we are assuming that X and Y are irreducible, the result holds even
without this assumption, as in [BJ22a, Proposition 3.14].
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Proof. There exists a test configuration X for X that dominates Xtriv = X×A1, and vertical
Q-Cartier divisor Di ∈ VCar(X )Q that determine the functions ϕi, 0 ≤ i ≤ n. Then

(θ0, ϕ0) · . . . · (θn, ϕn) = (θ0,X̄ +D0) · . . . · (θn,X̄ +Dn),

where the intersection number is computed on the canonical compactification X̄ → P1 and
θi,X ∈ N1(X̄ ) denotes the pullback of θi. The canonical birational map Ytriv = Y ×A1 99K X
being Gm-equivariant, we can choose a test configuration Y for Y that dominates Ytriv such
that π : Y → X extends to a Gm-equivariant morphism π : Y → X . Then π?ϕDi = ϕπ?Di

for all i, and we have

(π?θ0, π
?ϕ0) · . . . · (π?θn, π?ϕn) = (π?θ0,X̄ + π?D0) · . . . · (π?θn,X̄ + π?Dn)

= (θ0,X̄ +D0) · . . . · (θn,X̄ +Dn) = (θ0, ϕ0) · . . . · (θn, ϕn),

where the second equality follows from the projection formula. �

In [BJ22a, §7], the energy pairing was extended in various ways. First, one can define

(ω0, ϕ0) · . . . · (ωn, ϕn) ∈ R ∪ {−∞}

for ωi ∈ Amp(X) and ϕi ∈ PSH(ωi) by approximation from above by functions in PSH(ωi)∩
PL(X). Given ω ∈ Amp(X), a function ϕ ∈ PSH(ω) has finite energy if (ω, ϕ)n+1 > −∞,
and the set of such functions is denoted by E1(ω). If ϕ ∈ PSH(ω), we set

Eω(ϕ) :=
(ω, ϕ)n+1

(n+ 1)(ωn)
.

The functional Eω is increasing and satisfies Eω(ϕ+ c) = Eω(ϕ) + c for any ϕ ∈ PSH(ω) and
c ∈ R. We have (ω0, ϕ0) · . . . · (ωn, ϕn) > −∞ for any ωi ∈ Amp(X) and ϕi ∈ E1(ωi).

For a general bounded-above function ϕ : Xan → R ∪ {−∞} we set

Eω(ϕ) := sup{Eω(ψ) | ψ ∈ PSH(ω), ψ ≤ ϕ}.

Then Eω(ϕ) = Eω(Pω(ϕ)) for any bounded-above function ϕ.
A function ϕ : X lin → R is said to be of finite energy if it is of the form ϕ = ϕ+ − ϕ−,

where ϕ± ∈ E1(ω) for some ω ∈ Amp(X). The energy pairing then extends as a (finite)
multilinear pairing (θ0, ϕ0) · . . . · (θn, ϕn) for arbitrary numerical classes θi ∈ N1(X) and
functions ϕi of finite energy.

2. Theorem A

We now prove Theorem A and derive some consequences.

2.1. Proof of Theorem A. The result is trivial if θ is not pseudoeffective, as PSH(θ) is
then empty. Otherwise, we can write θ = limi c1(Li) for a sequence of big Q-line bundles
Li with c1(Li) ≥ θ; by [BJ22a, Lemma 5.9], we may thus assume that θ = c1(L) for a big
Q-line bundle L. Pick ϕ ∈ PL(X). By Lemma 1.3, we need to show that PL(ϕ) is L-psh.
By [BJ22a, Theorem 2.31], we have ϕ = ϕL for some integrally closed test configuration
(X ,L) for (X,L). After replacing L with a multiple, we may further assume that L and L
are honest line bundles.

Since we assume that char k = 0 or dimX ≤ 2 (and hence dimX ≤ 3), we can rely on
resolution of singularities and assume that X is smooth and X0 has simple normal crossings
support. Assume first that char k = 0, and let bm be the multiplier ideal of the graded
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sequence am• . The inclusion am ⊂ bm is elementary, and we have bml ⊂ blm for all m, l by
the subadditivity property of multiplier ideals. This implies that

(ml)−1ϕaml
≤ (ml)−1ϕbml

≤ m−1ϕbm

for all m and l. Letting l→∞ shows that

ϕm ≤ QL(ϕL) ≤ ψm := ϕL +m−1ϕbm (2.1)

for all m, by Lemma 1.6. By the uniform global generation property of multiplier ideals, we
can find a Gm-equivariant ample line bundle A on X such that OX (mL+A)⊗bm is globally
generated for all m. As noted before Lemma 1.6, this implies ϕmL+A+ϕbm ∈ Hgf(mL+A),
with A ∈ Pic(X) the restriction of A, and hence

ψ′m := ψm + 1
mϕA ∈ H

gf
Q (L+ 1

mA).

After adding to A a multiple of X0, we may further assume ϕA ≥ 0, which guarantees that
the net (ψ′m) is decreasing with respect to the divisibility order, and hence that ψ := infm ψ

′
m

is either L-psh or identically −∞ (see [BJ22a, Theorem 4.5]). By (2.1), we have

QL(ϕL) ≤ ψ′m ≤ ϕL + 1
mϕA,

and hence QL(ϕL) ≤ ψ ≤ ϕL. In particular, ψ 6≡ −∞, so ψ ∈ PSH(L), and hence ψ ≤
PL(ϕL). Finally, pick τ ∈ PSH(L) such that τ ≤ ϕL. By Lemma 1.5, we have τ ≤ PL(ϕL) =
QL(ϕL) ≤ ψ on a Zariski open subset of Xan, and hence on Xdiv. Since τ and ψ are L-psh,
it follows from [BJ22a, Theorem 4.22] that τ ≤ ψ on Xan. Taking the sup over τ yields
PL(ϕL) ≤ ψ, and we conclude, as desired, that PL(ϕL) = ψ is L-psh.

When char k > 0, the very same argument applies with test ideals in place of multiplier
ideals, see [GJKM19] for details.

2.2. Consequences. We now list some consequences of Theorem A. First, we can charac-
terize psef classes, similarly to the complex analytic case.

Corollary 2.1. Assume that X satisfies the assumptions in Theorem A. Then, for any
θ ∈ N1(X), we have PSH(θ) 6= ∅ iff θ is psef. Moreover, in this case, the function

Vθ := Pθ(0)

is θ-psh.

Proof. It follows from [BJ22a, Definition 4.1] that PSH(θ) 6= ∅ only if θ is psef. First suppose
θ is big. By Theorem A, Vθ := Pθ(0) is θ-psh. Note that Vθ(vtriv) = supVθ = 0, where vtriv

is the trivial valuation on X.
Now suppose θ is merely psef, and pick a sequence (θm)∞1 of big classes converging to θ,

such that θ ≤ θm+1 ≤ θm for all m. As PSH(θm+1) ⊂ PSH(θm) for all m, the sequence
(Vθm)m is pointwise decreasing on Xan. Let ϕ be its limit. We have supϕ = ϕ(vtriv) = 0,
and ϕ ∈ PSH(θm) for every m. It now follows from [BJ22a, Theorem 4.5] that ϕ ∈ PSH(θ).
Finally, it is easy to see that ϕ = Pθ(0). Indeed, ϕ ≤ 0, and if ψ ∈ PSH(θ) satisfies ψ ≤ 0,
then ψ ∈ PSH(θm) for all m, so ψ ≤ Vθm , and hence ψ ≤ ϕ. �

By [BJ22a, Theorem 5.11], Theorem A now implies the following compactness result.

Corollary 2.2. Under the assumptions on X of Theorem A, the set

PSHsup(θ) = {ϕ ∈ PSH(θ) | supϕ = 0}
is compact for any psef class θ ∈ N1(X).



8 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Finally, as an immediate consequence of Theorem A and [BJ22a, Theorem 6.31], we have
the following version of Siu’s decomposition theorem.

Corollary 2.3. Suppose that X satisfies the assumptions of Theorem A. Pick θ ∈ N1(X)
and an effective Q-Cartier divisor E. Then, for any ϕ ∈ PSH(θ), we have:

ϕ ≤ log |sE |+O(1)⇐⇒ ϕ− log |sE | ∈ PSH(θ − E).

Here log |sE | = m−1 log |smE |, where smE is the canonical global section of OX(mE) for
any m ≥ 1 such that mE is integral.

3. Proof of Theorem B

We start by proving:

Lemma 3.1. Let π : X̃ → X be a projective birational morphism, and pick a bounded ω-psh
function ψ. Then (ω, ψ)n+1 = (π?ω, π?ψ)n+1.

Here π?ω may not be ample, but the right hand side is well-defined, as π?ψ is a function
of finite energy. In fact π?ψ ∈ E1(ω̃) for any ample class ω̃ ≥ π?ω.

Proof. The case when ψ ∈ PL(X) follows from Lemma 1.8. In the general case, write ψ as

the pointwise limit of a decreasing net (ψj) in PL∩PSH(ω), and pick ω̃ ∈ Amp(X̃) such

that ω̃ ≥ π?ω. Then π?ψj decreases to π?ψ pointwise on X̃an. Moreover, π?ψj and π?ψ
are ω̃-psh, and hence lie in E1(ω̃) as they are bounded. By [BJ22a, Theorem 7.14 (iii)] we
have (ω, ψj)

n+1 → (ω, ψ)n+1 and (π?ω, π?ψj)
n+1 → (π?ω, π?ψ)n+1. Now (π?ω, π?ψj)

n+1 =
(ω, ψj)

n+1 for all j by the PL case, and the result follows. �

As stated in the introduction, we introduce:

Definition 3.2. Let X be a projective variety, and ω ∈ N1(X) an ample class. We say
that (X,ω) has the weak envelope property if there exists a projective birational morphism

π : X̃ → X, and an ample class ω̃ ∈ N1(X̃), such that ω̃ ≥ π?ω and (X̃, ω̃) has the envelope
property.

Lemma 3.3. If char k = 0 or dimX ≤ 2, then any ample class ω ∈ N1(X) has the weak
envelope property.

Proof. In both cases, we can pick π : X̃ → X as a resolution of singularities, and then pick
any ample class ω̃ ≥ π?ω. By [BJ22a, Theorem 5.20] (or Theorem A), the envelope property

holds for (X̃, ω̃), and we are done. �

Proof of Theorem B. Set τ := Pω(ϕ). For any ψ ∈ PSH(ω), we have ψ ≤ ϕ ⇐⇒ ψ ≤ τ ,
and hence Eω(ϕ) = Eω(τ) ≤ Eω(τ?). Since τ is the pointwise supremum of the family
F = {ψ ∈ PSH(ω) | ψ ≤ ϕ}, and since F is stable under finite max, we can find an
increasing net (ψi) of ω-psh functions such that supi ψi = τ pointwise on Xan. Replacing ψi
with max{ψi, inf ψ}, we can further assume that ψi is bounded.

By assumption, we can find a projective birational morphism π : X̃ → X, and an ample
class ω̃ ∈ N1(X̃) such that ω̃ ≥ π?ω and (X̃, ω̃) has the envelope property. Now τ̃ :=
π?τ = supi π

?ψi with π?ψi ∈ PSH(ω̃), and it follows that τ̃? is ω̃-psh, and coincides with

τ̃ = supi π
?ψi = limi supπ?ψi on X̃div. By [BJ22a, Theorem 7.38], we get (π?ω, π?ψi)

n+1 →
(π?ω, τ̃?)n+1. On the other hand, Lemma 3.1 yields

(π?ω, π?ψi)
n+1 = (ω, ψi)

n+1 = (n+ 1) vol(ω) Eω(ψi) ≤ (n+ 1) vol(ω) Eω(τ),
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and we infer
(π?ω, τ̃?)n+1 ≤ (n+ 1) vol(ω) Eω(τ). (3.1)

By [BJ22a, Theorem 5.6] we also have τ? = τ on Xdiv. Each ψ ∈ PSH(ω) such that ψ ≤ τ?
on Xan therefore satisfies ψ ≤ τ on Xdiv (see [BJ22a, Theorem 5.6]); hence π?ψ ≤ τ̃ ≤ τ̃? on

X̃div, which implies π?ψ ≤ τ̃? on X̃an (see [BJ22a, Theorem 4.22]). Assuming ψ bounded,
we get

(ω, ψ)n+1 = (π?ω, π?ψ)n+1 ≤ (π?ω, τ̃?)n+1,

where the equality follows from Lemma 3.1, and the inequality from the monotonicity of the
energy pairing, see [BJ22a, Theorem 7.1]. Taking the supremum over ψ now yields

(n+ 1) vol(ω) Eω(τ?) ≤ (π?ω, τ̃?)n+1.

Combined with (3.1), this implies Eω(τ?) ≤ Eω(τ), and the result follows. �
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