ADDENDUM TO THE ARTICLE 'GLOBAL PLURIPOTENTIAL THEORY OVER A TRIVIALLY VALUED FIELD'

SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Abstract

This note is an addendum to the paper 'Global pluripotential theory over a trivially valued field' by the present authors, in which we prove two results. Let X be an irreducible projective variety over an algebraically closed field field k, and assume that k has characteristic zero, or that X has dimension at most two. We first prove that when X is smooth, the envelope property holds for any numerical class on X. Then we prove that for X possibly singular and for an ample numerical class, the Monge-Ampère energy of a bounded function is equal to the energy of its usc regularized plurisubharmonic envelope.

Introduction

The purpose of this note is to strengthen two results in the article [BJ22a, where we developed global pluripotential on the Berkovich analytification over a trivially valued field. The results here are used in BJ22b, BJ22c]. One should view the current note as an addendum to BJ22a], rather than a stand-alone paper.

Let k be an algebraically closed field, and X an irreducible projective variety over k. To any numerical class $\theta \in \mathrm{N}^{1}(X)$ we associate a class $\operatorname{PSH}(\theta)$ of θ-psh functions; these are upper semicontinuous functions $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{-\infty\}$ on the Berkovich analytification of X with respect to the trivial absolute value on k. We say that θ has the envelope property if for any bounded-above family $\left(\varphi_{\alpha}\right)_{\alpha}$ in $\operatorname{PSH}(\theta)$, the function $\sup _{\alpha}^{\star} \varphi_{\alpha}$ is θ-psh.

Theorem A. Assume that X is smooth, and that $\operatorname{char} k=0$ or $\operatorname{dim} X \leq 2$. Then any numerical class $\theta \in \mathrm{N}^{1}(X)$ has the envelope property.

In [BJ22a, Theorem 5.20], this was established for nef classes θ following [BFJ16], and the proof here is not so different.

For the second result we allow X to be singular, but work with an ample class $\omega \in \mathrm{N}^{1}(X)$. The ω-psh envelope $\mathrm{P}_{\omega}(\varphi)$ of a bounded function $\varphi: X^{\text {an }} \rightarrow \mathbb{R}$ is defined as the supremum of all functions $\psi \in \operatorname{PSH}(\omega)$ with $\psi \leq \varphi$, and the envelope property for ω is equivalent to continuity of envelopes in the sense of $\mathrm{P}_{\omega}(\varphi)$ being continuous whenever φ is continuous. It is also equivalent to the usc envelope $\mathrm{P}_{\omega}^{\star}(\varphi)$ being ω-psh for any bounded function φ.

In [BJ22a] we also defined the Monge-Ampère energy $\mathrm{E}_{\omega}(\varphi) \in \mathbb{R} \cup\{-\infty\}$ of any boundedabove function $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{-\infty\}$. We did this first for ω-psh functions in terms of an energy pairing ultimately deriving from intersection numbers on compactified test configurations, see $\$ 1.4$ below, then for general bounded-above functions φ, setting

$$
\mathrm{E}_{\omega}(\varphi):=\sup \left\{\mathrm{E}_{\omega}(\psi) \mid \psi \in \operatorname{PSH}(\omega), \psi \leq \varphi\right\} .
$$

Date: June 16, 2022.

We say that (X, ω) satisfies the weak envelope property if there exists a projective birational morphism $\pi: \tilde{X} \rightarrow X$ and an ample class $\tilde{\omega} \in \mathrm{N}^{1}(\tilde{X})$ such that $(\tilde{X}, \tilde{\omega})$ has the envelope property and $\tilde{\omega} \geq \pi^{\star} \omega$ (by which we mean $\tilde{\omega}-\pi^{\star} \omega$ is nef). It follows from [BJ22a, Theorem 5.20] that the weak envelope property holds when char $k=0$ or $\operatorname{dim} X \leq 2$.

Theorem B. Assume that $\omega \in \mathrm{N}^{1}(X)$ is an ample class, and that the weak envelope property holds for (X, ω). Then, for any bounded function $\varphi: X^{\text {an }} \rightarrow \mathbb{R}$, we have

$$
\mathrm{E}_{\omega}(\varphi)=\mathrm{E}_{\omega}\left(\mathrm{P}_{\omega}(\varphi)\right)=\mathrm{E}_{\omega}\left(\mathrm{P}_{\omega}^{\star}(\varphi)\right) .
$$

The first equality is definitional, see [BJ22a, (8.2)], and the second equality follows from [BJ22a, Proposition 8.3] if ω has the envelope property. The main content of Theorem B is thus the second equality when the envelope property is unknown or even fails (for example, when X is not unibranch).

Acknowledgement. The second author was partially supported by NSF grants DMS1900025 and DMS-2154380.

1. Preliminaries

Throughout the paper, X is an irreducible projective variety over an algebraically closed field k.
1.1. The θ-psh envelope. Fix any numerical class $\theta \in \mathrm{N}^{1}(X)$. We refer to [BJ22a, §4] for the definition of the class $\operatorname{PSH}(\theta)$ of θ-psh functions. We have that $\operatorname{PSH}(\theta)$ is nonempty only if θ is psef, whereas $\operatorname{PSH}(\theta)$ contains the constant functions iff θ is nef.

Definition 1.1. The θ-psh envelope of a function $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is the function $\mathrm{P}_{\theta}(\varphi): X^{\mathrm{an}} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ defined as the pointwise supremum

$$
\mathrm{P}_{\theta}(\varphi):=\sup \{\psi \in \operatorname{PSH}(\theta) \mid \psi \leq \varphi\} .
$$

Thus $\mathrm{P}_{\theta}(\varphi) \equiv-\infty$ iff there is no $\psi \in \operatorname{PSH}(\theta)$ with $\psi \leq \varphi$. When $\theta=c_{1}(L)$ for a \mathbb{Q}-line bundle L, we write $\mathrm{P}_{L}:=\mathrm{P}_{\theta}$. Despite the name, $\mathrm{P}_{\theta}(\varphi)$ is not always θ-psh (and indeed not even usc in general). However, it is clear that

- $\varphi \mapsto \mathrm{P}_{\theta}(\varphi)$ is increasing;
- $\mathrm{P}_{\theta}(\varphi+c)=\mathrm{P}_{\theta}(\varphi)+c$ for all $c \in \mathbb{R}$.

The envelope operator is also continuous along increasing nets of lsc functions:
Lemma 1.2. If $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the pointwise limit of an increasing net $\left(\varphi_{j}\right)$ of bounded-below, lsc functions, then $\mathrm{P}_{\theta}\left(\varphi_{j}\right) \nearrow \mathrm{P}_{\theta}(\varphi)$ pointwise on X^{an}.
Proof. We trivially have $\lim _{j} \mathrm{P}_{\theta}\left(\varphi_{j}\right)=\sup _{j} \mathrm{P}_{\theta}\left(\varphi_{j}\right) \leq \mathrm{P}_{\theta}(\varphi)$. Pick $\varepsilon>0$ and $\psi \in \operatorname{PSH}(\theta)$ such that $\psi \leq \varphi$, and hence $\psi<\varphi+\varepsilon$. Since ψ is usc and the φ_{j} is lsc, a simple variant of Dini's lemma shows that $\psi<\varphi_{j}+\varepsilon$ for all j large enough, and hence $\psi \leq \mathrm{P}_{\theta}\left(\varphi_{j}\right)+\varepsilon$. Taking the supremum over ψ yields $\mathrm{P}_{\theta}(\varphi) \leq \sup _{j} \mathrm{P}_{\theta}\left(\varphi_{j}\right)$, and we are done.

As in [BE21, Lemma 7.30], the envelope property admits the following useful reformulation.

Lemma 1.3. If $\operatorname{PSH}(\theta) \neq \emptyset$, then the following statements are equivalent:
(i) θ has the envelope property;
(ii) for any function $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, we have

$$
\mathrm{P}_{\theta}(\varphi) \equiv-\infty, \mathrm{P}_{\theta}(\varphi)^{\star} \equiv+\infty, \text { or } \mathrm{P}_{\theta}(\varphi)^{\star} \in \operatorname{PSH}(\theta) ;
$$

(iii) $\varphi \in \operatorname{PL}(X) \Longrightarrow \mathrm{P}_{\theta}(\varphi) \in \operatorname{PSH}(\theta)$.

Proof. First assume (i). Pick any $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, and suppose that the set $\mathcal{F}:=$ $\{\psi \in \operatorname{PSH}(\theta) \mid \psi \leq \varphi\}$ is nonempty, so that $\mathrm{P}_{\theta}(\varphi) \not \equiv-\infty$. If the functions in \mathcal{F} are uniformly bounded above, then $\mathrm{P}_{\theta}(\varphi)^{\star} \in \operatorname{PSH}(\theta)$, by (i). If not, choose $\omega \in \operatorname{Amp}(X)$ with $\omega \geq \theta$, and hence $\mathcal{F} \subset \operatorname{PSH}(\omega)$. By the definition of the Alexander-Taylor capacity, see [BJ22a, §4.6], we then have

$$
\mathrm{P}_{\theta}(\varphi)(v)=\sup \{\psi(v) \mid \psi \in \mathcal{F}\} \geq \sup \{\sup \psi \mid \psi \in \mathcal{F}\}-\mathrm{T}_{\omega}(v)=+\infty
$$

for all $v \in X^{\text {div }}$, and hence $\mathrm{P}_{\theta}(\varphi)^{\star} \equiv+\infty$, by density of $X^{\text {div }}$. This proves (i) \Rightarrow (ii).
Next we prove (ii) $\Rightarrow($ iii $)$, so pick $\varphi \in \operatorname{PL}(X)$. Since φ is bounded and $\operatorname{PSH}(\theta)$ is nonempty and invariant under addition of constants, we have $\mathrm{P}_{\theta}(\varphi) \not \equiv-\infty$. Now $\mathrm{P}_{\theta}(\varphi) \leq \varphi$ implies $\mathrm{P}_{\theta}(\varphi)^{\star} \leq \varphi$ since φ is usc. In particular, $\mathrm{P}_{\theta}(\varphi)^{\star} \not \equiv+\infty$, so $\mathrm{P}_{\theta}(\varphi)^{\star} \in \mathrm{PSH}(\theta)$ by (ii). Thus $\mathrm{P}_{\theta}(\varphi)^{\star}$ is a competitor in the definition of $\mathrm{P}_{\theta}(\varphi)$, so $\mathrm{P}_{\theta}(\varphi)=\mathrm{P}_{\theta}(\varphi)^{\star}$ is θ-psh.

Finally, we prove $(\mathrm{iii}) \Rightarrow(\mathrm{i})$, following [BE21, Lemma 7.30]. Let $\left(\varphi_{i}\right)$ be a bounded-above family in $\operatorname{PSH}(\theta)$, and set $\varphi:=\sup _{i}^{\star} \varphi_{i}$. Since φ is usc and $X^{\text {an }}$ is compact, we can find a decreasing net $\left(\psi_{j}\right)$ in $\mathrm{C}^{0}(X)$ such that $\psi_{j} \rightarrow \varphi$. By density of $\operatorname{PL}(X)$ in $\mathrm{C}^{0}(X)$ wrt uniform convergence (see BJ22a, Theorem 2.2]), we can in fact assume $\psi_{j} \in \operatorname{PL}(X)$, and hence $\mathrm{P}_{\theta}\left(\psi_{j}\right) \in \operatorname{PSH}(\theta)$, by (iii). For all i, j, we have $\varphi_{i} \leq \psi_{j}$, and hence $\varphi_{i} \leq \mathrm{P}_{\theta}\left(\psi_{j}\right)$, which in turn yields $\varphi \leq \mathrm{P}_{\theta}\left(\psi_{j}\right) \leq \psi_{j}$. We have thus written φ as the limit of the decreasing net of θ-psh functions $\mathrm{P}_{\theta}\left(\psi_{j}\right)$, which shows that φ is θ-psh.

Corollary 1.4. Assume that θ has the envelope property, and consider a usc function $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{-\infty\}$. Then:
(i) $\mathrm{P}_{\theta}(\varphi)$ is θ-psh, or $\mathrm{P}_{\theta}(\varphi) \equiv-\infty$;
(ii) if φ is the limit of a decreasing net $\left(\varphi_{j}\right)$ of bounded-above, usc functions, then $\mathrm{P}_{\theta}\left(\varphi_{j}\right) \searrow \mathrm{P}_{\theta}(\varphi)$.
Proof. By Lemma 1.3, either $\psi:=\mathrm{P}_{\theta}(\varphi)^{\star}$ is θ-psh, or $\mathrm{P}_{\theta}(\varphi) \equiv-\infty$ (the latter being automatic if $\operatorname{PSH}(\theta)=\emptyset)$. Since $\mathrm{P}_{\theta}(\varphi) \leq \varphi$ and φ is usc, we also have $\psi \leq \varphi$. If ψ is θ-psh, then $\psi \leq \mathrm{P}_{\theta}(\varphi)$, which proves (i).

To see (ii), note that $\rho:=\lim _{j} \mathrm{P}_{\theta}\left(\varphi_{j}\right)$ satisfies either $\rho \in \operatorname{PSH}(\theta)$ or $\rho \equiv-\infty$, by BJ22a, Theorem 4.7]. Furthermore, $\mathrm{P}_{\theta}\left(\varphi_{j}\right) \leq \varphi_{j}$ yields, in the limit, $\rho \leq \varphi$, and hence $\rho \leq \mathrm{P}_{\theta}(\varphi)$ (by definition of $\mathrm{P}_{\theta}(\varphi)$ if $\rho \in \operatorname{PSH}(\theta)$, and trivially if $\left.\rho \equiv-\infty\right)$. Thus $\lim _{j} \mathrm{P}_{\theta}\left(\varphi_{j}\right)=\rho=\mathrm{P}_{\theta}(\varphi)$. On the other hand, $\mathrm{P}_{\theta}\left(\varphi_{j}\right) \geq \mathrm{P}_{\theta}(\varphi)$ implies $\rho \geq \mathrm{P}_{\theta}(\varphi)$, which completes the proof of (ii).
1.2. The Fubini-Study envelope. Now consider a big \mathbb{Q}-line bundle L. Recall BJ22a, $\S 2.4]$ that for any subgroup $\Lambda \subset \mathbb{R}, \mathcal{H}_{\Lambda}^{\mathrm{gf}}(L)$ denotes the set of functions $\varphi: X^{\text {an }} \rightarrow \mathbb{R}$ of the form

$$
\varphi=m^{-1} \max _{j}\left\{\log \left|s_{j}\right|+\lambda_{j}\right\},
$$

where $m \in \mathbb{Z}_{>0}$ is such that $m L$ is an honest line bundle, $\left(s_{j}\right)_{j}$ is a finite set of nonzero global sections of $m L$, and $\lambda_{j} \in \Lambda$.

We define the Fubini-Study envelope of a bounded function $\varphi: X^{\text {an }} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\mathrm{Q}_{L}(\varphi):=\sup \left\{\psi \in \mathcal{H}_{\mathbb{R}}^{\mathrm{gf}}(L) \mid \psi \leq \varphi\right\} . \tag{1.1}
\end{equation*}
$$

By approximation, $\mathcal{H}_{\mathbb{R}}^{\mathrm{gf}}(L)$ can be replaced by $\mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}(L)=\mathcal{H}_{\mathbb{Z}}^{\mathrm{gf}}(L)$ in this definition, see BJ22a, (2.10)]. Note also that $\mathrm{Q}_{L}(\varphi): X^{\text {an }} \rightarrow \mathbb{R} \cup\{-\infty\}$ is bounded above and lsc.

Recall that the augmented base locus of L can be described as

$$
\mathbb{B}_{+}(L):=\bigcap\{\operatorname{supp} E \mid E \text { effective } \mathbb{Q} \text {-Cartier divisor, } L-E \text { ample }\}
$$

a strict Zariski closed subset of X, see [ELMNP06].
Lemma 1.5. Suppose $\varphi: X^{\text {an }} \rightarrow \mathbb{R}$ is bounded, with lsc regularization $\varphi_{\star}: X^{\text {an }} \rightarrow \mathbb{R}$. Then $\mathrm{Q}_{L}(\varphi)=\mathrm{Q}_{L}\left(\varphi_{\star}\right) \leq \mathrm{P}_{L}\left(\varphi_{\star}\right)$, and equality holds outside $\mathbb{B}_{+}(L)$.

In particular, $\mathrm{Q}_{L}(\varphi)=\mathrm{P}_{L}\left(\varphi_{\star}\right)$ when L is ample. In this case, Q_{L} coincides with the envelope $\mathrm{Q}_{c_{1}(L)}$ in [BJ22a, §5.3].

Proof. Since any function $\psi \in \mathcal{H}^{\mathrm{gf}}(L)$ is continuous, it satisfies $\psi \leq \varphi$ iff $\psi \leq \varphi_{\star}$. Thus $\mathrm{Q}_{L}(\varphi)=\mathrm{Q}_{L}\left(\varphi_{\star}\right)$, and we may therefore assume wlog that φ is lsc. Since $\mathcal{H}^{\mathrm{gf}}(L) \subset \operatorname{PSH}(L)$, we trivially have $\mathrm{Q}_{L}(\varphi) \leq \mathrm{P}_{L}(\varphi)$. Conversely, pick $\psi \in \operatorname{PSH}(L)$ such that $\psi \leq \varphi$. Let E be an effective \mathbb{Q}-Cartier divisor such that $A:=L-E$ is ample. By [BJ22a, Theorem 4.15], we can write ψ as the pointwise limit of a decreasing net $\left(\psi_{j}\right)$ in $\mathcal{H}^{\text {gf }}\left(L+\varepsilon_{j} A\right)$ with $\varepsilon_{j} \rightarrow 0$. Pick $\varepsilon>0$, so that $\psi<\varphi+\varepsilon$. As in the proof of Lemma 1.2, since ψ_{j} is usc and φ is lsc, a simple variant of Dini's lemma shows that $\psi_{j}<\varphi+\varepsilon$ for all j large enough. Since $\log \left|s_{E}\right| \leq 0$ lies in $\mathcal{H}^{\mathrm{gf}}(E)$, it follows that $\tau_{j}:=\left(1+\varepsilon_{j}\right)^{-1}\left(\psi_{j}+\varepsilon_{j} \log \left|s_{E}\right|\right)$ lies in $\mathcal{H}^{\mathrm{gf}}(L)$. Further,

$$
\tau_{j} \leq\left(1+\varepsilon_{j}\right)^{-1}(\varphi+\varepsilon) \leq \varphi+\varepsilon+C \varepsilon_{j}
$$

for some uniform $C>0$, since φ is bounded, and hence

$$
\tau_{j} \leq \mathrm{Q}_{L}\left(\varphi+\varepsilon+C \varepsilon_{j}\right)=\mathrm{Q}_{L}(\varphi)+\varepsilon+C \varepsilon_{j}
$$

We have thus proved $\psi_{j}+\varepsilon_{j} \log \left|s_{E}\right| \leq\left(1+\varepsilon_{j}\right)\left(\mathrm{Q}_{L}(\varphi)+\varepsilon+C \varepsilon_{j}\right)$; at any point of

$$
(X-E)^{\text {an }}=\left\{\log \left|s_{E}\right|>-\infty\right\}
$$

this yields $\psi \leq \mathrm{Q}_{L}(\varphi)$, and hence $\mathrm{P}_{L}(\varphi) \leq \mathrm{Q}_{L}(\varphi)$, which proves the result.
1.3. Envelopes from test configurations. Let L be a big line bundle. Any test configuration $(\mathcal{X}, \mathcal{L})$ for (X, L) defines a function $\varphi_{\mathcal{L}} \in \mathrm{PL}$, and we seek to compute the Fubini-Study envelope $\mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right)$.

To this end, we introduce a slight generalization of the definitions in [BJ22a, §2.1]. To any \mathbb{G}_{m}-invariant ideal $\mathfrak{a} \subset \mathcal{O}_{\mathcal{X}}$, we attach a function $\varphi_{\mathfrak{a}}: X^{\text {an }} \rightarrow[-\infty, 0]$ by setting $\varphi_{\mathfrak{a}}(v):=$ $-\sigma(v)(\mathfrak{a})$, where $\sigma=\sigma_{\mathcal{X}}$ denotes Gauss extension (see BJ22a, Remark 1.9]). In terms of the weight decomposition $\mathfrak{a}=\sum_{\lambda \in \mathbb{Z}_{\geq 0}} \mathfrak{a}_{\lambda} \varpi^{-\lambda}$ with $\mathfrak{a}_{\lambda} \subset \mathcal{O}_{X}$, we have $\varphi_{\mathfrak{a}}=\max _{\lambda}\left\{\log \left|\mathfrak{a}_{\lambda}\right|+\lambda\right\}$. If \mathcal{L} is an honest line bundle such that $\mathcal{L} \otimes \mathfrak{a}$ is globally generated, one easily checks as in [BJ22a, Proposition 2.25] that $\varphi_{\mathcal{L}}+\varphi_{\mathfrak{a}}$ lies in $\mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}(L)$.

Lemma 1.6. Let L be a big line bundle on X, and $(\mathcal{X}, \mathcal{L})$ an integrally closed test configuration for (X, L). For each sufficiently divisible $m \in \mathbb{Z}_{>0}$, denote by $\mathfrak{a}_{m} \subset \mathcal{O}_{\mathcal{X}}$ the base ideal of $m \mathcal{L}$, and set $\varphi_{m}:=\varphi_{\mathcal{L}}+m^{-1} \varphi_{\mathfrak{a}_{m}}$. Then $\varphi_{m} \in \mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}(L)$ and $\left(\varphi_{m}\right)_{m}$ forms an increasing net of functions on $X^{\text {an }}$ converging pointwise to $\mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right)$.

Here we consider $\left(\varphi_{m}\right)_{m}$ as a net indexed by the set $m_{0} \mathbb{Z}_{>0}$ for some sufficiently divisible m_{0}, and partially ordered by divisibility.

To prove the lemma, recall [BJ22a, §1.2] that if \mathcal{L} (and hence L) is an honest line bundle, then $\mathrm{H}^{0}(\mathcal{X}, \mathcal{L})$ lies as a $k[\varpi]$-submodule of $\mathrm{H}^{0}(X, L)_{k\left[\varpi^{ \pm 1]}\right.}$. The next result provides a valuative characterization of this submodule in terms of $\varphi_{\mathcal{L}}$.

Lemma 1.7. Assume \mathcal{L} is an honest line bundle, pick $s \in \mathrm{H}^{0}(X, L)_{k\left[\omega^{ - \pm 1]}\right.}$, and write $s=\sum_{\lambda \in \mathbb{Z}} s_{\lambda} \varpi^{-\lambda}$ with $s_{\lambda} \in \mathrm{H}^{0}(X, L)$. Then $s \in \mathrm{H}^{0}(\mathcal{X}, \mathcal{L})$ iff $\max _{\lambda}\left\{\log \left|s_{\lambda}\right|+\lambda\right\} \leq \varphi_{\mathcal{L}}$ on $X^{\text {an }}$.

Proof. By \mathbb{G}_{m}-invariance, we have $s \in \mathrm{H}^{0}(\mathcal{X}, \mathcal{L}) \Leftrightarrow s_{\lambda} \varpi^{-\lambda} \in \mathrm{H}^{0}(\mathcal{X}, \mathcal{L})$ for all $\lambda \in \mathbb{Z}$, and we may thus assume $s=s_{\lambda} \varpi^{-\lambda}$ for some $\lambda \in \mathbb{Z}$.

Since \mathcal{X} is integrally closed, we have $\rho_{\star} \mathcal{O}_{\mathcal{X}^{\prime}}=\mathcal{O}_{\mathcal{X}}$, and hence $\mathrm{H}^{0}\left(\mathcal{X}^{\prime}, \rho^{\star} \mathcal{L}\right)=\mathrm{H}^{0}(\mathcal{X}, \mathcal{L})$, for any higher test configuration $\rho: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ (see the proof of [BJ22a, Proposition 2.30]). After pulling back \mathcal{L} to a higher test configuration, we may thus assume that \mathcal{X} dominates the trivial test configuration via $\mu: \mathcal{X} \rightarrow \mathcal{X}_{\text {triv }}$. Set $D:=\mathcal{L}-\mu^{\star} \mathcal{L}_{\text {triv }}$, so that $\varphi_{\mathcal{L}}=\varphi_{D}$. Viewed as a rational section of \mathcal{L}, s is regular outside \mathcal{X}_{0}. For any $v \in X^{\text {an }}$ with Gauss extension $w=\sigma(v)$, we further have

$$
w(s)=v\left(s_{\lambda}\right)-\lambda+w(D)=-\log \left|s_{\lambda}\right|(v)-\lambda+\varphi_{D}(v)
$$

If s is a regular section, then $w(s) \geq 0$, and hence $\log \left|s_{\lambda}\right|(v)+\lambda \leq \varphi_{D}(v)$ for any $v \in X^{\text {an }}$. Conversely, the latter condition implies $b_{E}^{-1} \operatorname{ord}_{E}(s)=-\log \left|s_{\lambda}\right|\left(v_{E}\right)-\lambda+\varphi_{D}\left(v_{E}\right) \geq 0$ for each irreducible component E of \mathcal{X}_{0}, since $\sigma\left(v_{E}\right)=b_{E}^{-1} \operatorname{ord}_{E}$; this yields, as desired, $s \in \mathrm{H}^{0}(\mathcal{X}, \mathcal{L})$ (compare [BJ22a, Lemma 1.23]).

Proof of Lemma 1.7. Replacing L and \mathcal{L} by sufficiently divisible multiples, we may assume that L and \mathcal{L} are honest line bundles.

We have $\mathfrak{a}_{m} \cdot \mathfrak{a}_{m^{\prime}} \subset \mathfrak{a}_{m+m^{\prime}}$ for all $m, m^{\prime} \in \mathbb{N}$. This implies that the net $\left(\varphi_{m}\right)_{m}$ is increasing.
By definition of $\mathfrak{a}_{m}, m \mathcal{L} \otimes \mathfrak{a}_{m}$ is globally generated. As noted above, this implies $\varphi_{\mathcal{L}}+\varphi_{\mathfrak{a}_{m}} \in$ $\mathcal{H}_{\mathbb{Q}}^{\text {gf }}(m L)$, and hence $\varphi_{m} \in \mathcal{H}_{\mathbb{Q}}^{\text {gf }}(L)$. Since $\varphi_{\mathfrak{a}_{m}} \leq 0$, we further have $\varphi_{m} \leq \varphi_{\mathcal{L}}$, and hence $\varphi_{m} \leq \mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right)$, see (1.1).

Conversely, pick $\psi \in \mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}(L)$ such that $\psi \leq \varphi_{\mathcal{L}}$, and write $\psi=\frac{1}{m} \max _{i}\left\{\log \left|s_{i}\right|+\lambda_{i}\right\}$ for a finite set of nonzero sections $s_{i} \in \mathrm{H}^{0}(X, m L)$ and $\lambda_{i} \in \mathbb{Z}$. For each i, we then have $\log \left|s_{i}\right|+\lambda_{i} \leq m \varphi_{\mathcal{L}}=\varphi_{m \mathcal{L}}$, and hence $s_{i} \varpi^{-\lambda_{i}} \in \mathrm{H}^{0}(\mathcal{X}, m \mathcal{L})$, see Lemma 1.7. Since \mathfrak{a}_{m} is locally generated by $\mathrm{H}^{0}(\mathcal{X}, m \mathcal{L})$, this implies in turn $\log \left|s_{i}\right|+\lambda_{i} \leq \varphi_{m \mathcal{L}}+\varphi_{\mathfrak{a}_{m}}$, and hence $\psi \leq \varphi_{m}$. Taking the supremum over ψ, we conclude, as desired, $\mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right) \leq \sup _{m} \varphi_{m}$.
1.4. The energy pairing. Various incarnations of the energy pairing play a key role in BJ22a. First of all, when $\theta_{0}, \ldots, \theta_{n} \in \mathrm{~N}^{1}(X)$ are arbitrary numerical classes and $\varphi_{0}, \ldots, \varphi_{n} \in \mathrm{PL}(X)_{\mathbb{R}}$ are (\mathbb{R}-linear combinations of) PL functions, then

$$
\left(\theta_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\theta_{n}, \varphi_{n}\right) \in \mathbb{R}
$$

is defined as an intersection number on a compactified test configuration for X, see BJ22a, §3.2]. The following result would naturally belong to [BJ22a, Proposition 3.14].
Lemma 1.8. Let $\pi: Y \rightarrow X$ be a projective birational morphism, $\theta_{0}, \ldots, \theta_{n} \in \mathrm{~N}^{1}(X) n u$ merical classes, and $\varphi_{0}, \ldots, \varphi_{n} \in \operatorname{PL}(X)$ PL functions. Then

$$
\left(\theta_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\theta_{n}, \varphi_{n}\right)=\left(\pi^{\star} \theta_{0}, \pi^{\star} \varphi_{0}\right) \cdot \ldots \cdot\left(\pi^{\star} \theta_{n}, \pi^{\star} \varphi_{n}\right) .
$$

Remark 1.9. While we are assuming that X and Y are irreducible, the result holds even without this assumption, as in [BJ22a, Proposition 3.14].

Proof. There exists a test configuration \mathcal{X} for X that dominates $\mathcal{X}_{\text {triv }}=X \times \mathbb{A}^{1}$, and vertical \mathbb{Q}-Cartier divisor $D_{i} \in \operatorname{VCar}(\mathcal{X})_{\mathbb{Q}}$ that determine the functions $\varphi_{i}, 0 \leq i \leq n$. Then

$$
\left(\theta_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\theta_{n}, \varphi_{n}\right)=\left(\theta_{0, \overline{\mathcal{X}}}+D_{0}\right) \cdot \ldots \cdot\left(\theta_{n, \overline{\mathcal{X}}}+D_{n}\right),
$$

where the intersection number is computed on the canonical compactification $\overline{\mathcal{X}} \rightarrow \mathbb{P}^{1}$ and $\theta_{i, \mathcal{X}} \in \mathrm{~N}^{1}(\overline{\mathcal{X}})$ denotes the pullback of θ_{i}. The canonical birational map $\mathcal{Y}_{\text {triv }}=Y \times \mathbb{A}^{1} \rightarrow \mathcal{X}$ being \mathbb{G}_{m}-equivariant, we can choose a test configuration \mathcal{Y} for Y that dominates $\mathcal{Y}_{\text {triv }}$ such that $\pi: Y \rightarrow X$ extends to a \mathbb{G}_{m}-equivariant morphism $\pi: \mathcal{Y} \rightarrow \mathcal{X}$. Then $\pi^{\star} \varphi_{D_{i}}=\varphi_{\pi^{\star} D_{i}}$ for all i, and we have

$$
\begin{aligned}
\left(\pi^{\star} \theta_{0}, \pi^{\star} \varphi_{0}\right) \cdot \ldots \cdot\left(\pi^{\star} \theta_{n}, \pi^{\star} \varphi_{n}\right) & =\left(\pi^{\star} \theta_{0, \overline{\mathcal{X}}}+\pi^{\star} D_{0}\right) \cdot \ldots \cdot\left(\pi^{\star} \theta_{n, \overline{\mathcal{X}}}+\pi^{\star} D_{n}\right) \\
& =\left(\theta_{0, \overline{\mathcal{X}}}+D_{0}\right) \cdot \ldots \cdot\left(\theta_{n, \overline{\mathcal{X}}}+D_{n}\right)=\left(\theta_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\theta_{n}, \varphi_{n}\right),
\end{aligned}
$$

where the second equality follows from the projection formula.
In [BJ22a, §7], the energy pairing was extended in various ways. First, one can define

$$
\left(\omega_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\omega_{n}, \varphi_{n}\right) \in \mathbb{R} \cup\{-\infty\}
$$

for $\omega_{i} \in \operatorname{Amp}(X)$ and $\varphi_{i} \in \operatorname{PSH}\left(\omega_{i}\right)$ by approximation from above by functions in $\operatorname{PSH}\left(\omega_{i}\right) \cap$ $\operatorname{PL}(X)$. Given $\omega \in \operatorname{Amp}(X)$, a function $\varphi \in \operatorname{PSH}(\omega)$ has finite energy if $(\omega, \varphi)^{n+1}>-\infty$, and the set of such functions is denoted by $\mathcal{E}^{1}(\omega)$. If $\varphi \in \operatorname{PSH}(\omega)$, we set

$$
\mathrm{E}_{\omega}(\varphi):=\frac{(\omega, \varphi)^{n+1}}{(n+1)\left(\omega^{n}\right)} .
$$

The functional E_{ω} is increasing and satisfies $\mathrm{E}_{\omega}(\varphi+c)=\mathrm{E}_{\omega}(\varphi)+c$ for any $\varphi \in \operatorname{PSH}(\omega)$ and $c \in \mathbb{R}$. We have $\left(\omega_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\omega_{n}, \varphi_{n}\right)>-\infty$ for any $\omega_{i} \in \operatorname{Amp}(X)$ and $\varphi_{i} \in \mathcal{E}^{1}\left(\omega_{i}\right)$.

For a general bounded-above function $\varphi: X^{\text {an }} \rightarrow \mathbb{R} \cup\{-\infty\}$ we set

$$
\mathrm{E}_{\omega}(\varphi):=\sup \left\{\mathrm{E}_{\omega}(\psi) \mid \psi \in \operatorname{PSH}(\omega), \psi \leq \varphi\right\} .
$$

Then $\mathrm{E}_{\omega}(\varphi)=\mathrm{E}_{\omega}\left(\mathrm{P}_{\omega}(\varphi)\right)$ for any bounded-above function φ.
A function $\varphi: X^{\text {lin }} \rightarrow \mathbb{R}$ is said to be of finite energy if it is of the form $\varphi=\varphi^{+}-\varphi^{-}$, where $\varphi^{ \pm} \in \mathcal{E}^{1}(\omega)$ for some $\omega \in \operatorname{Amp}(X)$. The energy pairing then extends as a (finite) multilinear pairing $\left(\theta_{0}, \varphi_{0}\right) \cdot \ldots \cdot\left(\theta_{n}, \varphi_{n}\right)$ for arbitrary numerical classes $\theta_{i} \in \mathrm{~N}^{1}(X)$ and functions φ_{i} of finite energy.

2. Theorem A

We now prove Theorem A and derive some consequences.
2.1. Proof of Theorem A. The result is trivial if θ is not pseudoeffective, as $\operatorname{PSH}(\theta)$ is then empty. Otherwise, we can write $\theta=\lim _{i} c_{1}\left(L_{i}\right)$ for a sequence of big \mathbb{Q}-line bundles L_{i} with $c_{1}\left(L_{i}\right) \geq \theta$; by BJ22a, Lemma 5.9], we may thus assume that $\theta=c_{1}(L)$ for a big \mathbb{Q}-line bundle L. Pick $\varphi \in \mathrm{PL}(X)$. By Lemma 1.3 , we need to show that $\mathrm{P}_{L}(\varphi)$ is L-psh. By [BJ22a, Theorem 2.31], we have $\varphi=\varphi_{\mathcal{L}}$ for some integrally closed test configuration $(\mathcal{X}, \mathcal{L})$ for (X, L). After replacing L with a multiple, we may further assume that L and \mathcal{L} are honest line bundles.

Since we assume that char $k=0$ or $\operatorname{dim} X \leq 2$ (and hence $\operatorname{dim} \mathcal{X} \leq 3$), we can rely on resolution of singularities and assume that \mathcal{X} is smooth and \mathcal{X}_{0} has simple normal crossings support. Assume first that char $k=0$, and let \mathfrak{b}_{m} be the multiplier ideal of the graded
sequence $\mathfrak{a}_{\bullet}^{m}$. The inclusion $\mathfrak{a}_{m} \subset \mathfrak{b}_{m}$ is elementary, and we have $\mathfrak{b}_{m l} \subset \mathfrak{b}_{m}^{l}$ for all m, l by the subadditivity property of multiplier ideals. This implies that

$$
(m l)^{-1} \varphi_{\mathfrak{a}_{m l}} \leq(m l)^{-1} \varphi_{\mathfrak{b}_{m l}} \leq m^{-1} \varphi_{\mathfrak{b}_{m}}
$$

for all m and l. Letting $l \rightarrow \infty$ shows that

$$
\begin{equation*}
\varphi_{m} \leq \mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right) \leq \psi_{m}:=\varphi_{\mathcal{L}}+m^{-1} \varphi_{\mathfrak{b}_{m}} \tag{2.1}
\end{equation*}
$$

for all m, by Lemma 1.6. By the uniform global generation property of multiplier ideals, we can find a \mathbb{G}_{m}-equivariant ample line bundle \mathcal{A} on \mathcal{X} such that $\mathcal{O} \mathcal{X}(m \mathcal{L}+\mathcal{A}) \otimes \mathfrak{b}_{m}$ is globally generated for all m. As noted before Lemma 1.6, this implies $\varphi_{m \mathcal{L}+\mathcal{A}}+\varphi_{\mathfrak{b}_{m}} \in \mathcal{H}^{\mathrm{gf}}(m L+A)$, with $A \in \operatorname{Pic}(X)$ the restriction of \mathcal{A}, and hence

$$
\psi_{m}^{\prime}:=\psi_{m}+\frac{1}{m} \varphi_{\mathcal{A}} \in \mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}\left(L+\frac{1}{m} A\right) .
$$

After adding to \mathcal{A} a multiple of \mathcal{X}_{0}, we may further assume $\varphi_{\mathcal{A}} \geq 0$, which guarantees that the net $\left(\psi_{m}^{\prime}\right)$ is decreasing with respect to the divisibility order, and hence that $\psi:=\inf _{m} \psi_{m}^{\prime}$ is either L-psh or identically $-\infty$ (see [BJ22a, Theorem 4.5]). By (2.1), we have

$$
\mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right) \leq \psi_{m}^{\prime} \leq \varphi_{\mathcal{L}}+\frac{1}{m} \varphi_{\mathcal{A}},
$$

and hence $\mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right) \leq \psi \leq \varphi_{\mathcal{L}}$. In particular, $\psi \not \equiv-\infty$, so $\psi \in \operatorname{PSH}(L)$, and hence $\psi \leq$ $\mathrm{P}_{L}\left(\varphi_{\mathcal{L}}\right)$. Finally, pick $\tau \in \operatorname{PSH}(L)$ such that $\tau \leq \varphi_{\mathcal{L}}$. By Lemma 1.5, we have $\tau \leq \mathrm{P}_{L}\left(\varphi_{\mathcal{L}}\right)=$ $\mathrm{Q}_{L}\left(\varphi_{\mathcal{L}}\right) \leq \psi$ on a Zariski open subset of $X^{\text {an }}$, and hence on $X^{\text {div }}$. Since τ and ψ are L-psh, it follows from [BJ22a, Theorem 4.22] that $\tau \leq \psi$ on $X^{\text {an }}$. Taking the sup over τ yields $\mathrm{P}_{L}\left(\varphi_{\mathcal{L}}\right) \leq \psi$, and we conclude, as desired, that $\mathrm{P}_{L}\left(\varphi_{\mathcal{L}}\right)=\psi$ is L-psh.

When char $k>0$, the very same argument applies with test ideals in place of multiplier ideals, see [GJKM19] for details.
2.2. Consequences. We now list some consequences of Theorem A. First, we can characterize psef classes, similarly to the complex analytic case.

Corollary 2.1. Assume that X satisfies the assumptions in Theorem A. Then, for any $\theta \in \mathrm{N}^{1}(X)$, we have $\operatorname{PSH}(\theta) \neq \emptyset$ iff θ is psef. Moreover, in this case, the function

$$
V_{\theta}:=\mathrm{P}_{\theta}(0)
$$

is θ-psh.
Proof. It follows from BJ22a, Definition 4.1] that $\operatorname{PSH}(\theta) \neq \emptyset$ only if θ is psef. First suppose θ is big. By Theorem A, $V_{\theta}:=\mathrm{P}_{\theta}(0)$ is θ-psh. Note that $V_{\theta}\left(v_{\text {triv }}\right)=\sup V_{\theta}=0$, where $v_{\text {triv }}$ is the trivial valuation on X.

Now suppose θ is merely psef, and pick a sequence $\left(\theta_{m}\right)_{1}^{\infty}$ of big classes converging to θ, such that $\theta \leq \theta_{m+1} \leq \theta_{m}$ for all m. As $\operatorname{PSH}\left(\theta_{m+1}\right) \subset \operatorname{PSH}\left(\theta_{m}\right)$ for all m, the sequence $\left(V_{\theta_{m}}\right)_{m}$ is pointwise decreasing on $X^{\text {an }}$. Let φ be its limit. We have $\sup \varphi=\varphi\left(v_{\text {triv }}\right)=0$, and $\varphi \in \operatorname{PSH}\left(\theta_{m}\right)$ for every m. It now follows from BJ22a, Theorem 4.5] that $\varphi \in \operatorname{PSH}(\theta)$. Finally, it is easy to see that $\varphi=\mathrm{P}_{\theta}(0)$. Indeed, $\varphi \leq 0$, and if $\psi \in \operatorname{PSH}(\theta)$ satisfies $\psi \leq 0$, then $\psi \in \operatorname{PSH}\left(\theta_{m}\right)$ for all m, so $\psi \leq V_{\theta_{m}}$, and hence $\psi \leq \varphi$.

By [BJ22a, Theorem 5.11], Theorem A now implies the following compactness result.
Corollary 2.2. Under the assumptions on X of Theorem A, the set

$$
\mathrm{PSH}_{\text {sup }}(\theta)=\{\varphi \in \operatorname{PSH}(\theta) \mid \sup \varphi=0\}
$$

is compact for any psef class $\theta \in \mathrm{N}^{1}(X)$.

Finally, as an immediate consequence of Theorem A and [BJ22a, Theorem 6.31], we have the following version of Siu's decomposition theorem.
Corollary 2.3. Suppose that X satisfies the assumptions of Theorem A. Pick $\theta \in \mathrm{N}^{1}(X)$ and an effective \mathbb{Q}-Cartier divisor E. Then, for any $\varphi \in \operatorname{PSH}(\theta)$, we have:

$$
\varphi \leq \log \left|s_{E}\right|+O(1) \Longleftrightarrow \varphi-\log \left|s_{E}\right| \in \operatorname{PSH}(\theta-E)
$$

Here $\log \left|s_{E}\right|=m^{-1} \log \left|s_{m E}\right|$, where $s_{m E}$ is the canonical global section of $\mathcal{O}_{X}(m E)$ for any $m \geq 1$ such that $m E$ is integral.

3. Proof of Theorem B

We start by proving:
Lemma 3.1. Let $\pi: \tilde{X} \rightarrow X$ be a projective birational morphism, and pick a bounded ω-psh function ψ. Then $(\omega, \psi)^{n+1}=\left(\pi^{\star} \omega, \pi^{\star} \psi\right)^{n+1}$.

Here $\pi^{\star} \omega$ may not be ample, but the right hand side is well-defined, as $\pi^{\star} \psi$ is a function of finite energy. In fact $\pi^{\star} \psi \in \mathcal{E}^{1}(\tilde{\omega})$ for any ample class $\tilde{\omega} \geq \pi^{\star} \omega$.

Proof. The case when $\psi \in \operatorname{PL}(X)$ follows from Lemma 1.8. In the general case, write ψ as the pointwise limit of a decreasing net $\left(\psi_{j}\right)$ in $\operatorname{PL} \cap \operatorname{PSH}(\omega)$, and pick $\tilde{\omega} \in \operatorname{Amp}(\tilde{X})$ such that $\tilde{\omega} \geq \pi^{\star} \omega$. Then $\pi^{\star} \psi_{j}$ decreases to $\pi^{\star} \psi$ pointwise on $\tilde{X}^{\text {an }}$. Moreover, $\pi^{\star} \psi_{j}$ and $\pi^{\star} \psi$ are $\tilde{\omega}$-psh, and hence lie in $\mathcal{E}^{1}(\tilde{\omega})$ as they are bounded. By [BJ22a, Theorem 7.14 (iii)] we have $\left(\omega, \psi_{j}\right)^{n+1} \rightarrow(\omega, \psi)^{n+1}$ and $\left(\pi^{\star} \omega, \pi^{\star} \psi_{j}\right)^{n+1} \rightarrow\left(\pi^{\star} \omega, \pi^{\star} \psi\right)^{n+1}$. Now $\left(\pi^{\star} \omega, \pi^{\star} \psi_{j}\right)^{n+1}=$ $\left(\omega, \psi_{j}\right)^{n+1}$ for all j by the PL case, and the result follows.

As stated in the introduction, we introduce:
Definition 3.2. Let X be a projective variety, and $\omega \in \mathrm{N}^{1}(X)$ an ample class. We say that (X, ω) has the weak envelope property if there exists a projective birational morphism $\pi: \tilde{X} \rightarrow X$, and an ample class $\tilde{\omega} \in \mathrm{N}^{1}(\tilde{X})$, such that $\tilde{\omega} \geq \pi^{\star} \omega$ and $(\tilde{X}, \tilde{\omega})$ has the envelope property.
Lemma 3.3. If char $k=0$ or $\operatorname{dim} X \leq 2$, then any ample class $\omega \in \mathrm{N}^{1}(X)$ has the weak envelope property.
Proof. In both cases, we can pick $\pi: \tilde{X} \rightarrow X$ as a resolution of singularities, and then pick any ample class $\tilde{\omega} \geq \pi^{\star} \omega$. By [BJ22a, Theorem 5.20] (or Theorem A), the envelope property holds for $(\tilde{X}, \tilde{\omega})$, and we are done.

Proof of Theorem B. Set $\tau:=\mathrm{P}_{\omega}(\varphi)$. For any $\psi \in \operatorname{PSH}(\omega)$, we have $\psi \leq \varphi \Longleftrightarrow \psi \leq \tau$, and hence $\mathrm{E}_{\omega}(\varphi)=\mathrm{E}_{\omega}(\tau) \leq \mathrm{E}_{\omega}\left(\tau^{\star}\right)$. Since τ is the pointwise supremum of the family $\mathcal{F}=\{\psi \in \operatorname{PSH}(\omega) \mid \psi \leq \varphi\}$, and since \mathcal{F} is stable under finite max, we can find an increasing net $\left(\psi_{i}\right)$ of ω-psh functions such that $\sup _{i} \psi_{i}=\tau$ pointwise on $X^{\text {an }}$. Replacing ψ_{i} with $\max \left\{\psi_{i}, \inf \psi\right\}$, we can further assume that ψ_{i} is bounded.

By assumption, we can find a projective birational morphism $\pi: \tilde{X} \rightarrow X$, and an ample class $\tilde{\omega} \in \mathrm{N}^{1}(\tilde{X})$ such that $\tilde{\omega} \geq \pi^{\star} \omega$ and $(\tilde{X}, \tilde{\omega})$ has the envelope property. Now $\tilde{\tau}:=$ $\pi^{\star} \tau=\sup _{i} \pi^{\star} \psi_{i}$ with $\pi^{\star} \psi_{i} \in \operatorname{PSH}(\tilde{\omega})$, and it follows that $\tilde{\tau}^{\star}$ is $\tilde{\omega}$-psh, and coincides with $\tilde{\tau}=\sup _{i} \pi^{\star} \psi_{i}=\lim _{i} \sup \pi^{\star} \psi_{i}$ on $\tilde{X}^{\text {div. By BJ22a, Theorem 7.38], we get }\left(\pi^{\star} \omega, \pi^{\star} \psi_{i}\right)^{n+1} \rightarrow}$ $\left(\pi^{\star} \omega, \tilde{\tau}^{\star}\right)^{n+1}$. On the other hand, Lemma 3.1 yields

$$
\left(\pi^{\star} \omega, \pi^{\star} \psi_{i}\right)^{n+1}=\left(\omega, \psi_{i}\right)^{n+1}=(n+1) \operatorname{vol}(\omega) \mathrm{E}_{\omega}\left(\psi_{i}\right) \leq(n+1) \operatorname{vol}(\omega) \mathrm{E}_{\omega}(\tau),
$$

and we infer

$$
\begin{equation*}
\left(\pi^{\star} \omega, \tilde{\tau}^{\star}\right)^{n+1} \leq(n+1) \operatorname{vol}(\omega) \mathrm{E}_{\omega}(\tau) \tag{3.1}
\end{equation*}
$$

By BJ22a, Theorem 5.6] we also have $\tau^{\star}=\tau$ on $X^{\text {div }}$. Each $\psi \in \operatorname{PSH}(\omega)$ such that $\psi \leq \tau^{\star}$ on $X^{\text {an }}$ therefore satisfies $\psi \leq \tau$ on $X^{\text {div }}$ (see BJ22a, Theorem 5.6]); hence $\pi^{\star} \psi \leq \tilde{\tau} \leq \tilde{\tau}^{\star}$ on $\tilde{X}^{\text {div }}$, which implies $\pi^{\star} \psi \leq \tilde{\tau}^{\star}$ on $\tilde{X}^{\text {an }}$ (see BJ22a, Theorem 4.22]). Assuming ψ bounded, we get

$$
(\omega, \psi)^{n+1}=\left(\pi^{\star} \omega, \pi^{\star} \psi\right)^{n+1} \leq\left(\pi^{\star} \omega, \tilde{\tau}^{\star}\right)^{n+1}
$$

where the equality follows from Lemma 3.1, and the inequality from the monotonicity of the energy pairing, see BJ22a, Theorem 7.1]. Taking the supremum over ψ now yields

$$
(n+1) \operatorname{vol}(\omega) \mathrm{E}_{\omega}\left(\tau^{\star}\right) \leq\left(\pi^{\star} \omega, \tilde{\tau}^{\star}\right)^{n+1}
$$

Combined with (3.1), this implies $\mathrm{E}_{\omega}\left(\tau^{\star}\right) \leq \mathrm{E}_{\omega}(\tau)$, and the result follows.

References

[BE21] S. Boucksom, D. Eriksson. Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry. Adv. Math. 378 (2021), 107501.
[BFJ16] S. Boucksom, C. Favre and M. Jonsson. Singular semipositive metrics in non-Archimedean geometry. J. Algebraic Geom. 25 (2016), 77-139.
[BJ22a] S. Boucksom and M. Jonsson. Global pluripotential theory over a trivially valued field. To appear in Ann. Math. Fac. Toulouse. arXiv:1801.08229v4.
[BJ22b] S. Boucksom and M. Jonsson. A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations. arXiv:2107:11221v2.
[BJ22c] S. Boucksom and M. Jonsson. A non-Archimedean approach to K-stability, II: divisorial stability and openness. In preparation.
[ELMNP06] L. Ein, R. Lazarsfeld, M Mustaţǎ, M. Nakamaye, M. Popa. Asymptotic invariants of base loci. Ann. Inst. Fourier 56 (2006), 1701-1734.
[GJKM19] W. Gubler, P. Jell, K. Künnemann and M. Sombra. Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra). Ann. Inst. Fourier. 69 (2019), 2331-2776.

CNRS-CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France
Email address: sebastien.boucksom@polytechnique.edu
Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
Email address: mattiasj@umich.edu

