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Abstract. For any polarized variety (X,L), we show that test configurations and, more gen-
erally, R-test configurations (defined as finitely generated filtrations of the section ring) can be
analyzed in terms of Fubini–Study functions on the Berkovich analytification of X with respect
to the trivial absolute value on the ground field. Building on non-Archimedean pluripotential
theory, we describe the (Hausdorff) completion of the space of test configurations, with respect
to two natural pseudo-metrics, in terms of plurisubharmonic functions and measures of finite
energy on the Berkovich space. We also describe the Hausdorff quotient of the space of all
filtrations, and establish a 1–1 correspondence divisorial norms and divisorial measures, both
being determined in terms of finitely many divisorial valuations.
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Introduction

The notion of K-stability was introduced in complex differential geometry as a conjectural—
and now partially confirmed—algebro-geometric criterion for the existence of special Kähler
metrics. Lately, it has also become a subject in its own respect. In a series of two (largely
independent) papers of which this is the first, we show how global pluripotential theory over a
trivially valued field, as developed in [BoJ22a], can be used to study K-stability.

Let X be a projective variety (reduced and irreducible) of dimension n ≥ 1 over an alge-
braically closed field k (assumed to be of characteristic 0 in this introduction) , and L an ample
Q-line bundle on X. The definition of K-stability of the polarized variety (X,L), as given by
Donaldson [Don02], involves the sign of an invariant attached to (ample) test configurations for
(X,L). As shown in [BHJ17, BoJ22a], test configurations can be alternatively understood in
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2 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

terms of (rational) Fubini–Study functions on the Berkovich analytification Xan, and uniform
K-stability becomes a linear growth condition for the non-Archimedean K-energy on the set of
such functions.

Filtrations of the section ring of (X,L) provide another, widely used description of test con-
figurations; more precisely, the latter correspond to Z-filtrations of finite type [WN12, Szé15].
Recent works related to the Hamilton–Tian conjecture [CSW18, DeSz20, HL20, BLXZ21] have
emphasized the importance of considering more general R-test configurations, defined as R-
filtrations of finite type, and one first objective of this paper is to show that these can again
be understood as (real) Fubini–Study functions on Xan.

On the other hand, Chi Li’s recent breakthrough on the Yau–Tian–Donaldson conjecture for
cscK metrics [Li20] (based in part on the first version of the present paper) involves a stronger
form of uniform K-stability, formulated as a linear growth condition for the K-energy on the
space of functions of finite energy on Xan. The latter are obtained as limits of Fubini–Study
functions, and are the central topic of pluripotential theory on Xan [BoJ22a]. Building on the
latter technology, the second objective of this paper is to show how functions and measures of
finite energy can be used to describe the completion of the space of test configurations with
respect to a natural metric, leading to a picture that is quite similar to the well-developed
complex analytic case [Dar15a, DLR20].

From test configurations to Fubini–Study functions. Denote by NR the space of (de-

creasing, left-continuous, separated, exhaustive) filtrations of the section algebraR(d) = R(X, dL)

for d sufficiently divisible. It is convenient to view these as norms χ : R(d) → R ∪ {+∞}, for
which we use ‘additive’ terminology, see §1.1. A norm χ ∈ NR is of finite type if the associated
graded algebra is finitely generated. For any subgroup Λ ⊂ R, let NΛ ⊂ NR be the set of
norms with values in Λ ∪ {+∞}, and denote by

TR ⊂ NR and TΛ := TR ∩NΛ

the subsets of norms of finite type.
As is by now well-known (see [WN12, Szé15, BHJ17]), the Rees construction provides a

1–1 correspondence between TZ and the set of (ample) test configurations for (X,L). In line
with [DeSz20], we view TR as the space of R-test configurations. Any χ ∈ TR lies in TΛ for some
finitely generated subgroup Λ ' Zr, and χ can be geometrically realized as a Grm-equivariant
degeneration of (X,L) to a polarized scheme (see §A.3), which is further reduced iff χ is
homogeneous, in the sense that χ(sd) = dχ(s) for all d ∈ N.

The space NR comes equipped with a non-decreasing family (dp)1≤p≤∞ of natural pseudo-
metrics. By [BE21], the space NR(V ) of norms on any finite dimensional vector space V is
indeed endowed with a metric dp for any p ∈ [1,∞], the distance between two norms being
the `p-length of their relative spectrum, defined by joint diagonalization in some basis. For
p = 2, this is the classical Tits metric of NR(V ) as a Euclidean building, whose relevance to
K-stability was already emphasized in [Oda15, Cod19].

Any χ ∈ NR restricts to a norm on Rm := H0(X,mL) for all m sufficiently divisible, and we
define the pseudometric dp on NR by setting

dp(χ, χ
′) := lim sup

m
m−1 dp(χ|Rm , χ′|Rm),

where the limsup is actually a limit for p < ∞, by [BC11, CM15, BHJ17]. The Lp-norm of a
test configuration in TZ, as in [Don02, Szé15, BHJ17], can be computed using dp.

The pseudo-metric dp is not a metric, even after restriction to TΛ, and our first main result
describes the Hausdorff quotient of (TΛ, dp) as a natural space of functions on the Berkovich
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analytification of X (with respect to the trivial absolute value on k). Recall that the latter is
a compact Hausdorff topological space Xan, whose elements are semivaluations v on X, i.e.
R-valued valuations on the function field of some subvariety of X, trivial on k. The space Xan

contains as a dense subset the space Xdiv of divisorial valuations on X, induced (up to scaling)
by a prime divisor on a birational model of X.

For any v ∈ Xan and any section s of a line bundle on X, we can define v(s) ∈ [0,+∞] by

trivializing the line bundle at the center of v, and setting |s|(v) := e−v(s) defines a continuous
function |s| : Xan → [0, 1]. Given a subgroup Λ ⊂ R, a Λ-Fubini–Study function for L is a
function ϕ ∈ C0 = C0(Xan) of the form

ϕ = 1
m max

j
{log |sj |+ λj},

where m ≥ 1 is sufficiently divisible, (sj) is a finite set of sections of mL without common
zeroes, and λj ∈ Λ.

The set HΛ ⊂ C0 of Λ-Fubini–Study functions is stable under max and the action of Λ by
translation, and satisfies HΛ = HQΛ. It is related to the space TΛ of Λ-test configurations by
the Fubini–Study operator, a surjective map

FS: TΛ → HΛ

that associates to χ ∈ TΛ the Fubini–Study function FS(χ) = m−1 maxj{log |sj | + χ(sj)},
where (sj) is any χ-orthogonal basis of Rm for m sufficiently divisible. Viewed as a map from
(usual) test configurations to Fubini–Study functions, FS: TZ → HZ = HQ is compatible with
the one constructed and studied in [BHJ17, BoJ22a] (see Appendix A).

Theorem A. For any polarized variety (X,L), any subgroup Λ ⊂ R and p ∈ [1,∞], the Fubini–
Study operator identifies the Hausdorff quotient of the pseudo-metric space (TΛ, dp) with HΛ.
For p =∞, the induced metric d∞ on HΛ further coincides with the supnorm metric.

It is enough to prove this for Λ = R. Let us first describe the case p =∞. The restrictions
χ|Rd of any norm χ ∈ NR generate a sequence of canonical approximants χd ∈ TR, which allows
us to extend the Fubini–Study operator to a map

FS: NR → L∞

into the space of bounded functions on Xan, by setting FS(χ) := limd FS(χd). On the other
hand, any ϕ ∈ L∞ defines an infimum norm IN(ϕ) ∈ NR, the avatar of the usual supnorm
supXan |s|e−mϕ on Rm in our additive terminology. This defines an operator

IN: L∞ → N hom
R

into the space of homogeneous norms. Using standard but nontrivial results in non-Archimedean
geometry, we show that:

• the composition IN ◦FS: NR → N hom
R coincides with the homogenization operator

χ 7→ χhom, where χhom(s) = limr→∞ r
−1χ(sr), which corresponds to the spectral radius

construction in the usual ‘multiplicative’ terminology;
• homogenization preserves the finite type condition, and hence maps TR onto T hom

R :=

TR ∩N hom
R ;

• on TR, both the Fubini–Study operator and the pseudo-metric d∞ factor through ho-
mogenization.

These results imply that FS: (TR,d∞)→ (HR, d∞) is a surjective isometry, which restricts to
an isometric isomorphism (T hom

R , d∞) ' (HR, d∞), where d∞ on HR is the supnorm metric;
this settles Theorem A for p =∞.
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For any p ∈ [1,∞), we have d1 ≤ dp ≤ d∞ as pseudo-metrics on NR. By the previous step,
the restriction of d∞ to TR factors through the Fubini–Study operator. Thus dp |TR descends to
a pseudo-metric on HR, and Theorem A asserts that it is a metric, i.e. that it separates points.
It is enough to prove this for p = 1, which is accomplished via an explicit expression for d1 in
terms of the Monge–Ampère energy, analogous to the known expression for the Darvas metric
in the complex analytic case [Dar15b].

Our approach is based on the close relation of the d1-pseudometric on NR to the volume of
a norm χ ∈ NR, defined as the limit

vol(χ) = lim
m
m−1 vol(χ|Rm) ∈ R,

where vol(χ|Rm) is the barycenter of the spectrum of χ|Rm . Indeed, for all χ, χ′ ∈ NR, we have

d1(χ, χ′) = vol(χ) + vol(χ′)− 2 vol(χ ∧ χ′),
with χ ∧ χ′ ∈ NR the pointwise min of χ and χ′. When χ ∈ TZ corresponds to a test configu-
ration (X ,L) → A1, with canonical compactification (X̄ , L̄) → P1, it was proved in [BHJ17],
using the Riemann–Roch formula, that

vol(χ) =
(L̄n+1)

(n+ 1)(Ln)
,

where the right-hand side is also, by definition, the Monge–Ampère energy E(ϕ) of ϕ :=

FS(χ) ∈ HQ. Setting Ẽ(ϕ) := sup{E(ψ) | ϕ ≥ ψ ∈ HQ} defines the extended energy functional

Ẽ : C0 → R, and an approximation argument based on Okounkov bodies leads to the key

formula vol(χ) = Ẽ(FS(χ)), which implies

d1(χ, χ′) = E(ϕ) + E(ϕ′)− 2 Ẽ(ϕ ∧ ϕ′)
for all χ, χ′ ∈ HR, where ϕ = FS(χ), ϕ′ = FS(χ′). The right-hand side thus defines a pseudo-
metric d1 on HR, and a result of [BoJ22a] allows us to show that it separates points, thereby
finishing the proof of Theorem A. This formula also characterizes the metric d1 on HR as the
unique one such that d1(ϕ,ϕ′) = infϕ′′≤ϕ,ϕ′{d1(ϕ,ϕ′′) + d1(ϕ′′, ϕ′)} for all ϕ,ϕ′ ∈ HR, and
d1(ϕ,ϕ′) = E(ϕ)− E(ϕ′) when ϕ ≥ ϕ′.

Darvas metrics on functions and measures of finite energy. By Theorem A, the
Hausdorff completion of (TR, dp) can be identified with the completion of the metric space
(HR,dp). When p = ∞, this is simply the closure of HR ⊂ C0 in the topology of uniform
convergence, which is, by definition, the space CPSH of continuous L-psh functions (in line
with [Zha95, Gub98]).

For a norm χ ∈ NR, FS(χ) lies in CPSH as soon as it is continuous (by Dini’s lemma);
we show that the set N cont

R ⊂ NR of such norms coincides with the d∞-closure in NR of the
set TZ of (ample) test configurations, and that it is a strict subset (except in the trivial case
dimX = 0, see §2.5).

Our next goal is to describe the completion of (HR,d1). The answer relies on global pluripo-
tential theory over a trivially valued field, as developed in [BoJ22a] (inspired in part by the
discretely valued case studied in [BFJ16]). Let us briefly describe the salient points of this
theory.

Inspired by the complex analytic case, we define an L-psh function ϕ : Xan → R ∪ {−∞}
as an upper semicontinuous (usc) function that can be written as the limit of a decreasing
sequence (or net) in HR (or HZ = HQ), excluding ϕ ≡ −∞. Such functions are uniquely
determined by their restrictions to Xdiv ⊂ Xan, which are further finite valued, and we equip
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the space PSH of L-psh functions with the topology of pointwise convergence onXdiv. By Dini’s
Lemma, the space of continuous L-psh functions CPSH considered above can be described as
CPSH = PSH∩C0.

The Monge–Ampère energy E admits a unique usc, monotone increasing extension

E: PSH→ R ∪ {−∞},
given by E(ϕ) = inf{E(ψ) | ϕ ≤ ψ ∈ CPSH}, and the space of L-psh functions of finite energy
is defined as

E1 := {E > −∞} ⊂ PSH .

A function in E1 is thus a decreasing limit of functions in HQ with bounded energy. The space
E1 is endowed with the strong topology, defined as the coarsest refinement of the subspace
topology from PSH ⊃ E1 for which E: E1 → R is continuous. Any decreasing net in E1 is
strongly convergent, and HQ is thus dense in E1 in the strong topology.

To each ϕ ∈ E1 is associated a Monge–Ampère measure MA(ϕ), a (Radon) probability
measure on Xan that integrates functions in E1. When ϕ ∈ HQ, MA(ϕ) has finite support
in Xdiv, and can be described using intersection numbers computed on the central fiber of an
associated test configuration. The Monge–Ampère operator ϕ 7→ MA(ϕ) is continuous on E1

in the strong topology, and characterized as the derivative of E, i.e.

d

dt

∣∣∣∣
t=0

E ((1− t)ϕ+ tψ) =

ˆ
Xan

(ψ − ϕ) MA(ϕ)

for all ϕ,ψ ∈ E1. It takes its values in the space M1 of measures of finite energy, i.e. Radon
probability measures µ on Xan for which the Legendre transform

E∨(µ) := sup
ϕ∈E1
{E(ϕ)−

ˆ
ϕdµ} ∈ [0,+∞]

is finite. In analogy to the complex analytic case [BBGZ13], the variational approach of [BoJ22a]
shows that µ = MA(ϕ) with ϕ ∈ E1 iff ϕ achieves the supremum that defines E∨(µ).

The space M1 also comes with a strong topology, the coarsest refinement of the weak
topology of measures such that E∨ : M1 → R≥0 is continuous. A key result of [BoJ22a] shows
that the Monge–Ampère operator induces a topological embedding with dense image

MA: E1/R ↪→M1

(with respect to the strong topologies), which is further onto iff the envelope property holds for
(X,L). The latter important property has several equivalent formulations, including the com-
pactness of the quotient space PSH /R (a fundamental fact in the setting of compact complex
manifolds); it is established when X is smooth, using multiplier ideals, and we conjecture that
it holds as long as X is normal (or merely unibranch, which is in turn a necessary condition).

The Monge–Ampère operator naturally induces a map MA: TR →M1 by setting MA(χ) :=
MA(FS(χ)); as mentioned above, when χ ∈ TZ, the measure MA(χ) has finite support in Xdiv,
and can be directly described in terms of intersection numbers on (the integral closure of) the
test configuration corresponding to χ.

With these preliminaries in hand, we can now state:

Theorem B. For any polarized variety (X,L), the following holds:

(i) there exists a unique metric d1 on E1 that defines the strong topology and extends the
metric d1 on HR ⊂ E1;

(ii) there exists a unique metric d1 on M1 that defines the strong topology and induces the
quotient metric of d1 on E1/R ↪→M1;
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(iii) the metric space (M1,d1) is always complete, while (E1, d1) is complete iff the envelope
property holds for (X,L);

(iv) the Monge–Ampère operator MA: TR →M1 uniquely extends to an isometry

MA: (NR/R, d1)→ (M1, d1),

where d1 denotes the quotient pseudometric of d1.

In particular, the Monge–Ampère operator realizes M1 as the Hausdorff completion of
(TR/R,d1), while E1 is the Hausdorff completion of (TR,d1) iff the envelope property holds,
e.g. when X is smooth (see also [DX20] for an approach based on geodesic rays, when k = C).

We call the metric d1 on E1 the Darvas metric; its complex analytic analogue, introduced
by T. Darvas [Dar15b], plays a crucial role in global pluripotential theory, and in particular
in the variational approach to the Yau–Tian–Donaldson conjecture [BBJ21, Li19, Li20]. The
space E1 is studied over more general non-Archimedean fields in [Reb20], where it is shown
that (E1,d1) is a geodesic metric space (assuming the envelope property). In analogy with the
complex analytic case [Dar15a, DLR20], we expect that, for any p ∈ [1,∞), the completion of
(HR,dp) can be identified with the space

Ep :=
{
ϕ ∈ E1 | ϕ ∈ Lp(MA(ϕ))

}
,

assuming the envelope property.

Among other things, the proof of Theorem B is based on a precise comparison between d1

and quasi-metrics on E1 and M1 studied in [BoJ22a], using estimates that ultimately derive
from the Hodge Index Theorem. By construction, MA: (TR/R, d1)→ (M1, d1) is an isometry,
and (iv) is thus a consequence of (iii) and the d1-density of TZ in NR, which we prove using
Okounkov bodies (see Corollary 3.19).

If χ ∈ N cont
R is a continuous norm, then FS(χ) ∈ CPSH ⊂ E1, and MA(χ) = MA(FS(χ)).

If the envelope property holds for (X,L), then the usc regularization FS?(χ) lies in E1 for
any norm χ ∈ NR, and MA(χ) = MA(FS?(χ)). In this case, we get a surjective isometry
FS? : (NR, d1) → (E∞↑ , d1), where E∞↑ is the set of L-psh functions that are regularizable from
below, i.e. limits in PSH of an increasing net in CPSH. This realizes E∞↑ as the Hausdorff

quotient of NR. We emphasize, however, that (iv) is valid even without assuming the envelope
property for (X,L).

Finally, we show that the functional χ 7→ ‖χ‖ := E∨(MA(χ)) on NR extends (up to a nor-
malization constant) the minimum norm of a test configuration in the sense of Dervan [Der16].

Divisorial norms and maximal norms. The set Xval of valuations on the function field of
X, trivial on k, is a dense subset of Xan. Following [BKMS15] we say that v ∈ Xval is of linear
growth if there exists C > 0 such that v(s) ≤ Cm for all nonzero sections s ∈ Rm = H0(X,mL)
with m sufficiently divisible. In terms of pluripotential theory, the set X lin ⊂ Xval of valuations
of linear growth coincides with the set of points v ∈ Xan that are non-pluripolar, i.e. such that
every ϕ ∈ PSH is finite at v; in particular, it contains the set Xdiv of divisorial valuations.

Any v ∈ X lin defines a (homogeneous) norm χv ∈ N hom
R , simply by setting χv(s) := v(s).

We say that a norm χ ∈ NR is divisorial if it is of the form χ = mini{χvi+ci} for a finite set (vi)
in Xdiv and ci ∈ R. We denote by N div

R the set of divisorial norms, and by N div
Q := N div

R ∩NQ
the subset of rational divisorial norms, for which the ci can be chosen in Q. The latter contains
the homogenization χhom of any ample test configuration χ ∈ TZ, and N div

Q can alternatively

be described in terms of norms associated to (possibly non-ample) test configurations (see
Theorem A.10).
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On the other hand, we define a divisorial measure as a Radon probability measure µ on
Xan with support a finite subset of Xdiv, i.e. µ =

∑
imiδvi for a finite subset (vi) of Xdiv

and mi ∈ R>0 such that
∑

imi = 0. The set Mdiv ⊂ M1 of divisorial measures is thus

the convex hull of the image of the canonical embedding Xdiv ↪→ M1 v 7→ δv. For any test
configuration χ ∈ TZ, the norm χhom and the measure MA(χ) = MA(χhom) are both divisorial.
More generally, we show:

Theorem C. The Monge–Ampère operator induces an isometric isomorphism

MA: (N div
R /R,d1)

∼→ (Mdiv,d1).

We emphasize that the envelope property is not assumed here. In the companion pa-
per [BoJ22c], divisorial measures are used to define the notion of divisorial stability, which
implies (and is conjecturally equivalent to) uniform K-stability. Theorem C enables us to view
divisorial stability as a condition on divisorial norms, and leads to the equivalence between
divisorial stability and uniform K-stability with respect to norms/filtrations.

The proof of Theorem C is based on the variational approach to (non-Archimedean) Monge–
Ampère equations developed in [BoJ22a], recast in terms of norms.

Recall that the space of norms NR is equipped with pseudometrics (dp)p∈[1,∞], such that
d1 ≤ dp ≤ d∞. For χ, χ′ ∈ NR, the condition dp(χ, χ

′) = 0 is independent of p < ∞; we
say that χ and χ′ are asymptotically equivalent when this holds. While d∞ becomes a metric
upon restriction to the space N hom

R of homogeneous norms, this is still not the case for dp with
p < ∞, and our next goal is to introduce a canonical maximal subspace on which dp does
become a metric.

To this end, we introduce the class Nmax
R ⊂ N hom

R of maximal norms, of the form χ =
infv∈Xdiv{χv+cv} for a bounded family of constants (cv)v∈Xdiv . Any divisorial norm is maximal,
and maximal norms can alternatively be characterized as decreasing limits of divisorial norms.
We further show that any norm χv with v ∈ X lin is maximal.

The following result accounts for the chosen terminology.

Theorem D. Any norm χ ∈ NR is asymptotically equivalent to a unique maximal norm
χmax ∈ Nmax

R , characterized as the largest norm in the asymptotic equivalence class of χ. In
particular, for any p ∈ [1,∞), the restriction of the pseudometric dp to Nmax

R is a metric, and
Nmax
R is maximal in NR for this property.

To prove this result, we first construct a projection χ 7→ χmax onto Nmax
R , by setting χmax :=

infv∈Xdiv{χv + FS(χ)(v)}, and show that χmax = χ′max iff FS(χ) = FS(χ′) on Xdiv. Using
Monge–Ampère estimates from [BoJ22a], we show that this holds if χ ∼ χ′. Conversely, we
need to show χ ∼ χmax. Since FS(χ) = supd FS(χd) is an envelope of L-psh functions, it
follows from [BoJ22a, BoJ22b] that FS(χ) = FS?(χ) on Xdiv, and

vol(χ) = Ẽ(FS(χ)) = Ẽ(FS?(χ)) ≥ vol(χmax).

This yields the result, since χ ≤ χmax implies d1(χ, χmax) = vol(χmax)− vol(χ).
As before, Theorem D does not assume the envelope property, but the proof exploits it

through the use of resolution of singularities, see [BoJ22a, Theorem 5.20].

Valuations of linear growth. Finally we use the results above to study the structure of the
space X lin of valuations of linear growth, which we can endow with several metrics.
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First, from the embedding X lin ↪→ NR given by v 7→ χv we get a family of (pseudo)metrics
dp, 1 ≤ p ≤ ∞. Denoting by vtriv ∈ Xdiv the trivial valuation, we have in particular

d∞(v, vtriv) = T(v), d1(v, vtriv) = S(v)

where S(v) := vol(χv) is the expected vanishing order of L along v, widely used in relation to the
stability threshold/δ-invariant [Fuj19a, Li17, BlJ20]. The invariant dp(v, vtriv) with v ∈ Xdiv

also appears (under a slightly different guise) in [Zha20].
Second, a valuation is of linear growth iff the Dirac mass δv is a measure of finite energy,

and in fact we have
E∨(δv) = S(v)

for any v ∈ X lin, see Theorem 7.22. In particular, we have an embedding X lin ↪→M1. Denote
by dM1 the pullback of the metric d1 on M1 to X lin.

Corollary E. The pseudo-metric dp on X lin is an actual metric for 1 ≤ p ≤ ∞. Further, the

metrics dM1 and dp, 1 ≤ p ≤ ∞, on X lin are equivalent and complete, and they are independent
of L up to bi-Lipschitz equivalence.

Completeness with respect to d∞, as well as independence of L, was already observed
in [BoJ22a], and the key point is thus to show d∞ ≤ C dM1 , which is done by invoking
inequalities involving Monge–Ampère integrals, as in the proof of Theorem A (see §7.6 for
details).

In [BoJ22c] we use the space M1 and its subspace Mdiv to analyze K-stability. When X
is a Fano variety, restricting to Dirac masses δv ∈ M1, with v in X lin or Xdiv, recovers the
valuative criterion of K-stability of Fano varieties due to Fujita and Li [Fuj19a, Li17].

An interesting type of valuations v ∈ X lin are those for which the associated filtration χv
is of finite type. If v ∈ Xdiv, this means v is ‘dreamy’ in the sense of K. Fujita [Fuj19a],
associated to a test configuration with irreducible and reduced central fiber. While valuations
v ∈ X lin with χv of finite type play a crucial role in recent work on K-stability of Fano
varieties [BLX19, BLZ19, BLXZ21, BX20, LX20, HL20], their role in the general polarized
case is less clear (although see [DeL20, Liu21]). The condition of χv being of finite type is
quite subtle and in particular depends on the ample Q-line bundle L. For this reason we
believe that it is useful to study K-stability using functionals on spaces such as Xdiv, X lin,
Mdiv or M1, without any finite type assumption.

Organization. After giving some background in §1, we study homogenization and the related
Fubini–Study and infimum norm operators in §2, proving part of Theorem A. In §3 we make
a spectral analysis of norms on the section ring of (X,L), building upon [CM15, BE21]. After
that we give additional background on non-Archimedean pluripotential theory from [BoJ22a];
in particular we revisit the spaces used in Theorem B. In §5 we construct and study the Darvas
metrics on E1 and M1, and prove the remaining part of Theorem A as well as parts (i)–(iii)
of Theorem B. The classes of divisorial and maximal norms are studied in §6, where we prove
Theorem C and also consider the regularized Fubini–Study operator. In §7 we define the
Monge–Ampère operator on general norms, and prove Theorem C as well as Theorem B (iv)
and Corollary E. Finally, Appendix A revisits the relation between test configurations and
Fubini–Study functions, and Appendix B provides some remarks on the toric case.

Notation and conventions.

• We work over an algebraically closed field k, of arbitrary characteristic unless otherwise
specified.
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• For x, y ∈ R+, x . y means x ≤ Cny for a constant Cn > 0 only depending on n, and
x ≈ y if x . y and y . x. Here n will be the dimension of a fixed variety X over k.
• A pseudo-metric on a set Z is a function d : Z×Z → R+ that is symmetric, vanishes on

the diagonal, and satisfies the triangle inequality. It is a metric if it further separates
points.
• The Hausdorff quotient of a pseudo-metric space (Z, d) is the metric space (ZH , dH)

where ZH is the quotient of Z by the equivalence relation x ∼ y ⇔ d(x, y) = 0, and
dH is the induced metric. The map (Z, d) → (ZH , dH) is the unique isometric map of
(Z, d) onto a metric space, up to unique isomorphism.
• The Hausdorff completion of a pseudo-metric space (Z, d) is the complete metric space

(Ẑ, d̂) defined as the completion of the Hausdorff quotient (ZH , dH). It comes with

an isometric map (Z, d)→ (Ẑ, d̂) with dense image, which is universal with respect to
maps into complete metric spaces.
• A quasi-metric on Z is function d : Z × Z → R+ that is symmetric, vanishes precisely

on the diagonal, and satisfies the quasi-triangle inequality

εd(x, y) ≤ d(x, z) + d(z, y)

for some constant ε > 0. A quasi-metric space (Z, d) comes with a Hausdorff topology,
and even a uniform structure. In particular, Cauchy sequences and completeness make
sense for (Z, d). Such uniform structures have a countable basis of entourages, and are
thus metrizable, by general theory.
• We use the standard abbreviations usc for ‘upper semicontinuous’, lsc for ‘lower semi-

continuous’, wlog for ‘without loss of generality”, and iff for ‘if and only if’.
• A net is a family indexed by a directed set. On many occasions we shall consider nets

(xd) indexed by d0Z≥1 for some d0 ≥ 1, and ordered by divisibility. Note that the
sequence (xm!)m≥d0 is cofinal in this net.

Acknowledgment. We thank E. Bedford, R. Berman, H. Blum, G. Codogni, T. Darvas, R. Der-
van, A. Ducros, C. Favre, T. Hisamoto, C. Li, J. Poineau and M. Stevenson for fruitful dis-
cussions and useful comments. The first author was partially supported by the ANR grant
GRACK. The second author was partially supported by NSF grants DMS-1600011, DMS-
1900025, DMS-2154380, and the United States—Israel Binational Science Foundation.

1. Background

In the entire paper, (X,L) denotes a projective variety (reduced and irreducible) endowed
with an ample Q-line bundle. We review a number of basic facts about norms/filtrations and
Berkovich analytification, referring for instance to [BE21, BoJ22a] for more details.

1.1. Norms on a vector space. As in [BT72] we will use ‘additive’ terminology, so by a
norm on a k-vector space V we mean a function χ : V → R ∪ {+∞} such that

• χ(v) = +∞ iff v = 0;
• χ(av) = χ(v) for a ∈ k× and v ∈ V ; and
• χ(v + w) ≥ min{χ(v), χ(w)} for all v, w ∈ V .

Note that ‖ · ‖χ := e−χ(·) is then a non-Archimedean norm on V with respect to the trivial
absolute value on k in the usual (‘multiplicative’) sense [BGR]. Setting

F λV := {v ∈ V | χ(v) ≥ λ}, χ(v) := max{λ ∈ R | v ∈ F λV }
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for λ ∈ R yields a 1–1 correspondence between norms on V and (non-increasing, left-continuous,

exhaustive and separated) filtrations of V . We also write F>λV :=
⋃
λ′>λ F

λ′V = {χ > λ},
and define the associated graded space as the R-graded vector space

grχ V :=
⊕
λ∈R

F λV/F>λV.

Each norm χ on V turns it into a (Hausdorff) topological vector space, in which (FmεV )m∈N
forms a countable basis of (open and closed) neighborhood of 0, for any ε > 0. The normed

space (V, χ) admits a completion V̂ , a complete topological vector space containing V as a

dense subspace, whose topology is defined by a (unique) norm on V̂ extending χ. The inclusion

V ↪→ V̂ induces an isomorphism
grχ V

∼→ grχ V̂ . (1.1)

We denote by NR(V ) the set of norms on V . It has a distinguished element χtriv, the trivial
norm, such that χtriv(v) = 0 for all v 6= 0, and it admits a scaling action by R>0 and a partial
ordering defined by χ ≤ χ′ iff χ(v) ≤ χ′(v) for all v. Any two elements χ, χ′ ∈ NR(V ) admit
an infimum χ ∧ χ′ ∈ NR(V ), defined pointwise by

(χ ∧ χ′)(v) := min{χ(v), χ′(v)}.
For any subgroup Λ ⊂ R, we denote by NΛ(V ) the set of norms with values in Λ ∪ {+∞}.
Thus

{χtriv} = N{0}(V ) ⊂ NΛ(V ) ⊂ NR(V ).

A norm χ ∈ NR(V ) lies in NΛ(V ) iff the R-grading of grχ V reduces to a Λ-grading.

Assume now that V is finite dimensional. Any norm χ on V admits an orthogonal basis (ei),
i.e. a basis of V such that

χ(
∑
i

aiei) = min
ai 6=0

χ(ei)

for all ai ∈ k. Up to reordering, an orthogonal basis is simply a compatible basis for the flag
of linear subspaces underlying the filtration defined by χ, and elementary linear algebra thus
implies that any two norms χ, χ′ on V admit a joint orthogonal basis.

In particular, all norms on V are equivalent, which means, in our additive terminology, that
χ−χ′ is a bounded function on V \ {0} for all χ, χ′ ∈ NR(V ). The classical Goldman–Iwahori
metric on NR(V ) is defined by

d∞(χ, χ′) = sup
v∈V r{0}

∣∣χ(v)− χ′(v)
∣∣ , (1.2)

where the supremum is achieved among the elements of any joint orthogonal basis for χ and
χ′. For later use, note that

χ ≤ χ′ ≤ χ′′ =⇒ d∞(χ, χ′) ≤ d∞(χ, χ′′). (1.3)

The metric space (NR(V ),d∞) is complete, but not locally compact as soon as dimV ≥ 2.
Note also that NZ(V ) is a closed, discrete subset of NR(V ), while NQ(V ) is dense. For any
χ ∈ NR(V ), we set

λmin(χ) := min
v∈V r{0}

χ(v), λmax(χ) := max
v∈V r{0}

χ(v). (1.4)

Thus
d∞(χ, χtriv) = max{λmax(χ),−λmin(χ)}.

Any norm χ on V induces a norm on the dual space and on all tensor powers, in such a way
that the bases canonically induced by any given orthogonal basis of V remain orthogonal. If



A NON-ARCHIMEDEAN APPROACH TO K-STABILITY I 11

π : V → V ′ is a surjective linear map, then χ also induces a quotient norm χ′ on V ′, such that
χ′(v′) = max{χ(v) | π(v) = v′} for all v′ ∈ V ′.

1.2. Norms on a graded algebra. Let now R =
⊕

m∈NRm be a graded k-algebra. It comes
with an action of k× for which a · s = ams for a ∈ k× and s ∈ Rm. We write NR(R) for the
set of vector space norms χ : R→ R that are

• superadditive, i.e. χ(fg) ≥ χ(f) + χ(g) for f, g ∈ R;
• k×-invariant, i.e. χ(a · f) = χ(f) for a ∈ k× and f ∈ R; this is equivalent to χ being

compatible with the grading of R, that is, χ(
∑

m sm) = minm χ(sm) where sm ∈ Rm;
• linearly bounded, i.e. there exists C > 0 such that |χ| ≤ Cm on Rm \ {0} for all m ≥ 1.

Norms in NR(R) are in 1–1 correspondence with graded, linearly bounded filtrations of R as
in [BC11, WN12]. Each χ ∈ NR(R) defines a graded algebra

grχR =
⊕
m∈N

grχRm =
⊕

(m,λ)∈N×R

F λRm/F
>λRm.

Lemma 1.1. A norm χ ∈ NR(R) is a valuation on R, i.e. it satisfies χ(fg) = χ(f) +χ(g) for
all f, g ∈ R, iff grχR is an integral domain.

The set NR(R) ↪→
∏
mNR(Rm) is stable under the scaling action of R>0 and infima; it

further admits an additive action of R, denoted by (c, χ) 7→ χ+ c, such that

(χ+ c)(s) := χ(s) + cm for s ∈ Rm. (1.5)

For any subgroup Λ ⊂ R, denote by NΛ(R) ⊂ NR(R) the set of norms with values in Λ∪{+∞}.
Norms in NZ(R) and NQ(R) will be called integral and rational, respectively. Integral norms
are in 1–1 correspondence with Z-filtrations, as considered in [Szé15].

For any norm χ ∈ NR(R), the round-down bχc ∈ NZ(R), defined by

bχc(s) := bχ(s)c, s ∈ Rm \ {0}, (1.6)

is an integral norm.

Example 1.2. Consider the algebra k[z] = k[z1, . . . , zn] of polynomials in n variables, with
the usual grading. For each ξ ∈ Rn, the monomial valuation

χξ(
∑
α∈Nn

cαz
α) = min

cα 6=0
〈α, ξ〉 = min

α
{vtriv(cα) + 〈α, ξ〉} (1.7)

defines a norm on the graded algebra k[z]. The completion of (k[z], χξ) is the algebra k{z; ξ}
of formal power series

∑
α cαz

α ∈ k[[z]] such that limα(vtriv(cα) + 〈α, ξ〉) = +∞, whose norm is
still defined by (1.7). In multiplicative notation, k{z; ξ} is the polydisc algebra k{r−1z}, with
rj = e−ξj , a building block of Berkovich spaces [Berk90, Berk93].

From now on, we assume that R is finitely generated, so that each graded piece Rm is finite
dimensional.

Definition 1.3. We say that a norm χ ∈ NR(R) is generated in degree 1 if R is generated in
degree 1 and, for any m ≥ 1, the restriction χ|Rm is the quotient norm of Sm(χ|R1) under the
canonical surjective map SmR1 → Rm.

Concretely, χ is generated in degree 1 iff, given a χ-orthogonal basis (si) of R1, any s ∈ Rm
can be written as s =

∑
|α|=m cα

∏
i s
αi
i with cα ∈ k and χ(s) = mincα 6=0

∑
i αiχ(si).

Lemma 1.4. For any subgroup Λ ⊂ R and χ ∈ NΛ(R), the following conditions are equivalent:
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(i) χ is generated in degree 1;
(ii) grχR =

⊕
m∈N grχRm is generated in degree 1;

(iii) there exists ξ ∈ ΛN and a surjective map of graded k-algebras π : k[z1, . . . , zN ] → R
with respect to which χ is the quotient norm of χξ as in Example 1.2.

When this holds, we further have χ ∈ NΛ′(R) for some finitely generated subgroup Λ′ ⊂ Λ.

Proof. Assume (i). Choose a χ-orthogonal basis (si)1≤i≤N of R1, and set ξi := χ(si). As noted
above, any s ∈ Rmr {0} can be written as s =

∑
|α|=m cα

∏
i s
αi
i with χ(s) = mincα 6=0

∑
i αiξi.

This already yields the final assertion, with Λ′ :=
∑

i Zξi.
Define A as the set of α achieving mincα 6=0

∑
i αiξi = χ(s) and set s′ :=

∑
α∈A cα

∏
i s
αi
i .

Then s − s′ ∈ F>χ(s)Rm, so s = s′ in grχRm. This shows that Sm grχR1 → grχRm is
surjective, and hence (i)⇒(ii). If we define π : k[z] → R by π(zi) = si, then it is clear that χ
is the quotient norm of χξ with ξ = (ξi), hence (i)⇒(iii).

Conversely, any quotient of a norm generated in degree 1 is plainly generated in degree 1 as
well; hence (iii)⇒(i). Assume now (ii), and pick again a χ-orthogonal basis (si) of R1. Each s ∈
Rm r {0} can then be written as s =

∑
|α|=m aα

∏
i s
αi
i + s′ where aα ∈ k×, χ(s) =

∑
i αiχ(si)

for all α and s′ ∈ F>χ(s)Rm. Repeating the procedure with s′ in place of s and using the fact
that λ 7→ F λRm jumps only finitely many times (by finite-dimensionality of Rm), we end up
with a decomposition s =

∑
|α|=m cα

∏
i s
αi
i such that χ(s) = mincα 6=0

∑
i αiχ(si). This proves

that χ is generated in degree 1, thus (ii)⇒(i). �

1.3. Norms on section rings. Recall that L is an ample Q-line bundle on a projective variety
X. For any d ∈ N such that dL is an actual line bundle, we write Rd := H0(X, dL), and denote
by

R(d) = R(X, dL) =
⊕
m∈N

Rmd

the d -th Veronese algebra, i.e. the section ring of dL; it is generated in degree 1 for all d
sufficiently divisible, since L is ample. When d divides d′, we have a restriction mapNR(R(d))→
NR(R(d′)), and we set

NR = NR(X,L) := lim−→
d

NR(R(d)). (1.8)

The set NR inherits a partial order with finite infima, and commuting actions of R>0 (by
scaling) and R (by translation).

An element χ ∈ NR is represented by a norm on some R(d), two such norms being identified
if they coincide on some further Veronese subalgebra; for convenience, we simply refer to χ as
a norm. For all m sufficiently divisible, we denote by χ|Rm ∈ NR(Rm) the restriction of χ to
Rm.

Remark 1.5. To define χ|Rm, one needs to choose a representative of χ as a norm on some

R(d). But any other choice leads to the same norms χ|Rm ∈ NR(Rm) for m sufficiently divisible,
and the choice of representative can thus safely be ignored.

For any subgroup Λ ⊂ R, we similarly introduce

NΛ := lim−→
d

NΛ(R(d)).

It can be identified with the set of χ ∈ NR such that χ(Rm \ {0}) ⊂ Λ for m sufficiently
divisible. Note that NΛ is invariant under the scaling action of {t ∈ R>0 | tΛ ⊂ Λ} and the
translation action of the divisible group QΛ ⊂ R, by (1.5).
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Example 1.6. Any (not necessarily ample) test configuration (X ,L)/A1 defines a norm χL ∈
NZ (see §A.1). In this case, the translation action by c ∈ Q corresponds to twisting L by cX0,
while the scaling action by d ∈ Z>0 corresponds to the base change A1 → A1 given by z 7→ zd.

The Goldman–Iwahori metric (1.2) induces a pseudo-metric d∞ on NR by setting

d∞(χ, χ′) := lim sup
m

m−1 d∞(χ|Rm , χ′|Rm) ∈ R≥0 (1.9)

The limsup is taken with respect to the partial ordering on Z>0 by divisibility, and it is finite, by
linear boundedness of χ, χ′. This pseudo-metric is not a metric (see however Proposition 2.8):

Example 1.7. Pick any norm χ ∈ NR, with round-down bχc ∈ NZ, see (1.6). For m suffi-
ciently divisible, we then have d∞(χ|Rm , bχc|Rm) ≤ 1, and hence d∞(χ, bχc) = 0. In particular,
NZ is dense in NR in the d∞-topology.

We also introduce
λmax(χ) := lim

m
m−1λmax(χ|Rm), (1.10)

where λmax(χ|Rm) is defined by (1.4) and the limit exists and is finite because m−1λmax(χ|Rm)
is increasing with respect to divisibility, and bounded by linear boundedness of χ. Note that

χ ≥ χtriv =⇒ d∞(χ, χtriv) = λmax(χ). (1.11)

1.4. R-test configurations.

Definition 1.8. We say that a norm χ ∈ NR is of finite type if it is represented by a norm
on some R(d) whose associated graded algebra grχR

(d) is of finite type.

Equivalently, a norm χ ∈ NR is of finite type iff it is represented by a norm on some R(d)

that is generated in degree 1, by Lemma 1.4. We denote by

TR ⊂ NR
the set of such norms. In line with [DeSz20, HL20], we interpret the elements of TR as R-test
configurations. This is justified by the Rees construction, which sets up a 1–1 correspondence
between the subset

TZ := NZ ∩ TR
of Z-valued norms in TR and the set of (usual) ample test configurations for (X,L) (see Ap-
pendix A). For any χ ∈ NZ, note further that

χ ∈ TZ ⇐⇒
⊕
λ∈Z

F λR(d) of finite type over k for r sufficiently divisible. (1.12)

More generally, for any subgroup Λ ⊂ R we set

TΛ := NΛ ∩ TR.
As above, TΛ is invariant under the scaling action of {t ∈ R>0 | tΛ ⊂ Λ} and the translation
action of QΛ. In particular, TZ is invariant under translation by Q. It is also easy to see that

χ ∈ TΛ =⇒ λmax(χ) ∈ QΛ. (1.13)

By Lemma 1.4, we have

TR =
⋃

Λ⊂R finitely generated

TΛ.

The central fiber of an R-test configuration χ ∈ TR is defined as the polarized scheme

(X0,L0) :=
(

Proj
(

grχR
(d)
)
, d−1O(1)

)
, (1.14)
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for d ≥ 1 sufficiently divisible. If χ ∈ TΛ with Λ ' Zr finitely generated, the Λ-grading of
grχR

(d) provides a Grm-action on (X0,L0).
The smallest value of r is called the rank of χ; it is equal to 1 iff χ is a usual test configuration,

up to scaling.

Remark 1.9. For an R-test configuration χ ∈ TR, there does not generally exist a smallest
subgroup Λ ⊂ R such that χ ∈ TΛ, because the subgroup Λm ⊂ R generated by the values of
χ|Rm need not stabilize for m sufficiently divisible. However, the associated Q-vector space
QΛm does stabilize, its dimension being the rank of χ.

Example 1.10. Extending Example 1.2, suppose that (X,L) is acted upon by a torus T = Grm.
Then each ξ ∈ Rr defines a norm χ = χξ ∈ NR, given by

χ(s) := min {〈α, ξ〉 | α ∈ Zr, sα 6= 0}
for s ∈ Rm with m sufficiently divisible, where s =

∑
α∈Zr sα is the weight decomposition. This

norm satisfies

grχR
(d) '

⊕
λ∈R

 ⊕
α∈M, 〈α,ξ〉=λ

R(d)
α

 = R(d),

which shows that χ ∈ TR is of finite type, with central fiber isomorphic to (X,L). Further, χ
lies in TΛ for the finitely generated subgroup Λ =

∑
i Zξi.

Example 1.11. Pick an embedding X ↪→ PN in a projective space such that O(1)|X = dL
for some d ≥ 1, and suppose we are given an action of a torus T = Grm on (PN ,O(1)). By
Example 1.10, each ξ ∈ Rr defines a norm on R(PN ,O(1)), generated in degree 1, which
restricts to a norm in TR. By Lemma 1.4, every element of TR conversely arises in this way
(compare [HL20, Lemma 2.10]).

Following [HL20, Ino22], one can use Example 1.11 to provide a geometric realization of
R-test configurations as equivariant polarized families over a toric base (see §A.3 for a brief
discussion).

Definition 1.12. We define the canonical approximants of a norm χ ∈ NR as the sequence
χd ∈ TR defined for d ∈ Z≥1 sufficiently divisible by letting χd be the (class of the) norm on

R(d) generated in degree 1 by χd.

If d divides d′ then χd ≤ χd′ ≤ χ. As in Remark 1.5, this construction is not entirely
canonical, as it depends on the choice of a representative of χ, but this can be ignored as any
other choice leads to the same approximants χd for d sufficiently divisible.

A norm χ ∈ NR is of finite type iff χ = χd for all sufficiently divisible d . Note also that

χ ∈ NΛ =⇒ χd ∈ TΛ

for any subgroup Λ ⊂ R.

1.5. The Berkovich analytification. By a valuation on X we mean a real-valued valuation
v : k(X)× → R, trivial on k. We denote by Xval the space of valuations, endowed with the
topology of pointwise convergence on k(X)×. The trivial valuation vtriv ∈ Xval is defined by
vtriv(f) = 0 for all f ∈ k(X)×.

By [Berk90], the space Xval admits a natural compactification Xan, which as a set equals
Xan =

∐
Y val with Y ranging over all (closed) subvarieties of X. We somewhat imprecisely

refer to the points on Xan as semivaluations on X. The support of a semivaluation in Y val ⊂
Xan is the subvariety Y .
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By the valuative criterion of properness, each valuation v ∈ Xval admits a center cX(v) ∈ X,
characterized as the unique (scheme) point ξ ∈ X such that v ≥ 0 on the local ring OX,ξ
and v > 0 on its maximal ideal. This applies to semivaluations as well, replacing X with a
subvariety, and thus defines a map cX : Xan → X (which turns out to be anticontinuous, i.e.
the preimage of an open subset is closed).

The space Xan comes with a natural action of R>0 by scaling (t, v) 7→ tv. This induces an
action (t, ϕ) 7→ t · ϕ on functions ϕ on Xan by setting

(t · ϕ)(v) := tϕ(t−1v), (1.15)

whose fixed points are functions that are homogeneous, i.e. ϕ(tv) = tϕ(v) for all t ∈ R>0 and
v ∈ Xan.

The set Xan is also endowed with a partial order relation, for which v ≥ v′ iff cX(v) is a
specialization of cX(v′) and v ≥ v′ pointwise on the local ring at cX(v). The trivial valuation
satisfies v ≥ vtriv for all v ∈ Xan.

A (rational) divisorial valuation v on X is a valuation of the form v = t ordE , where E is a
prime divisor on a normal, projective birational model X ′ → X and t ∈ Q>0. The center cX(v)
is then the generic point of the image of E in X. For convenience, we also count the trivial
valuation vtriv as divisorial, i.e. we allow t = 0 above. The set Xdiv of divisorial valuations is
dense in Xan (see for instance [BoJ22a, Theorem 2.14]).

1.6. Semivaluations and line bundles. A semivaluation v ∈ Xan can be naturally evaluated
on a section s ∈ H0(X,M) of any line bundle M on X, by defining v(s) as the value of v on the
local function corresponding to s in any local trivialization of M at cX(v). Thus v(s) ∈ [0,+∞],
v(s) > 0 iff s vanishes at cX(v), and v(s) = ∞ iff s vanishes along the support of v. Further,
v ∈ Xval iff v(s) < +∞ for all s ∈ H0(X,M) r {0} and all line bundles M . We define a
continuous function |s| : Xan → [0, 1] by setting

|s|(v) := exp(−v(s)). (1.16)

Now suppose L is an (ample) line bundle. The Z-grading of R = R(X,L) defines an action
of Gm on the affine cone Y := SpecR, which comes with a natural surjective Gm-invariant
morphism π : Y r {o} → X, where the vertex o of Y is the point defined by the maximal ideal⊕

m>0Rm. For any ξ ∈ X, the fiber π−1(ξ) contains a unique Gm-invariant point defined by
the homogeneous prime ideal generated by all sections s ∈ Rm, m ≥ 1 that vanish at ξ.

By general properties of the analytification functor in [Berk90], the Gm-action on Y induces
an action of Gm(k) = k× on Y an, and π induces a surjective k×-invariant map πan : Y an r
{wo} → Xan, where wo ∈ Y an is the trivial semivaluation with support o, which satisfies wo =
+∞ on

⊕
m>0Rm. A semivaluation w ∈ Y an is k×-invariant iff w(

∑
m sm) = minmw(sm),

where sm ∈ Rm.
It is easy to see [Li17, §4.2] that if v ∈ Xan, then the set of k×-invariant points in (πan)−1(v)

is of the form {wv,c}c∈R, where wv,c is defined by

wv,c(s) = min
m
{v(sm) + cm} for any s =

∑
m

sm ∈ R, (1.17)

and where the value v(sm) is defined at the top of of this section. Note that wv,c is centered
at the vertex o iff λ > 0.

1.7. Valuations of linear growth and dreamy valuations. Following [BKMS15], we define
the maximal vanishing order of (multisections of) L at v ∈ Xan as

T(v) := TL(v) = supm−1v(s) ∈ [0,+∞], (1.18)
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where the supremum is over m sufficiently divisible and s ∈ Rm \ {0}. We say that v has
linear growth if T(v) < +∞; this notion is independent of the ample Q-line bundle L. The set
X lin ⊂ Xan of valuations of linear growth satisfies

Xdiv ⊂ X lin ⊂ Xval.

Further, setting

d∞(v, w) := supm−1|v(s)− w(s)|, (1.19)

where the supremum is again over m sufficiently divisible and s ∈ Rm \ {0}, defines a metric
on X lin such that (X lin, d∞) is complete (see [BoJ22a, §11.3]). We refer to the d∞-topology of
X lin as the strong topology.

Example 1.13. If π : X ′ → X is a proper birational morphism, with X ′ normal, and E ⊂ X ′
is a prime divisor which is Q-Cartier, then TL(E) coincides with the pseudoeffective threshold
sup{t ≥ 0 | π∗L− tE ∈ Psef(X)} (see [BKMS15, Theorem 2.24]).

Any v ∈ X lin defines a norm χv ∈ NR, given by χv(s) := v(s) for s ∈ Rm with m sufficiently
divisible. It satisfies λmax(χv) = T(v) (see (1.10)). Further, the map

X lin → NR, v 7→ χv

is injective, because the function field of X coincides with the homogeneous fraction field of
R(d) for any d sufficiently divisible.

For any v ∈ X lin and c ∈ R, the norm χv + c can be viewed as a valuation on the affine
cone SpecR(d) for d sufficiently divisible; it coincides with wv,c in the notation of (1.17). By
Lemma 1.1, such norms are characterized as follows.

Lemma 1.14. A norm χ ∈ NR is of the form χ = χv + c with v ∈ X lin and c ∈ R iff grχR
(d)

is an integral domain for some (or any) sufficiently divisible d .

When χ ∈ TR is of finite type, the latter condition means that the corresponding central
fiber X0 is reduced and irreducible, see (1.14).

Example 1.15. Suppose that a torus T acts on (X,L). By Example 1.10, each ξ ∈ NR
defines a norm χξ ∈ TR whose associated central fiber X0 ' X is integral. By Lemma 1.14,

χξ thus determines a valuation vξ ∈ X lin, which only depends on the T -action on X, and can
be obtained by the ‘action’ of ξ ∈ NR ⊂ T an on vtriv ∈ Xan in the sense of ‘peaked points’
(see [Berk90, §5.2]).

In the terminology of [Fuj19a], a divisorial valuation v ∈ Xdiv such that χv is of finite type
is called dreamy (with respect to L).

Example 1.16. Assume X is normal and E ⊂ X is a Q-Cartier prime divisor. If v := ordE
is dreamy with respect to L, then the pseudoeffective threshold

sup{t ≥ 0 | L− tE ∈ Psef(X)} = TL(v) = λmax(χv)

is necessarily rational (cf. Example 1.13 and (1.13)). Examples with an irrational threshold
are well-known (e.g. when X is an abelian surface of Picard number at least 2), and therefore
provide simple examples of non-dreamy valuations.

The next result generates examples of divisorial valuations that are not dreamy for any
polarization of X.
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Lemma 1.17. Pick a dreamy valuation v ∈ Xdiv (with respect to a given ample Q-line bundle
L), and assume that v is centered at a closed point p ∈ X(k), with valuation ideals

am := {f ∈ OX,p | v(f) ≥ m}.

Then the Rees algebra
⊕

m∈N am is of finite type over OX,p.

In particular, the (local) volume of v

vol(v) = lim
m→∞

n!

mm
dim(OX,p/am)

must be rational (see [ELS03]).

Proof. After replacing v with a multiple, we may assume that v is Z-valued, and hence that
χv is a Z-filtration. By (1.12), the bigraded k-algebra

⊕
(λ,m)∈Z×N F

λRdm is finitely generated

over k for d sufficiently divisible, and hence so is the graded subalgebra
⊕

m∈N F
mRdm.

On the other hand, by [BKMS15, Lemma 2.17], we can find d ≥ 1 sufficiently divisible such
that OX(mdL) ⊗ am is globally generated for all m ∈ N. Since H0(X,OX(mdL) ⊗ am) =
FmRdm, we infer that

⊕
m∈N am is of finite type over OX,p. �

Example 1.18. Assume k = C, dimX ≥ 4, and pick a smooth point p ∈ X(k). By [Kür03],
we can find a divisorial valuation v ∈ Xdiv centered at p such that vol(v) is irrational. By
Lemma 1.17, v is not dreamy with respect to any ample Q-line bundle L on X.

1.8. Fubini–Study functions. A Fubini–Study function (for L) is a function ϕ ∈ C0 =
C0(Xan) of the form

ϕ = 1
m max

j
{log |sj |+ λj}, (1.20)

with m ≥ 1 such that mL is a (globally generated) line bundle, (sj) a finite set of Rm without
common zeros, and λj ∈ R. Recall that (1.20) means ϕ(v) = 1

m maxj{−v(sj) + λj} for all
v ∈ Xan, see (1.16).

Remark 1.19. The function ϕ defines a continuous metric | · |e−mϕ on the Berkovich ana-
lytification of mL. This metric is the pullback of a standard (non-Archimedean) Fubini–Study
(or Weil) metric on O(1) under the morphism X → PN defined by (sj)0≤j≤N , which explains
the chosen terminology.

If the λj in (1.20) can be chosen in a subgroup Λ ⊂ R, we say that ϕ is a Λ-Fubini–Study
function, and write HΛ = HΛ(L) ⊂ C0 for the set of such functions. Thus

{0} = H{0} ⊂ HΛ ⊂ HR.

Note that

HΛ = HQΛ (1.21)

and HΛ(dL) = dHΛ(L) for any d ∈ Q>0. The set HΛ is stable under finite max and under the
action of QΛ by translation.

Recall the action (1.15) of R>0 on functions on Xan. If ϕ is given by (1.20) and t ∈ R>0,
then

t · ϕ = 1
m max

j
{log |sj |+ tλj}.

Thus HR is stable under the action of R>0, while HΛ is stable under the action of the stabilizer
{t ∈ R>0 | tΛ ⊂ Λ}. In particular, HQ is stable under the action of Q>0.
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2. Homogenization and the Fubini–Study operator

In this section we study the homogenization of a norm, and the related Fubini–Study and in-
fimum norm operators. We show that homogenization preserves norms of finite type, establish
a 1–1 correspondence between homogeneous norms of finite type and Fubini–Study functions,
and we prove Theorem A in the case p =∞.

In what follows, L∞ denotes the space of bounded functions ϕ : Xan → R, endowed with its
usual supnorm metric d∞(ϕ,ϕ′) := supXan |ϕ− ϕ′|.

2.1. Homogenization. In this section, R =
⊕

m∈NRm denotes any reduced graded k-algebra.

Definition 2.1. We say that a norm χ ∈ NR(R) is homogeneous if χ(fd) = dχ(f) for all
f ∈ R and d ∈ N.

In multiplicative terminology, this means that ‖·‖χ = e−χ is power-multiplicative, see [BGR].
It is easy to see that a norm χ ∈ NR(R) is homogeneous iff the associated graded algebra grχR
is reduced. We denote by

N hom
R (R) ⊂ NR(R)

the set of homogeneous norms on R. For any Veronese subalgebra R(d) =
⊕

m∈NRdm, d ≥ 1,

the restriction map NR(R)→ NR(R(d)) induces a bijection

N hom
R (R)

∼→ N hom
R (R(d)). (2.1)

Any norm χ ∈ NR(R) is dominated by a minimal homogeneous norm, namely its homogeniza-
tion χhom, defined by

χhom(f) := sup
d≥1

1
dχ(fd) = lim

d→∞
1
dχ(fd), (2.2)

where the second equality holds by superadditivity of d 7→ χ(fd) and Fekete’s Lemma. It
is indeed easy to check that (2.2) defines a vector space norm on R that is superadditive,
k×-invariant, linearly bounded and homogeneous, i.e. an element χhom ∈ N hom

R (R).

Remark 2.2. Note that ‖ · ‖χhom = e−χ
hom(·) is the spectral radius (semi)norm of ‖ · ‖χ in the

(multiplicative) terminology of [Berk90].

Using standard but nontrivial results on k-affinoid algebras, we prove:

Theorem 2.3. Let χ ∈ NR(R) be a norm generated in degree 1, with homogenization χhom.
Then:

(i) there exists C > 0 such that χ(f) ≤ χhom(f) ≤ χ(f) + C for all f ∈ R;
(ii) the k-algebra grχhom R is finitely generated;

(iii) if χ ∈ NΛ(R) for a subgroup Λ ⊂ R, then χhom ∈ NQΛ(R).

Proof. Pick a surjective map of graded algebras π : k[z] = k[z1, . . . , zN ]→ R and ξ ∈ RN such
that χ is the quotient norm of χξ (see Lemma 1.4). As in Example 1.2, the completion of k[z]

with respect to χξ is the polydisc algebra k{z; ξ}, and π induces a surjection k{z; ξ} → R̂ onto
the completion of R, whose norm is the quotient of the norm χξ of k{z; ξ}.

As a consequence, R̂ is a k-affinoid algebra in the sense of [Berk90], corresponding geomet-
rically to the affinoid domain Y an ∩ D(r) of the Berkovich analytification Y an ↪→ AN,an of the
affine cone Y := SpecR ↪→ AN = Spec k[z], where D(r) ⊂ AN,an is the closed polydisc of
polyradius r = (e−ξ1 , . . . , e−ξN ).

Since R is assumed to be reduced, it follows from the non-Archimedean GAGA principle
that R̂ is reduced as well (see [Duc09, Théorème 3.3]), and (i) is now a consequence of [Berk90,
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Proposition 2.1.4 (ii)], which states (in multiplicative terminology) that the spectral radius
(semi)norm of any reduced k-affinoid algebra is equivalent to the given norm.

Next, note that grχhom R̂ coincides, by definition, with the graded reduction of R̂ in the sense

of Temkin [Tem04, §3]. By [Tem04, Proposition 3.1], the surjection k{z; ξ} → R̂ therefore

induces a finite morphism grχξ k{z; ξ} → grχhom R̂. Now we have grχξ k{z; ξ} ' grχξ k[z] and

grχhom R̂ ' grχhom R, see (1.1). Thus grχhom R is finite over grχξ k[z] ' k[T ], which yields (ii).

Finally suppose that χ ∈ NΛ(R) for a subgroup Λ ⊂ R. In this case, we can choose ξ ∈ ΛN ,

so k{T ; ξ} and R̂ are both Λ-strict k-affinoid algebras. By [Tem15, 3.1.2.1 (iv)], we thus have

χhom(R̂r {0}) ⊂ QΛ, which proves (iii). �

2.2. Homogenization of norms on section rings. Returning to the setting of a polarized
variety (X,L) and its space of norms NR (see §1.3), we introduce:

Definition 2.4. Consider a norm χ ∈ NR. Then:

(i) we say that χ is homogeneous if it admits a homogeneous representative on R(d) =
R(X, dL) for some d ;

(ii) we define the homogenization of χ as the norm χhom ∈ NR induced by the homogeniza-
tion of any representative of χ.

By (2.2), χhom is well-defined; it satisfies χhom ≥ χ, and is characterized as the smallest
homogeneous norm with this property.

Example 2.5. For any χ ∈ NR we have χhom = (bχc)hom. This is indeed a direct consequence
of (2.2).

We denote by
N hom
R ⊂ NR

the subset of homogeneous norms. By (2.1), we have

N hom
R ' N hom

R (R(d)) (2.3)

for any d such that dL is a line bundle. In other words, a homogeneous norm χ ∈ NR is
well-defined on Rm = H0(X,mL) for any m such that mL is a line bundle.

Remark 2.6. An element of χ ∈ NR is a norm on R(d) for some sufficiently divisible d that
depends on χ, so in general it does not make sense to talk about pointwise convergence of se-
quences or nets in NR. By (2.3), it does however make sense when the norms are homogeneous,

as they are then defined on R(d) any fixed d such that dL is an honest line bundle.

The subset N hom
R is stable under minima, and under the scaling action of R>0 and the

additive action of R. For any subgroup Λ ⊂ R, we set

N hom
Λ := NΛ ∩N hom

R .

Recall that NR is equipped with a pseudo-metric d∞, see (1.9). Using (2.2), it is straight-
forward to check:

Lemma 2.7. Homogenization χ 7→ χhom defines a projection NR � N hom
R which is equivariant

for the actions of R>0 and R, commutes with minima, and satisfies

d∞(χhom, χ′hom) ≤ d∞(χ, χ′), λmax(χhom) = λmax(χ)

for all χ, χ′ ∈ NR.

The restriction of d∞ to N hom
R is further well-behaved:
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Proposition 2.8. The restriction of d∞ to N hom
R is a metric. Furthermore, the metric space

(N hom
R ,d∞) is complete, and contains N hom

Z as a closed subset.

Note that N hom
Z is always a strict subset of N hom

R , thanks to the scaling action of R>0. In
contrast, recall that NZ is d∞-dense in NR (see Example 1.7).

Lemma 2.9. Pick d ≥ 1 such that dL is an honest line bundle, and view d∞ as a pseudo-metric
on N hom(R(d)) via (2.3). For all χ, χ′ ∈ N hom(R(d)) we then have

d∞(χ, χ′) = sup
m≥1

1
md d∞(χ|Rmd , χ

′|Rmd).

Proof. By homogeneity of χ, χ′, we have for all m, l ≥ 1

d∞(χ|Rmd , χ
′|Rmd) = sup

s∈Rmdr{0}
|χ(s)− χ′(s)| = l−1 sup

s∈Rlmdr{0}
|χ(sl)− χ′(sl)|

≤ l−1 sup
t∈Rlmdr{0}

|χ(t)− χ′(t)| = l−1 d∞(χ|Rlmd , χ
′|Rlmd).

Thus m 7→ 1
md d∞(χ|Rmd , χ′|Rmd) is increasing with respect to divisibility, and (1.9) yields the

result (recall that the limsup in the latter formula is understood with respect to the divisibility
order). �

Proof of Proposition 2.8. Pick d as in Lemma 2.9. For each m ≥ 1, (NR(Rmd), d∞) is a com-

plete metric space, in which NZ(Rmd) sits as a closed subspace. This implies that NR(R(d)) ↪→∏
m≥1NR(Rmd) is complete with respect to the metric

d̃∞(χ, χ′) := sup
m≥1

1
md d∞(χ|Rmd , χ

′|Rmd),

and that NZ(R(d)) ↪→
∏
m≥1NZ(Rmd) is closed. It is also clear that N hom

R (R(d)) is closed in

NR(R(d)) with respect to d̃∞, so the result now follows from Lemma 2.9. �

Note that Lemma 2.9 ensures compatibility of the d∞-metrics on N hom
R and X lin (see (1.19)):

Corollary 2.10. The map v 7→ χv defines an isometric embedding (X lin,d∞) ↪→ (N hom
R , d∞),

i.e. d∞(v, w) = d∞(χv, χw) for all v, w ∈ X lin.

For any subgroup Λ ⊂ R, we denote by

T hom
Λ := TΛ ∩N hom

R = TR ∩N hom
Λ .

the set of homogeneous Λ-valued norms of finite type. As a straightforward consequence of
Theorem 2.3, we get:

Lemma 2.11. For any χ ∈ TR, the following holds:

(i) χhom ∈ T hom
R ;

(ii) for m sufficiently divisible, d∞(χ|Rm , χhom|Rm) is bounded, and hence d∞(χ, χhom) = 0;
(iii) for any subgroup Λ ⊂ R, χ ∈ TΛ =⇒ χhom ∈ T hom

QΛ .

As we shall see, homogenization in fact maps TΛ onto T hom
QΛ (cf. Corollary 2.18). For Λ = Z,

the homogenization map TZ � T hom
Q is closely related to integral closure (see Appendix A for

a detailed discussion).
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2.3. The Fubini–Study operator. Assume first that L is a globally generated line bundle.
To any norm χ on R1 = H0(X,L), we associate a function on Xan by setting

FSL(χ) := sup
s∈R1r{0}

{log |s|+ χ(s)}, (2.4)

i.e. FSL(χ)(v) = sups∈R1r{0}{−v(s) + χ(s)} for v ∈ Xan. Given a χ-orthogonal basis (si) of
R1, one easily checks that

FSL(χ) = max
i
{log |si|+ χ(si)} ∈ HR (2.5)

see [BE21, Lemma 7.17]. This implies

λmax(χ) = sup
Xan

FSL(χ) = FSL(χ)(vtriv), (2.6)

as well as

χ ∈ NΛ(R1) =⇒ FSL(χ) ∈ HΛ. (2.7)

for any subgroup Λ ⊂ R.

Lemma 2.12. Assume that L is a line bundle, and let χ be a norm on R = R(X,L). For
each m ≥ 1 we then have

FSmL(χ|Rm) ≥ mFSL(χ|R1),

and equality holds if χ is generated in degree 1.

Proof. For each s ∈ R1 r {0} we have χ(sm) ≥ mχ(s), and the inequality follows, by (2.4).
Assume that χ is generated in degree 1. To get equality, we need to show

v(s) ≥ χ(s)−mFSL(χ1)(v)

for all s ∈ Rm r {0} and v ∈ Xan. To see this, pick an orthogonal basis (si) of R1, and
write s =

∑
|α|=m cα

∏
i s
αi
i with χ(s) = minα

∑
i αiχ(si) for some α with cα 6= 0. Then

FSL(χ)(v) = maxi{χ(si)− v(si)}, and hence

v(s) ≥ min
cα 6=0

∑
i

αiv(si) ≥ min
cα 6=0

∑
i

αi (χ(si)− FSL(χ1)(v)) = χ(s)−mFSL(χ1)(v),

which concludes the proof. �

Returning to the general case of a Q-line bundle, pick χ ∈ NR, and set

FSm(χ) := m−1 FSmL(χ|Rm) ∈ HR
for m sufficiently divisible. By Lemma 2.12, FSm(χ) is an increasing function of m with respect
to divisibility, and is further uniformly bounded, by linear boundedness of χ. We may thus
introduce:

Definition 2.13. The Fubini–Study operator FS: NR → L∞ takes a norm χ ∈ NR to the
bounded function FS(χ) : Xan → R defined as the pointwise limit

FS(χ) := lim
m

FSm(χ) = sup
m

FSm(χ).

Recall that L∞ denotes the space of bounded functions on Xan. The bounded function
FS(χ) is lsc (lower semicontinuous), being a supremum of continuous functions; it is however
not continuous in general (see Theorem 2.19 below). By (2.6) we have

λmax(χ) = FS(χ)(vtriv) (2.8)
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Note also that the canonical approximants χd ∈ TR of any norm χ ∈ NR satisfy

FS(χd) = FSd(χ) ∈ HR (2.9)

for all d sufficiently divisible, by Lemma 2.12. In particular, if χ ∈ TR is of finite type then the
limit in Definition 2.13 is stationary.

The Fubini–Study operator FS: NR → L∞ is increasing with respect to the partial orderings
on NR and L∞, and equivariant under the actions of R and R>0. It is also easily seen to be
1-Lipschitz with respect to the d∞-(pseudo)metrics, i.e.

d∞(FS(χ),FS(χ′)) ≤ d∞(χ, χ′) for all χ, χ′ ∈ NR. (2.10)

As we see below, equality holds when χ, χ′ are homogeneous (see Corollary 2.17).
The next result shows that FS is invariant under homogenization.

Proposition 2.14. For any χ ∈ NR we have FS(χ) = FS(χhom).

Proof. That FS(χ) ≤ FS(χhom) is clear, since χ ≤ χhom. Now let v ∈ Xan and ε > 0.
Successively pick m ≥ 1 sufficiently divisible such that FS(χhom)(v) ≤ FSm(χhom)(v) + ε, then
s ∈ Rm r {0} such that mFSm(χhom)(v) ≤ χhom(s) − v(s) + mε, and finally d ≥ 1 such that
χhom(s) ≤ 1

dχ(sd) +mε, see (2.2). Then

FS(χhom)(v) ≤ 1
md(χ(sd)− v(sd)) + 3ε ≤ FSmd(χ)(v) + 3ε ≤ FS(χ)(v) + 3ε,

completing the proof. �

The Fubini–Study operator relates norms of finite type and Fubini–Study functions, as
follows:

Proposition 2.15. For any subgroup Λ ⊂ R, we have

FS(TΛ) = FS(TQΛ) = FS(T hom
QΛ ) = HΛ = HQΛ.

As we shall see, the map FS: T hom
QΛ → HΛ is further 1–1 (see Corollary 2.18).

Proof. If χ ∈ TΛ then χ = χm for m sufficiently divisible, and hence FS(χ) = FS(χm) =
FSm(χ) ∈ HΛ by (2.7). Conversely, pick ϕ ∈ HΛ, and write ϕ = d−1 maxi{log |si| + λi} with
d ≥ 1, a finite family (si)1≤i≤N in Rd without common zeros, and λi ∈ Λ. After enlarging the
family (si) and choosing the corresponding λi � 0 in Λ, we may further assume that (si) spans
Rd. Consider the surjective map kN → Rd that takes the canonical basis (ei) to (si). Denote
by χ0 the norm on kN that is diagonal in (ei), with χ0(ei) = λi, and let χd ∈ NR(Rd) be the
quotient norm. It is then easy to check (see [BE21, Lemma 7.17]) that

ϕ = d−1 max
j
{log |sj |+ λj} = d−1 FSdL(χd)

By Lemma 2.12, the norm χ ∈ NΛ(R(d)) generated in degree 1 by χd satisfies FS(χ) = ϕ,
which proves FS(TΛ) = HΛ. By Proposition 2.14 and Lemma 2.11, we infer

HΛ = FS(TΛ) ⊂ FS(T hom
QΛ ) ⊂ HQΛ,

which concludes the proof since HQΛ = HΛ, see (1.21). �
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2.4. The infimum norm and homogenization. Next we define an operator

IN: L∞ → N hom
R

that to a bounded function ϕ on Xan attaches a homogeneous norm, the infimum norm χ =
IN(ϕ). For any m ∈ N such that mL is a line bundle, it is defined on Rm by

χ(s) := inf
v∈Xan

{v(s) +mϕ(v)} = inf
Xan
{mϕ− log |s|}. (2.11)

In ‘multiplicative’ notation, this is simply the usual supremum norm

‖s‖ϕ = sup
Xan
|s|e−mϕ,

compare for instance [BE21, §6]. The operator IN = INL is increasing, and equivariant for the
actions of R and R>0, i.e.

IN(ϕ+ c) = IN(ϕ) + c, IN(t · ϕ) = t IN(ϕ) (2.12)

for ϕ ∈ L∞, c ∈ R and t ∈ R>0. For any ϕ,ϕ′ ∈ L∞, it is also easy to see that

IN(ϕ ∧ ϕ′) = IN(ϕ) ∧ IN(ϕ′), (2.13)

d∞
(
IN(ϕ), IN(ϕ′)

)
≤ d∞(ϕ,ϕ′) (2.14)

IN(ϕ) = IN(ϕ?), (2.15)

where ϕ? ∈ L∞ denotes the lsc regularization of ϕ, i.e. the largest lsc function such that
ϕ? ≤ ϕ. The following key result relates homogenization and infimum norms:

Theorem 2.16. For any χ ∈ NR, we have IN(FS(χ)) = χhom.

Corollary 2.17. For all χ, χ′ ∈ NR we have d∞(FS(χ),FS(χ′)) = d∞(χhom, χ′hom). In par-
ticular, the Fubini–Study operator defines an isometric embedding of complete metric spaces

FS: (N hom
R ,d∞) ↪→ (L∞,d∞).

Recall that d∞ also denotes the supnorm metric on the space L∞ of bounded functions on
Xan.

The following result settles the case p =∞ of Theorem A in the introduction:

Corollary 2.18. For any subgroup Λ ⊂ R, the Fubini–Study operator defines a surjective
isometry FS: (TΛ, d∞)� (HΛ,d∞), which factors as

• a surjective isometry (TΛ, d∞)� (T hom
QΛ , d∞) defined by homogenization;

• an isomorphism FS: (T hom
QΛ ,d∞)

∼→ (HΛ, d∞), with inverse IN: (HΛ,d∞)
∼→ (T hom

QΛ ,d∞).

For any homogeneous norm χ ∈ N hom
R , we further have FS(χ) ∈ HΛ ⇐⇒ χ ∈ TQΛ.

The last equivalence fails in general for non-homogeneous norms, see Example 2.22
The proof of Theorem 2.16 uses the Berkovich maximum modulus principle as well as the

remarks in §1.6.

Proof of Theorem 2.16. After passing to a multiple, we may assume that L is a line bundle
and χ is a norm on R = R(X,L). Let M be the Berkovich spectrum of the normed ring
(R,χ), i.e. the set of semivaluations w : R → R ∪ {+∞} such that w ≥ χ. Geometrically,
M sits as a compact subset of the analytification Y an of the affine cone Y = SpecR, and is
obtained as the image of the unit disc bundle in the total space of L∨, i.e. the blowup of o ∈ Y
(compare [Fan20]).

Since homogenization corresponds to the spectral radius seminorm construction (see Re-
mark 2.2), the Berkovich maximum modulus principle [Berk90, Theorem 1.3.1] (applied to
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the completion of (R,χ)) yields χhom(f) = minw∈M w(f) for any f ∈ R, where the infimum
is attained by compactness of M . In particular, for any s ∈ Rm r {0}, m ≥ 1, we have
χhom(s) = minw∈M w(s).

Let M inv be the set of k×-invariant semivaluations in M . We have a projection p : M →M inv

defined by

p(w)(
∑
m

sm) = min
m

w(sm)

where sm ∈ Rm. Thus p(w) ≤ w, so in the formula for χhom(s), it suffices to take the infimum
over w ∈ M inv. As in §1.6 consider the projection πan : Y an r {wo} → Xan, where wo is the
trivial semivaluation at the vertex of the cone; this satisfies wo(f) = +∞ for f ∈

⊕
m>0Rm

and wo(f) = 0 for f ∈ R \
⊕

m>0Rm. For any v ∈ Xan, the set of k×-invariant points in

(πan)−1(v) is of the form {wv,c}c∈R, where wv,c is the unique k×-invariant point such that
wv,c(s) = v(s) + cm for s ∈ Rm, m ≥ 1, see (1.17).

It follows that M inv ⊂ M ⊂ Y an is the set of semivaluations wv,c, where v ∈ Xan and
v(s) + mc ≥ χ(s) for all s ∈ Rm, m ≥ 1. Note that this condition on c means precisely that
c ≥ FS(χ)(v). Altogether, this means that if s ∈ Rm, m ≥ 1, then

χhom(s) = inf{v(s) +mc | v ∈ Xan, c ≥ FS(χ)(v)}
= inf{v(s) +mFS(χ)(v) | v ∈ Xan}
= IN(FS(χ))(s),

which completes the proof. �

Proof of Corollary 2.17. By Proposition 2.14, we may assume that χ, χ′ are homogeneous. By
Theorem 2.16, (2.14) and (2.10), we then have

d∞(χ, χ′) = d∞(IN(FS(χ)), IN(FS(χ′))) ≤ d∞(FS(χ),FS(χ′)) ≤ d∞(χ, χ′).

Thus equality holds everywhere, and the result follows. �

Proof of Corollary 2.18. By Corollary 2.17 and Lemma 2.11, the Fubini–Study operator defines
a surjective isometry FS: (TΛ,d∞) � (HΛ,d∞), which factors as homogenization followed by

FS: (T hom
QΛ ,d∞)

∼→ (HΛ, d∞), whose inverse is necessarily given by IN, by Theorem 2.16. This

implies that homogenization defines a surjective isometry (TΛ, d∞)� (T hom
QΛ , d∞).

The final assertion follows, by injectivity of FS on N hom
R .

�

2.5. Continuous norms. Building on the previous results, we are now in a position to char-
acterize the d∞-closure of the set TZ of test configurations, as follows.

Theorem 2.19. For any norm χ ∈ NR, the following are equivalent:

(i) χ lies in the d∞-closure of TZ;
(ii) χ lies in the d∞-closure of TR;
(iii) the canonical approximants (χd) satisfy d∞(χd, χ)→ 0;
(iv) FS(χ) is continuous;
(v) FS(χd)→ FS(χ) uniformly on Xan.

Definition 2.20. We say that χ ∈ NR is continuous when the equivalent properties of Theo-
rem 2.19 holds.

The set N cont
R of continuous norms is thus the d∞-closure of TZ (or TR); it is a strict subset

of NR as soon as dimX ≥ 1 (see Example 2.21 below).
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Proof of Theorem 2.19. We trivially have (i)⇒(ii). Assume (ii), and pick ε > 0. In view
of (1.9), we can find χ′ ∈ TR and d ≥ 1 such that

d∞(χ|Rmd , χ
′|Rmd) ≤ mrε for all m ≥ 1. (2.16)

Replacing d with a multiple, we can further assume χ′d = χ′. Form = 1, (2.16) yields χ′ ≤ χ+rε
on Rd, and hence χ′ = χ′d ≤ χd +mrε on Rmd for all m ≥ 1. On the other hand, (2.16) yields
χ ≤ χ′ +mrε on Rmd, which proves χd ≤ χ ≤ χd + 2mrε on Rmd for all m ≥ 1. This implies
d∞(χd, χ) ≤ ε. This proves (ii)⇒(iii), the converse being obvious since χd ∈ TR.

Assume (ii). To prove (i), we may replace χ with its round-down and assume χ ∈ NZ (see
Example 1.7. Its canonical approximants then satisfy χd ∈ TZ, and hence (ii)⇒(i), thanks to
(iii).

Since FS(χ) is the pointwise limit of the increasing net of continuous functions (FS(χd)),
Dini’s lemma yields (iv)⇔(v). Finally, we claim that

d∞(χd, χ) = d∞(FS(χd),FS(χ)) (2.17)

for d sufficiently divisible, which will show (iii)⇔(v). Note that

χd ≤ χ ≤ χhom =⇒ d∞(χd, χ) ≤ d∞(χd, χ
hom),

see (1.3). Now d∞(χd, (χd)
hom)) = 0 (see Lemma 2.11), and hence

d∞(χd, χ
hom) = d∞((χd)

hom, χhom) = d∞(FS(χd),FS(χ)),

by Corollary 2.17. This shows d∞(χd, χ) ≤ d∞(FS(χd),FS(χ)), while the converse holds
by (2.10). This shows (2.17), and concludes the proof. �

Example 2.21. To each subvariety Z  X we associate a norm χ = χZ ∈ N hom
Z by setting,

for each nonzero section s ∈ Rm with m sufficiently divisible

χ(s) =

{
m if s|Z ≡ 0
0 otherwise.

We claim that χ is not continuous. Indeed, using the description of χd as a quotient norm, it
is easy to check that any s ∈ Rdm locally lies in IpZ with p := χd(s) ∈ N. Choosing s ∈ Rdm =
H0(X, rmL) that locally belongs to IZ but not I2

Z (which is possible for any m large enough,
since L is ample), we get χd(s) = 1, while χ(s) = rm. This shows d∞(χ|Rdm , χd|Rdm) ≥ rm−1,
and hence d∞(χ, χd) ≥ 1, which proves the claim.

Alternatively, one can show that FS(χ) is identically 1 on Xan \ Zan, and 0 on Zan, and
hence is not continuous.

Example 2.22. As a variant of Example 2.21, consider the norm χ ∈ NR defined for s ∈
Rm \ {0} by

χ(s) =

{
m if s|Z ≡ 0
m−

√
m otherwise,

which is indeed a norm, by subadditivity of m 7→
√
m. Then χhom = χtriv + 1, hence FS(χ) =

FS(χhom) ≡ 1. In particular, FS(χ) ∈ HR; however, χ is not of finite type. Indeed,

d∞(χ|Rm , χhom|Rm) =
√
m

is not bounded (see Lemma 2.11).

Remark 2.23. It follows from Example 2.21 that the set TZ of test configurations is never
d∞-dense in NR when dimX ≥ 1. In contrast, TZ is dense with respect to any of the weaker
pseudometrics dp, p ∈ [1,∞) to be introduced in Section 3 (see Corollary 3.19).
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We next analyze the behavior of homogenization on continuous norms.

Proposition 2.24. For each χ ∈ NR, we have

χ ∈ N cont
R ⇐⇒ χhom ∈ N cont

R =⇒ d∞(χ, χhom) = 0.

Further, homogenization induces a surjective isometry (N cont
R , d∞)� (N cont,hom

R ,d∞).

Here N cont,hom
R := N cont

R ∩N hom
R denotes the set of continuous homogeneous norms.

Proof. The first equivalence follows from Proposition 2.14 and Theorem 2.19 (iv). By Lemma 2.11,
d∞(χ, χhom) = 0 holds on TR. By d∞-continuity of homogenization (see Lemma 2.7), this ex-
tends to the d∞-closure N hom

R . This proves the second implication, which in turn yields the
last point, by the triangle inequality. �

When χ ∈ NR is not continuous, the property d∞(χ, χhom) = 0 fails in general; in other
words, homogenization is not a d∞-isometry on the whole space NR:

Example 2.25. Pick a subvariety Z  X, and set for s ∈ Rm \ {0}

χ(s) =

 m if s ∈ I2
Z

m/2 if s ∈ IZ \ I2
Z

0 if s /∈ IZ
As one easily checks, this defines a norm χ ∈ NQ, such that χhom = χZ is the norm in
Example 2.21. Further, d∞(χ|Rm , χhom|Rm) = m/2 for m sufficiently divisible, and hence
d∞(χ, χhom) = 1/2.

Finally, recall from [BoJ22a] that the space CPSH of continuous (bounded) L-psh functions
on Xan can be described as the closure of HR (or, equivalently, HQ = HZ) with respect to
uniform convergence (see also §4.1 below). We show:

Theorem 2.26. The Fubini–Study and infimum norm operators induce inverse isomorphic

isometries FS: (N cont,hom
R , d∞)

∼→ (CPSH,d∞), IN: (CPSH,d∞)
∼→ (N cont,hom

R , d∞).

Proof. By Corollary 2.17, the Fubini–Study operator defines an isometric embedding of com-
plete metric spaces FS: (N hom

R ,d∞) ↪→ (L∞,d∞), which thus maps the closure of any subset

onto the closure of its image. Now FS(T hom
R ) = HR (see Proposition 2.15), where the closure

of T hom
R in (N hom

R , d∞) is N cont,hom
R (by Proposition 2.24) and the closure of HR in (L∞, d∞) is

CPSH. It follows that FS: (N cont,hom
R , d∞)

∼→ (CPSH,d∞) is an isometric isomorphism, whose
inverse is necessarily given by IN, by Theorem 2.16. �

2.6. The Fubini–Study envelope. As in [BE21, §7.5] and [BoJ22a, §5.3], we define the
Fubini–Study envelope of a bounded function ϕ ∈ L∞ as the pointwise supremum

Q(ϕ) = QL(ϕ) := sup{ψ ∈ HR | ψ ≤ ϕ}. (2.18)

Since any ψ ∈ HR is a uniform limit of functions in HQ, one can replace HR with HQ in this
definition. We note that

QdL(tϕ) = dQL(ϕ), Q(t · ϕ) = Q(ϕ), Q(ϕ+ c) = Q(ϕ) + c (2.19)

for all d ∈ Q>0, t ∈ R>0, c ∈ R, and refer to §4.4 for more information. We view the next
result as a ‘dual’ version of Proposition 2.14.

Proposition 2.27. For any ϕ ∈ L∞ we have IN(ϕ) = IN(Q(ϕ)).
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This is in fact a special case of [BE21, Lemma 7.23] but we repeat the simple argument for
the convenience of the reader.

Lemma 2.28. If ϕ ∈ L∞ and s ∈ Rm with m sufficiently divisible, then log |s| ≤ mϕ iff
log |s| ≤ mQ(ϕ).

Proof. We may assume m = 1. Since Q(ϕ) ≤ ϕ, we only need to prove the direct implication.
For t ∈ R, set ψt = max{log |s|,−t}. Then ψt ∈ HR, and ψt ≤ ϕ for t� 0 since ϕ is bounded.
Thus ψt ≤ Q(ϕ) by the definition of Q, so log |s| ≤ ψt ≤ Q(ϕ). �

Proof of Proposition 2.27. Pick s ∈ Rm with m sufficiently divisible. We must prove that
λ := infXan(mϕ − log |s|) equals λ′ := infXan(mQ(ϕ) − log |s|). Since Q(ϕ) ≤ ϕ we have
λ′ ≤ λ. The reverse inequality follows from Lemma 2.28 applied to the bounded function
ϕ−m−1λ, together with (2.19). �

We similarly have a dual version of Theorem 2.16:

Proposition 2.29. For any ϕ ∈ L∞, we have FS(IN(ϕ)) = Q(ϕ).

Proof. After passing to a multiple, we may assume that L is a line bundle, so that χ := IN(ϕ) is
a norm onR = R(X,L). For allm ≥ 1 and s ∈ Rmr{0}, we have log |s| ≤ mϕ−χ(s) onXan, by
definition of the infimum norm. By Lemma 2.28 and (2.19), this yields log |s| ≤ mQ(ϕ)−χ(s),
and hence

FS(χ) = sup{m−1(log |s|+ χ(s)) | m ≥ 1, s ∈ Rm r {0}} ≤ Q(ϕ).

For the reverse inequality, pick any ψ ∈ HR with ψ ≤ ϕ. Since FS(TR) = HR (see Proposi-
tion 2.15), there exists m ≥ 1 and a norm χ′ on Rm such that

mψ = FSmL(χ′) = sup
s∈Rm\{0}

{log |s|+ χ′(s)}.

Since ψ ≤ ϕ, this gives log |s|+ χ′(s) ≤ mϕ, i.e. χ′ ≤ χ|Rm on Rm. As a result,

ψ = m−1 FSmL(χ′) ≤ m−1 FSmL(χ|Rm) = FSm(χ) ≤ FS(χ),

which completes the proof. �

Combining Theorem 2.16 and Proposition 2.29 with Propositions 2.14 and 2.27, we also
obtain

Corollary 2.30. We have FS ◦ IN ◦FS = FS on NR, and IN ◦FS ◦ IN = IN on L∞.

3. Spectral analysis

In this section we define a volume function vol : NR → R as well as pseudo-metrics dp,
p ∈ [1,∞), on the space NR of norms on section rings of multiples of L. Much of the material
is studied for more general non-Archimedean ground fields in [CM15, BE21], but we present
the details for the convenience of the reader.

3.1. The finite-dimensional case. We first describe the space NR(V ) of non-Archimedean
norms on a k-vector space V of dimension N <∞, essentially following [MFK, BE21].

Pick a norm χ ∈ NR(V ), and a χ-orthogonal basis (ej)1≤j≤N of V . After permutation, we
may assume that the sequence λj(χ) := χ(ej), j = 1, . . . , N satisfies

λ1(χ) ≥ · · · ≥ λN (χ).
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It is then independent of the choice of orthogonal basis and is called the spectrum of χ (i.e. the
‘jumping values’ of the associated filtration in the terminology of [BC11]). In terms of (1.4)
we have

λ1(χ) = λmax(χ), λN (χ) = λmin(χ).

The volume of χ is defined as the mean value1 of its spectrum, i.e.

vol(χ) :=
1

N

∑
j

λj(χ).

For any basis (ej) of V we have vol(χ) ≥ N−1
∑

j χ(ej) with equality iff (ej) is χ-orthogonal.

More generally, any two norms χ, χ′ admit a common orthogonal basis (ej). The relative
spectrum of χ with respect to χ′ is the sequence

λ1(χ, χ′) ≥ · · · ≥ λN (χ, χ′)

obtained by reordering (χ(ej)− χ′(ej))1≤j≤N , and the spectral measure of χ with respect to χ′

is the corresponding probability measure

σ(χ, χ′) :=
1

N

∑
j

δλj(χ,χ′).

Its barycenter satisfiesˆ
R
λ dσ(χ, χ′) =

1

N

∑
j

λj(χ, χ
′) = vol(χ)− vol(χ′). (3.1)

When χ′ = χtriv is the trivial norm, we simply write

σ(χ) = σ(χ, χtriv) =
1

N

∑
j

δλi(χ),

and call it the spectral measure of χ. In terms of the associated R-filtration F λV = {χ ≥ λ},
we have

σ(χ) =
1

N

∑
λ∈R

dim(F λV/F>λV ) δλ. (3.2)

To any basis e = (ei) of V is associated an apartment Ae ⊂ NR(V ), defined as the set of
norms diagonalized in this basis. We then have a canonical parametrization

ιe : RN ∼→ Ae,

and a Gram–Schmidt retraction
ρe : NR(V )→ Ae.

The map ιe sends (λj) ∈ RN to the unique χ ∈ Ae such that χ(ei) = λi, while ρe sends a norm
χ to the unique norm ρe(χ) ∈ Ae such that

ρe(χ)(ei) = sup
a∈kN

χ(ei +
∑
j<i

ajej).

i.e. the norm induced, via the basis e, from the natural subquotient norm on the graded object
of the complete flag defined by e. By additivity of the volume in exact sequences, we have

vol(ρe(χ)) = vol(χ), (3.3)

1Note that a different normalization is used in [BE21, BGM20], where the volume is defined as the sum of
the elements of the spectrum.
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see [BE21, Lemma 2.12]. Each Ae is trivially preserved by the translation action of R, the
scaling action by R>0, and by the operation (χ, χ′) 7→ χ ∧ χ′. Moreover,

χ ≤ χ′ =⇒ ρe(χ) ≤ ρe(χ′).

3.2. Metrics on the space of norms. Generalizing the classical construction of the Tits
metric on the Euclidean building NR(V ) (see for instance [MFK, §2.2]), it is shown in [BE21,
Theorem 3.1] that each SN -invariant norm τ on RN induces a unique metric dτ on NR(V )
such that ιe : (RN , τ) ↪→ (NR(V ), dτ ) is an isometry for any basis e. It has the property that
ρe : NR(V ) → Ae is a contraction. All metrics on NR(V ) obtained this way are equivalent.
They turn NR(V ) into a metric space that is complete, but not locally compact.

In particular, for each p ∈ [1,∞] we define a metric dp on NR(V ) by setting for any two
norms χ, χ′ with relative spectrum (λi) = (λi(χ, χ

′))

dp(χ, χ
′) := (N−1

∑
i

|λi|p)1/p (3.4)

for p ∈ [1,∞), and

d∞(χ, χ′) := max
i
|λi|.

Thus dp(χ, χ
′) is the Lp-norm of the identity with respect to the spectral measure σ(χ, χ′).

Note that

d1 ≤ dp ≤ d
1−1

p
∞ d

1
p
1 ≤ d∞ (3.5)

on NR(V ) for p ∈ (1,∞). The metric d2 is the Tits metric mentioned above, while d∞ coincides
with the Goldman–Iwahori metric (1.2). Our main interest lies in the metric d1, which is closely
related to the volume:

Lemma 3.1. For all χ, χ′ ∈ NR(V ) and p ∈ [1,∞) we have

dp(χ, χ
′)p = dp(χ, χ ∧ χ′)p + dp(χ ∧ χ′, χ′)p. (3.6)

For p = 1, we further have

d1(χ, χ′) = vol(χ) + vol(χ′)− 2 vol(χ ∧ χ′). (3.7)

Proof. The first assertion follows from the fact that the minimum χ ∧ χ′ of two norms in an
apartment Ae ' RN is computed component-wise, and the trivial identity∑

i

|λi − λ′i|p =
∑
i

|λi −min{λi, λ′i}|p +
∑
i

|min{λi, λ′i} − λ′i|p.

for all λ, λ′ ∈ RN . On the other hand, it follows from (3.1) that χ ≥ χ′ =⇒ d1(χ, χ′) =
vol(χ)− vol(χ′), and (3.7) follows. �

The volume function is trivially 1-Lipschitz with respect to d1, i.e.

| vol(χ)− vol(χ′)| ≤ d1(χ, χ′) (3.8)

for all χ, χ′ ∈ NR(V ). This is also the case for the min operator:

Lemma 3.2. Let χi, χ
′
i, i = 1, 2, be norms on V . Then

d1(χ1 ∧ χ2, χ
′
1 ∧ χ′2) ≤ d1(χ1, χ

′
1) + d1(χ2, χ

′
2). (3.9)
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Proof. First assume χi ≥ χ′i, i = 1, 2. Pick a basis e such that χ′1, χ
′
2 ∈ Ae. Lemma 3.1

together with (3.3) show that replacing χi by ρe(χi), i = 1, 2 does not change the right-hand
side of (3.9). As for the left-hand side, ρe : NR(V )→ Ae being order preserving implies

ρe(χ1) ∧ ρe(χ2) ≥ ρe(χ1 ∧ χ2) ≥ χ′1 ∧ χ′2,

which shows that the left-hand side of (3.9) can only increase upon replacing χi by ρe(χi),
i = 1, 2, using again (3.3) and (3.7).

As a result, we may in fact assume that all four norms belong to Ae. Write χi(ej) = λi,j
and χ′i(ej) = λ′i,j for 1 ≤ j ≤ N and i = 1, 2. Then λi,j ≥ λ′i,j for all i, j, and we must prove
that ∑

j

λ1,j ∧ λ2,j −
∑
j

λ′1,j ∧ λ′2,j ≤
∑
j

(λ1,j − λ′1,j) +
∑
j

(λ2,j − λ′2,j);

this is straightforward.

Finally consider arbitrary norms. Set χ′′i = χi ∧ χ′i for i = 1, 2. By (3.6) we have

d1(χ1 ∧ χ2, χ
′
1 ∧ χ′2) = d1(χ1 ∧ χ2, χ

′′
1 ∧ χ′′2) + d1(χ′1 ∧ χ′2, χ′′1 ∧ χ′′2)

and χi, χ
′
i ≥ χ′′i , for i = 1, 2, so (3.9) follows from what precedes, together with (3.6). �

3.3. Spectral measures and volume. Now we return to the setting of a projective variety
X and an ample Q-line bundle L on X. The following equidistribution result is a special case
of a result of Chen–Maclean [CM15], which deals with general non-Archimedean fields.

Theorem 3.3. For any two norms χ, χ′ ∈ NR, the scaled spectral measures

(1/m)?σ(χ|Rm , χ′|Rm)

have uniformly bounded support, and they admit a weak limit.

The limit is taken with respect to the partial order by divisibility. If L is an actual line
bundle and χ, χ′ are norms on R(X,L), then the limit also exists as m→∞ in the usual total
ordering.

Definition 3.4. For any χ, χ′ ∈ NR, the spectral measure of χ with respect to χ′ is the
compactly supported (Borel) probability measure on R defined as

σ(χ, χ′) := lim
m

(1/m)?σ(χ|Rm , χ′|Rm).

The spectral measure of χ is σ(χ) := σ(χ, χtriv), and the volume of χ is the barycenter

vol(χ) =

ˆ
R
λ dσ(χ).

By (3.1), we have

vol(χ) = lim
m
m−1 vol(χ|Rm). (3.10)

Example 3.5. For any v ∈ X lin with associated norm χv ∈ N hom
R , the spectrum of χv|Rm is

the vanishing sequence of Rm with respect to v as defined in [BKMS15], i.e. the (finite) set of
values of v on nonzero elements of Rm, counted with multiplicity, and

S(v) = SL(v) := vol(χv) (3.11)

coincides with the expected vanishing order of [BlJ20] (see also [MR15]).
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The existence of the spectral measure σ(χ) (called the limit measure of the corresponding
filtration in [BHJ17, §5.1]) follows from [BC11, Theorem A]. When χ ∈ TZ, the limit measure
coincides with the Duistermaat–Heckman measure of the corresponding test configuration,
see [BHJ17, Proposition 3.12].

As we shall see, a simple trick borrowed from [CM15] reduces the proof of Theorem 3.3 to
this special case χ′ = χtriv.

Proof of Theorem 3.3. The uniform boundedness part is a direct consequence of the linear
boundedness condition that we impose on norms in NR(R). Set Nm := dimRm, denote by
(λm,j)1≤j≤Nm the spectrum of χ|Rm with respect to χ′|Rm , and set

σm := (1/m)?σ(χ|Rm , χ′|Rm) =
1

Nm

Nm∑
j=1

δm−1λm,j .

As is well-known, in order to prove convergence of σm, it suffices to show that

ˆ
R

max{λ, c} dσm =
1

mNm

Nm∑
j=1

max{λj,m,mc}

converges for all c ∈ R, see [CM15, Proposition 5.1]. But (max{λj,m, cm})j is the spectrum of
χ|Rm with respect to χ′|Rm ∧ (χ|Rm − cm). Replacing χ′ with χ′ ∧ (χ − c) (where R acts by
translation according to (1.5)), we are reduced to proving that the barycenter

(mNm)−1
∑
j

λm,j

of the measure σm converges. Now, this barycenter is the difference of the barycenters of
(1/m)?σ(χ|Rm) and (1/m)?σ(χ′|Rm), each of which admits a limit by [BC11, Theorem A], and
we are done. �

The proof of Theorem 3.3 shows thatˆ
max{λ, c} dσ(χ, χ′) = vol(χ)− vol(χ′ ∧ (χ− c)) (3.12)

for all χ, χ′ ∈ NR and c ∈ R. Some further properties of the spectral measure σ(χ) are described
by the following result, which is a direct consequence of [BC11], see [BHJ17, Theorem 5.3].

Theorem 3.6. For any χ ∈ NR, the support of σ(χ) is a compact interval with upper bound
λmax(χ). Further, σ(χ) is absolutely continuous with respect to Lebesgue measure, except per-
haps for a point mass at λmax(χ).

The next result shows how spectral measures behave under operations on norms. It follows
from elementary computations of spectra in joint orthogonal bases; the details are left to the
reader.

Proposition 3.7. Let χ, χ′ ∈ NR, and pick c ∈ R, t ∈ R>0. Then:

(i) σ(χ′, χ) is the pushforward of σ(χ, χ′) under λ 7→ −λ;
(ii) σ(χ+ c, χ′) is the pushforward of σ(χ, χ′) under λ 7→ λ+ c;
(iii) σ(χ, χ ∧ χ′) is the pushforward of σ(χ, χ′) under λ 7→ max{λ, 0};
(iv) σ(tχ, tχ′) is the pushforward of σ(χ, χ′) by λ 7→ tλ.
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Remark 3.8. In [BLXZ21, Theorem 3.3] (which appeared after the first version of this article
was posted), the authors construct a natural joint spectral measure ρ(χ, χ′) on R2 associated to
any pair χ, χ′ ∈ NR, that encodes the asymptotic behavior of the spectra of χ and χ′ in jointly
orthogonal bases. The spectral measure σ(χ, χ′) is the pushforward of ρ(χ, χ′) under the map
R2 → R given by (λ, λ′) 7→ λ− λ′.

3.4. The dp-pseudometrics and asymptotic equivalence. Pick p ∈ [1,∞) and χ, χ′ ∈ NR.
By definition, we have

dp(χ|Rm , χ′|Rm)p =

ˆ
R
|λ|p dσ(χ|Rm , χ′|Rm).

Theorem 3.3 thus shows that the limit

dp(χ, χ
′) := lim

m
m−1 dp(χ|Rm , χ′|Rm)

exists in [0,+∞), and coincides with the Lp-norm of the identity with respect to the spectral
measure σ(χ, χ′), i.e.

dp(χ, χ
′)p =

ˆ
R
|λ|pσ(χ, χ′). (3.13)

It is clear that (dp)1≤p<∞ is a non-decreasing family of pseudo-metrics on NR. For p = 1, (3.7)
further yields

d1(χ, χ′) = vol(χ) + vol(χ′)− 2 vol(χ ∧ χ′). (3.14)

For any p ∈ [1,∞], we have d1 ≤ dp ≤ d∞. One also easily checks (using for instance (3.13)
and Proposition 3.7)

dp(tχ, tχ
′) = t dp(χ, χ

′), dp(χ+ c, χ′ + c) = dp(χ, χ
′), dp(χ, χ+ c) = |c| (3.15)

for all χ, χ′ ∈ NR, t ∈ R>0, c ∈ R.
The pseudo-metric d1 defines a (non-Hausdorff) topology on NR, which is strictly coarser

than the dp-topology for any p > 1. However, (3.5) remains valid on NR, and shows that the
dp-topologies with p < ∞ all agree on d∞-bounded subsets of NR. In particular, they share
the same pairs of non-separated points, which gives rise to:

Definition 3.9. We say that two norms χ, χ′ ∈ NR are asymptotically equivalent, and write
χ ∼ χ′, if the following equivalent conditions hold:

(i) d1(χ, χ′) = 0;
(ii) dp(χ, χ

′) = 0 for all p ∈ [1,∞);
(iii) σ(χ, χ′) = δ0.

The equivalence between (i)—(iii) follows from (3.13). Since d1 ≤ d∞, we trivially have

d∞(χ, χ′) = 0 =⇒ χ ∼ χ′.
The converse fails in general —and thus so does the analogue of (3.13) for the pseudo-metric
d∞ (see, however, Corollary 6.26 below for the case of continuous norms).

Example 3.10. Pick any subvariety Z  X, and consider the norm χ = χZ ∈ NZ as in
Example 2.21. Using (3.2), it is easy to see that σ(χ|Rm) = εmδ0 + (1− εm)δm with

εm := dim H0(Z,mL)/dim H0(X,mL) = O(1/m).

Thus σ(χ) = limm(1/m)?σ(χ|Rm) = δ1, and hence χ ∼ χtriv + 1 (see Proposition 3.7 (ii)). On
the other hand, since χ 6= χtriv + 1 are both homogeneous, we have d∞(χ, χtriv + 1) > 0 (see
Proposition 2.8).



A NON-ARCHIMEDEAN APPROACH TO K-STABILITY I 33

By (3.14), we have:

Lemma 3.11. If χ, χ′ ∈ NR satisfy χ ≥ χ′, then χ ∼ χ′ ⇐⇒ vol(χ) = vol(χ′).

As we next show, spectral measures are continuous with respect to the d1-topology.

Theorem 3.12. Consider nets (χi), (χ′i) in NR, converging respectively to χ, χ′ ∈ NR in the
d1-topology. Then σ(χi, χ

′
i)→ σ(χ, χ′) weakly.

Proof. Set σi := σ(χi, χ
′
i) and σ := σ(χ, χ′). As in the proof of Theorem 3.3, it suffices to

prove that ˆ
max{λ, c} dσi = vol(χi)− vol(χ′i ∧ (χi − c))

converges to ˆ
max{λ, c} dσ = vol(χi)− vol(χ′ ∧ (χi − c))

for all c ∈ R, see (3.12). This follows immediately from the Lipschitz property of the volume
and min operators, see (3.8) and Lemma 3.2. �

Corollary 3.13. For any χ, χ′ ∈ NR, the quantities

σ(χ, χ′), λmax(χ) and vol(χ)

only depend on the asymptotic equivalence classes of χ, χ′. Further,

χi ∼ χ′i, i = 1, 2 =⇒ χ1 ∧ χ2 ∼ χ′1 ∧ χ′2.

Proof. The first claim follows directly from Theorem 3.12. It implies the second one, as λmax(χ)
can be reconstructed from σ(χ) = σ(χ, χtriv), by Theorem 3.6. Finally, the Lipschitz properties
of the volume and the min operator (see (3.8) and Lemma 3.2) carry over to NR, which takes
care of the last two claims. �

Following [Fuj19b, Zha20], we finally show:

Lemma 3.14. If χ ∈ NR satisfies χ ≥ χtriv, then

λmax(χ) = d∞(χ, χtriv) ≤ Cn,p dp(χ, χtriv)

for all p ∈ [1,∞), with Cn,p :=
(
n+p
n

)1/p
.

Note that Cn,p → 1 as p→∞.

Proof. The first equality is (1.11). To prove the inequality, we argue as in [Zha20, §5].

Set λmax := λmax(χ). By [BHJ17, Theorem 5.3], f(λ) := σ ([λ,+∞))1/n is concave on
(−∞, λmax(χ)). Since χ ≥ χtriv, the support of σ = σ(χ) is contained in [0, λmax], and hence
f(0) = 1. For λ ∈ [0, λmax], we thus have f(λ) ≥ 1− λ

λmax
, which yields

dp(χ, χtriv)p =

ˆ λmax

0
λp dσ = p

ˆ λmax

0
λp−1f(λ)n dλ

≥ p
ˆ λmax

0
λp−1

(
1− λ

λmax

)n
dλ = λpmax p

ˆ 1

0
tp−1(1− t)n dt =

p!n!

(n+ p)!
λpmax,

and the result follows. �
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3.5. The space of norms modulo translation. For any p ∈ [1,∞], the additive action of
R on NR preserves the pseudo-metric dp, which thus induces a quotient pseudo-metric dp on
the space of norms modulo translation NR/R, such that

dp(χ, χ
′) = inf

c∈R
dp(χ, χ

′ + c)

for χ, χ′ ∈ NR. This supremum is actually achieved:

Lemma 3.15. For any χ, χ′ ∈ NR, there exists c ∈ R such that dp(χ, χ
′) = dp(χ, χ

′ + c) and
|c| ≤ 2 dp(χ, χ

′).

In particular, dp(χ, χ
′) = 0 iff χ, χ′ are asymptotically equivalent modulo translation, in the

sense that χ ∼ χ′+c for some c ∈ R (which is then uniquely determined by c = vol(χ)−vol(χ′)).
When χ′ = χtriv we say that χ is asymptotically constant.

Proof. By (3.15) , for all c ∈ R we have

|c| = dp(χ
′, χ′ + c) ≤ dp(χ

′, χ) + dp(χ, χ
′ + c).

Thus dp(χ, χ
′ + c) ≤ dp(χ, χ

′) =⇒ |c| ≤ 2 dp(χ, χ
′), and hence

dp(χ, χ
′) = inf{dp(χ, χ′ + c) | c ∈ R, |c| ≤ 2 dp(χ, χ

′)},
which is achieved by compactness.

�

Definition 3.16. For each p ∈ [1,∞), we define the Lp-norm of χ ∈ NR as

‖χ‖p := dp(χ, χtriv + vol(χ)).

This definition extends the notion in [Don02] of the Lp-norm of a test configuration, see [BHJ17,
Remark 6.10]. Indeed, (3.13) yields

‖χ‖pp =

ˆ
|λ− λ|p dσ(χ),

the p-th central moment of the spectral measure σ(χ), where λ =
´
λ dσ(χ) = vol(χ) is its

barycenter. Note also that

‖χ+ c‖p = ‖χ‖p, ‖tχ‖p = t‖χ‖p
for c ∈ R, t ∈ R>0.

Proposition 3.17. Given a norm χ ∈ NR, the following are equivalent:

(i) χ is asymptotically constant;
(ii) ‖χ‖p = 0 for some p ∈ [1,+∞);
(iii) ‖χ‖p = 0 for all p ∈ [1,+∞).

Proof. If χ ∼ χtriv + c with c ∈ R, then c = vol(χ), by (3.8). The rest is straightforward. �

3.6. Convergence of the canonical approximants. The next result strengthens the ap-
proximation result proved in [BC11, Theorem 1.14] (see also [Bou14, Théorème 3.15] and [Cod19]).
A version valid for arbitrary non-Archimedean fields is given in [Reb21, Theorem 4.5.4] (which
appeared after the first version of the current paper).

Recall that the canonical approximants χd ∈ TR of a norm χ ∈ NR, which are defined for d
sufficiently divisible, satisfy χd ≤ χ and form an increasing net with respect to divisibility.

Theorem 3.18. For any χ ∈ NR and p ∈ [1,∞), we have dp(χd, χ)→ 0.
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Recall that the result holds for p =∞ iff χ is continuous (see Theorem 2.19).

Corollary 3.19. For any p ∈ [1,∞), the set TZ of test configurations is dense in NR in the
dp-topology.

Proof. By Theorem 2.19, TZ is dense in TR for d∞-topology, and hence also for the dp-topology,
since dp ≤ d∞. It therefore suffices to show that TR is dp-dense in NR, which follows from
Theorem 3.18 since the canonical approximants of any norm lie in TR. �

By d1-continuity of spectral measures (see Theorem 3.12) we also get:

Corollary 3.20. For all χ, χ′ ∈ NR we have limd σ(χd, χ
′
d) = σ(χ, χ′).

Proof of Theorem 3.18. Since χd ≤ χ is an increasing net, d∞(χd, χ) is decreasing, and hence
uniformly bounded. In view of (3.5), it is thus enough to show the result for p = 1, i.e.

d1(χd, χ) = vol(χ)− vol(χd) =

ˆ
R
λ (σ(χ)− σ(χd))

tends to 0. Since (χd) is d∞-bounded, the support of σ(χd) is further uniformly bounded, and
it will thus suffice to show σ(χd)→ σ(χ) weakly. To prove this, we may, after replacing L by
a multiple, assume that R = R(X,L) is generated in degree 1 and that χ is defined on R. We
recall the description of the spectral measure σ(χ) from [BC11]. The classical Hilbert–Serre
theorem guarantees the existence of the volume

V = vol(R) := lim
m

n!

mn
dimRm,

and we clearly have vol(R(d)) = dnV . More generally, for each λ ∈ R, consider the graded
subalgebra Rλ ⊂ R with graded pieces

Rλm := {s ∈ Rm | χ(s) ≥ mλ}.

Using Okounkov bodies [LM09, KK12], one shows that the volume

vol(Rλ) := lim
m

n!

mn
dimRλm

exists, and [BC11, Theorem 1.11] yields σ(χ) = −dg in the sense of distributions, where
g : R→ [0, 1] is the non-increasing function defined by

g(λ) := V −1 vol(Rλ).

For each d , we similarly have a family of graded subalgebras Rλ,(d) ⊂ R(d) with graded pieces

Rλ,(d)
m = Rλdm = {s ∈ Rdm | χ(s) ≥ rmλ},

and σ(χd) = −dgd with gd : R→ [0, 1] defined by

gd(λ) := (dnV )−1 vol(Rλ,(d)).

Since the degree 1 part of Rλ,(d) is equal to Rλd , Lemma 3.21 below yields gd → g pointwise on
R. By dominated convergence, it follows that gd → g in L1

loc(R), and hence −dgd = σ(χd) →
−dg = σ(χ) weakly. �

Lemma 3.21. Let S ⊂ R be a graded subalgebra, and suppose we are given, for each d

divisible enough, a graded subalgebra T (d) ⊂ S(d) such that T (d)1 = S
(d)
1 = Sd. Then

limd d
−n vol(T (d)) = vol(S).
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Proof. We use Okounkov bodies, following [Bou14]. Set K := k(X), and pick a valuation
ν : K× → Zn of maximal rational rank, equal to n (e.g. associated to a flag of subvarieties as
in [LM09]). Set Γm := ν(Sm r {0}) and Γ(d)m := ν(T (d)m r {0}) for m ≥ 1. Let ∆(S) and
∆(T (d)) be the closed convex hull inside Rn of

⋃
mm

−1Γm and of
⋃
mm

−1Γ(d)m, respectively.
Then vol(S) = n! vol(∆(S)) and vol(T (d)) = n! vol(∆(T (d))), so it suffices to prove that
limd vol(d−1∆(T (d))) = vol(∆(S)).

Since T (d)m ⊂ Sdm, we get Γ(d)m ⊂ Γdm for all d,m, and hence d−1∆(T (d)) ⊂ ∆(S) for
all d . If vol(∆(S)) = 0, we are done, so we may assume ∆(S) has nonempty interior. Pick
compact subsets A and B of Rn with A b B b ∆(S). It suffices to prove that d−1∆(T (d)) ⊃ A
for d sufficiently divisible. Now d−1Zn ∩ B = d−1Γd ∩ B, see [Bou14, Lemme 1.13]. If ∆d is
the convex hull of d−1Γd, it follows that ∆d ⊃ A. But T (d)1 = Sd, so Γ(d)1 = Γd, and hence
d−1∆(T (d)) ⊃ ∆d ⊃ A, which completes the proof. �

4. Non-Archimedean pluripotential theory

In this section we summarize results from [BoJ22a] that are relevant to our later purposes.

4.1. L-psh functions. An L-psh function ϕ : Xan → [−∞,+∞) is defined as the pointwise
limit of any decreasing net in HQ (or HR), excluding ϕ ≡ −∞. We denote by PSH = PSH(L)
the set of all L-psh functions. If ϕ ∈ PSH, then ϕ+ c ∈ PSH for all c ∈ R. If ϕ,ψ ∈ PSH, then
max{ϕ,ψ} ∈ PSH. If (ϕj)j is a decreasing net in PSH, and ϕ is the pointwise limit of (ϕj),
then ϕ ∈ PSH, or ϕ ≡ −∞. We can thus describe PSH as the smallest class of functions which
is invariant under max, translation by a constant, decreasing limits, and contains all functions
of the form m−1 log |s| with m sufficiently divisible and s ∈ Rm r {0}

By Dini’s Lemma, the set

CPSH := PSH∩C0

of (bounded) continuous L-psh functions is the closure of HQ (or HR) in C0 (in line with the
definition of a semipositive (continuous) metric in [Zha95, Gub98, CM18]).

The set PSH is stable under convex combinations, and under the action (t, ϕ) 7→ t · ϕ of
R>0 on functions, see (1.15). If v, v′ ∈ Xan and v ≤ v′, then ϕ(v) ≥ ϕ(v′) for all ϕ ∈ PSH. In
particular,

supϕ := sup
Xan

ϕ = ϕ(vtriv)

for all ϕ ∈ PSH.
A subset Σ ⊂ Xan is pluripolar if Σ ⊂ {ϕ = −∞} for some L-psh function ϕ. This condition

is independent of the choice of ample Q-line bundle L, and Σ is pluripolar iff

T(Σ) := sup
ϕ∈PSH

(supϕ− sup
Σ
ϕ) ∈ [0,+∞] (4.1)

is finite. If Σ = {v} with v ∈ Xan, then T({v}) = T(v) as defined in (1.18), and the set
X lin ⊂ Xan of valuations of linear growth thus coincides with the set of non-pluripolar points
v ∈ Xan, i.e. such that every ϕ ∈ PSH is finite-valued on v.

Since every divisorial valuation has linear growth, L-psh functions are finite-valued on Xdiv.

The restriction map PSH→ RXdiv
is further injective [BoJ22a, Corollary 4.23], and we endow

PSH with the induced topology of pointwise convergence on Xdiv. This is in fact equivalent
to pointwise convergence on X lin [BoJ22a, Theorem 11.4].

Note that since HR(dL) = rHR(L) we have PSH(dL) = dPSH(L) for any d ≥∈ Q>0. To
study PSH(L) we may therefore in practice assume that L is an ample line bundle and that
R(X,L) is generated in degree 1.
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We refer to [BoJ22a, Example 4.13] for a concrete description of L-psh functions on curves.
See also Appendix B below for the toric case.

4.2. Monge–Ampère operator and energy on HQ. The mixed Monge–Ampère opera-
tor on HZ = HQ associates to any tuple (ϕ1, . . . , ϕn) ∈ HnQ a Radon probability measure

MA(ϕ1, . . . , ϕn), defined as follows. Pick an integrally closed, semiample test configurations
(X ,Li) for (X,Li) (with the same X ) such that ϕi = ϕLi , see Appendix A. Denoting by
X0 =

∑
i biEi the irreducible decomposition of the central fiber, we then have

MA(ϕ1, . . . , ϕn) =
∑
i

bi(L1|Ei · . . . · Ln|Ei)δvi ,

where vi ∈ Xdiv is the divisorial valuation defined by Ei.
Following the strategy by Chambert-Loir in [Cha06], the mixed Monge–Ampère operator

admits a unique continuous extension to the space CPSH of continuous L-psh functions (with
respect to uniform convergence), and this extension is in turn a special case of the with the
general theory developed in [CD12].

Lemma 4.1. For any ϕ1, . . . , ϕn ∈ HR, the support of MA(ϕ1, . . . , ϕn) is a finite subset of
X lin.

Proof. Set µ := MA(ϕ1, . . . , ϕn) and Σ := suppµ. The finiteness of Σ is proved in [BE21,
Example 8.11], as a consequence of [CD12, Proposition 6.9.2] and the invariance under ground
field extension of the Chambert-Loir–Ducros construction. By [BoJ22a, Proposition 7.21], we
further have

´
ϕµ > −∞ for any ϕ ∈ PSH. Since ϕ is bounded above, this implies that ϕ is

finite at each v ∈ Σ; thus v is nonpluripolar, and hence v ∈ X lin. �

We will use notation such as MA(ϕ〈j〉, ψ〈n−j〉), with j copies of ϕ and n− j copies of ψ, and

write MA(ϕ) = MA(ϕ〈n〉). We then have MA(0) = δvtriv .
The Monge–Ampère energy E: CPSH→ R is the primitive of the Monge–Ampère operator

in the sense that
d

dt

∣∣∣∣
t=0

E((1− t)ϕ+ tψ) =

ˆ
(ψ − ϕ) MA(ϕ) (4.2)

for ϕ,ψ ∈ CPSH, normalized by E(0) = 0. As such, E is monotone increasing, i.e. ϕ ≥ ψ =⇒
E(ϕ) ≥ E(ψ). Integration along line segments yields

E(ϕ)− E(ψ) =
1

n+ 1

n∑
j=0

ˆ
Xan

(ϕ− ψ) MA(ϕ(j), ψ(n−j)), (4.3)

for ϕ,ψ ∈ CPSH, and hence

E(ϕ) =
1

n+ 1

n∑
j=0

ˆ
Xan

ϕ MA
(
ϕ〈j〉, 0〈n−j〉

)
.

If ϕ ∈ HZ = HQ is represented by a test configuration (X ,L), then

E(ϕ) =
(L̄n+1)

(n+ 1)(Ln)
, (4.4)

where (X̄ , L̄)→ P1 is the canonical compactification of (X ,L)→ A1.
The functional E is concave on CPSH, which amounts to

E(ϕ)− E(ψ) ≤
ˆ

(ϕ− ψ) MA(ψ) (4.5)
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for all ϕ,ψ ∈ CPSH, by (4.2). Combined with (4.3), this implies

ϕ ≥ ψ =⇒ E(ϕ)− E(ψ) ≈
ˆ

(ϕ− ψ) MA(ψ). (4.6)

In addition to E, we introduce the translation invariant functional

I(ϕ,ψ) :=

ˆ
(ϕ− ψ) (MA(ψ)−MA(ϕ)) ≥ 0,

which satisfies the quasi-triangle inequality

I(ϕ1, ϕ2) . I(ϕ1, ϕ3) + I(ϕ3, ϕ2). (4.7)

We also set

I(ϕ) := I(ϕ, 0) := supϕ−
ˆ
ϕMA(ϕ).

The Monge–Ampère operator is homogeneous with respect to the action of R>0 on continuous
L-psh functions ϕ, in the sense that MA(t · ϕ) = t? MA(ϕ) for all t > 0. Similarly, we have
E(t · ϕ) = tE(ϕ), I(t · ϕ) = t I(ϕ).

4.3. Functions and measures of finite energy. The Monge–Ampère energy admits a
unique non-decreasing, usc extension E: PSH→ R ∪ {−∞}, given for ϕ ∈ PSH by

E(ϕ) := inf {E(ψ) | ϕ ≤ ψ ∈ CPSH} . (4.8)

We denote by

E1 := {ϕ ∈ PSH | E(ϕ) > −∞}
the set of L-psh functions of finite energy. In other words, functions in E1 are decreasing limits
of nets ϕi ∈ HQ with energy E(ϕi) uniformly bounded below.

The weak topology of E1 is its subspace topology from PSH, and the strong topology on E1

is the coarsest refinement of the weak topology for which E becomes continuous.
For a decreasing or increasing net (ϕj) in E1, strong and weak convergence coincide, i.e.

ϕj → ϕ strongly in E1 iff ϕj → ϕ pointwise on Xdiv, see Example 12.2 and Theorem 12.5
in [BoJ22a], respectively.

Denote by M the space of Radon probability measures on Xan, endowed with the weak
topology. The main point in introducing the strong topology is that the mixed Monge–Ampère
operator MA, a priori only defined as a map (C0 ∩ PSH)n →M, admits a (unique) extension
(E1)n →M that is continuous in the strong topology on both sides.

Further,

(ϕ0, ϕ1, . . . , ϕn) 7→
ˆ
ϕ0 MA(ϕ1, . . . , ϕn)

is finite-valued and (strongly) continuous on tuples in E1. In particular, the functional I
from §4.2 extend continuously to E1, and it induces a quasi-metric on E1/R that defines the
strong topology.

The energy of a probability measure µ ∈M on Xan is defined by

E∨(µ) := sup
ϕ∈E1

{
E(ϕ)−

ˆ
ϕdµ

}
, (4.9)

where the supremum can be restricted to functions in HQ, by approximation. This defines a
convex, lsc function E∨ : M→ [0,+∞]. We denote by

M1 :=
{
µ ∈M | E∨(µ) < +∞

}
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the set of measures of finite energy. It comes with a strong topology, defined as the coarsest
refinement of the weak topology of measures in which E∨ is continuous. The topological space
M1 does not depend on L.

By (4.5), for any ϕ ∈ E1, the measure µ = MA(ϕ) has finite energy, and ϕ achieves the
supremum in (4.9), i.e.

E∨(MA(ϕ)) = E(ϕ)−
ˆ
ϕ MA(ϕ). (4.10)

Conversely, a measure µ ∈M1 satisfies µ = MA(ϕ) with ϕ ∈ E1 iff ϕ achieves the supremum
in (4.9). By a main result of [BoJ22a], the Monge–Ampère operator induces a topological
embedding with dense image

MA: E1/R ↪→M1,

with respect to the strong topology on both sides.

4.4. Envelopes. Consider a bounded-above family (ϕi) of L-psh functions, and set ϕ :=
supi ϕi. By definition, the usc regularization ϕ? : Xan → R∪{−∞} is the smallest usc function
such that ϕ? ≥ ϕ.

Lemma 4.2. The restriction of ϕ? to Xdiv coincides with ϕ, and ϕ? is the smallest usc function
on Xan with this property.

Proof. By [BoJ22a, Theorem 5.6], points of Xdiv are non-negligible, which is a reformulation
of the first assertion. Consider next a usc function ψ : Xan → R ∪ {−∞} such that ψ = ϕ on
Xdiv. For each i, we then have ϕi ≤ ψ on Xdiv, and hence on Xan, by [BoJ22a, Theorem 4.22].
Taking the supremum over i yields ϕ ≤ ψ on Xan, and hence ϕ? ≤ ψ, since ψ is usc. �

We say that (X,L) has the envelope property if ϕ? is L-psh for each bounded-above family
of L-psh functions, using the above notation. It is proved in [BoJ22a, Theorem 5.20] that the
envelope property holds if X is smooth and k has characteristic zero, or in any characteristic
if dimX ≤ 2 [GJKM17]. For later use, we record:

Lemma 4.3. Let (ϕi) be a bounded-above, increasing net in E1. Set ϕ := supi ϕi, and assume
that ϕ? is L-psh (e.g. L has the envelope property). Then ϕ? ∈ E1 and ϕi → ϕ? strongly in E1.

Proof. The first point holds because ϕ? ≥ ϕi, and hence E(ϕ?) ≥ E(ϕi) > −∞. As recalled
above, we have ϕ? = ϕ on Xdiv. Thus ϕi → ϕ? pointwise on Xdiv, i.e. weakly in E1, and hence
strongly as well, since (ϕi) is an increasing net. �

Given a function ϕ : Xan → R ∪ {±∞} we define the psh envelope pointwise as

P(ϕ) := sup{ψ ∈ PSH | ψ ≤ ϕ}.
Note that the Fubini–Study envelope in (2.18) can be written

Q(ϕ) = sup{ψ ∈ HQ | ψ ≤ ϕ} = sup{ψ ∈ CPSH | ψ ≤ ϕ}.
in both cases the convention sup ∅ = −∞ applies. Clearly Q(ϕ) ≤ P(ϕ) ≤ ϕ, and either
inf ϕ = −∞ ≡ Q(ϕ), or Q(ϕ) is (finite-valued and) lsc. In the latter case,

Q(ϕ) = P(ϕ?) (4.11)

where ϕ? is the lsc regularization of ϕ (see [BoJ22a, Lemma 5.19]). In particular, Q(ϕ) = P(ϕ)
when ϕ is continuous.

The functions P(ϕ) and Q(ϕ) are not psh in general. For any ϕ ∈ C0, we have

P(ϕ) = Q(ϕ)⇐⇒ P(ϕ) ∈ C0 ⇐⇒ P(ϕ) ∈ PSH,
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and these properties hold if (and only if) L has the envelope property. For the next result,
see [BoJ22a, Corollary 5.18].

Lemma 4.4. Assume that (X,L) has the envelope property, and consider a usc function
ϕ : Xan → R ∪ {−∞}. Then:

(i) either P(ϕ) ∈ PSH or P(ϕ) ≡ −∞;
(ii) if ϕ is the pointwise limit of a decreasing net of usc functions ϕi : X

an → R ∪ {−∞},
then P(ϕi)↘ P(ϕ) pointwise on Xan.

Denote by E∞ ⊂ E1 the space of bounded L-psh functions. A function ϕ ∈ E∞ is regularizable
from below if there exists an increasing net (ϕj)j in CPSH that converges to ϕ in PSH (i.e.

pointwise on Xdiv). Such a net can then be chosen in HQ, and converges strongly to ϕ in E1.
We write

E∞↑ ⊂ E∞

for the space of L-psh functions regularizable from below. If the envelope property holds, then
a bounded function ϕ ∈ E∞ lies in E∞↑ iff its discontinuity locus {ϕ? < ϕ} is pluripolar [BoJ22a,

Theorem 11.23].

Remark 4.5. Assuming the envelope property, the inclusion E∞↑ ⊂ E∞ is strict if n ≥ 1,

whereas CPSH ⊂ E∞↑ is strict as soon as n ≥ 2. See Examples 13.23 and 13.25 in [BoJ22a].

For any bounded function ϕ ∈ L∞, denote by Q?(ϕ) := Q(ϕ)? the usc regularization of
Q(ϕ).

Lemma 4.6. Assume that (X,L) has the envelope property. Then:

(i) Q? : L∞ → L∞ is a projection operator onto E∞↑ ;

(ii) for all ϕ,ψ ∈ E∞↑ we have Q?(ϕ ∧ ψ) = P(ϕ ∧ ψ).

Proof. (i) follows from [BoJ22a, Theorem 13.24]. Pick ϕ,ψ ∈ E∞↑ . By (4.11) we have Q(ϕ∧ψ) =

P((ϕ ∧ ψ)?) = P(ϕ? ∧ ψ?). Since ϕ,ψ are regularizable from below, their discontinuity locus
is pluripolar, i.e. ϕ? = ϕ, ψ? = ψ, and hence ϕ? ∧ ψ? = ϕ ∧ ψ, outside a pluripolar set.
By [BoJ22a, Theorem 13.20], it follows that P(ϕ? ∧ ψ?)? = P(ϕ ∧ ψ)?, which coincides with
P(ϕ ∧ ψ) since ϕ ∧ ψ is usc (see Lemma 4.4). This proves (ii). �

4.5. The extended energy. Recall from [BoJ22a, §8]2 that the extended Monge–Ampère
energy of an arbitrary function ϕ : Xan → R ∪ {±∞} is defined as

Ẽ(ϕ) := sup{E(ψ) | ψ ∈ PSH, ψ ≤ ϕ} ∈ R ∪ {±∞}. (4.12)

Note that Ẽ(ϕ) = Ẽ(P(ϕ)), since any ψ ∈ PSH satisfies ψ ≤ ϕ ⇔ ψ ≤ P(ϕ). If ϕ : Xan →
R ∪ {+∞} is lsc (and hence bounded below), then P(ϕ) = Q(ϕ), see (4.11), and hence

Ẽ(ϕ) = Ẽ(P(ϕ)) = Ẽ(Q(ϕ)) = sup{E(ψ) | ψ ∈ HR, ψ ≤ ϕ}. (4.13)

A Dini-type argument (see [BoJ22a, Proposition 8.3]) further yields:

Lemma 4.7. The functional ϕ 7→ Ẽ(ϕ) is continuous along increasing nets of bounded-below
lsc functions.

Following [BoJ22b], we say that (X,L) has the weak envelope property if there exists a
birational model π : X ′ → X and an ample Q-line bundle L′ on X ′ such that π?L ≤ L′ and
(X ′, L′) has the envelope property. This is for instance the case whenever char k = 0, or if
dimX ≤ 2.

2In loc. cit., the extended energy was simply denoted by E(ϕ).
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Lemma 4.8. Assume (X,L) has the weak envelope property, and pick any bounded-above
family (ϕi) of L-psh functions. Set ϕ := supi ϕi. Then:

(i) ϕ? = ϕ on X lin;

(ii) if ϕ is further bounded below, then Ẽ(ϕ?) = Ẽ(ϕ).

Proof. Point (i) means that each v ∈ X lin is non-negligible. Use the previous notation. Since
π is birational, we have π−1({v}) = {v′} with v′ ∈ X ′lin. By [BoJ22a, Lemma 5.4], it suffices
to show that v′ is non-negligible, and this follows from [BoJ22a, Theorem 13.17], which applies
because (X ′, L′) has the envelope property. Finally, (ii) follows from [BoJ22b, Theorem B], as
the assumption guarantee that P(ϕ) = ϕ. �

5. Darvas metrics

In this section, we study the metrics on the spaces HR, E1 and M1 induced by the d1-
pseudometric of NR, and prove the main part of Theorem B.

5.1. Volume vs. energy. The next result will be a key tool in what follows.

Theorem 5.1. For any χ ∈ NR we have vol(χ) = Ẽ(FS(χ)).

Here FS(χ) is bounded and lsc, but not L-psh in general, and Ẽ(FS(χ)) is its extended
energy (see §4.5).

Proof. Consider the round-down χ′ := bχc ∈ NZ. Then d∞(χ, χ′) = 0 (see Example 1.7),
and hence FS(χ) = FS(χ′), vol(χ) = vol(χ′). As a result, we may and do assume χ ∈ NZ.
By Theorem 3.18, the canonical approximants χd ∈ TZ satisfy vol(χd) → vol(χ). On the
other hand, FS(χd) = FSd(χ) increases pointwise to FS(χ) (see (2.9)), and hence E(FS(χd)) =

Ẽ(FS(χd))→ Ẽ(FS(χ)), by Lemma 4.7.
We are thus reduced to the case χ ∈ TZ, which is a consequence of [BHJ17]. Indeed, χ

corresponds to an ample test configuration (X ,L) for (X,L) under the Rees correspondence
(see Appendix A). By [BHJ17, Proposition 3.12], the spectral measure σ(χ) coincides with the
Duistermaat–Heckman measure DH(X ,L), and passing to the barycenters yields

vol(χ) =
(L̄n+1)

(n+ 1)(Ln)
,

by [BHJ17, Lemma 7.3]. By (4.4), the right-hand side is also equal to E(FS(χ)) = Ẽ(FS(χ)),
and the result follows. �

Corollary 5.2. Any norm χ ∈ NR is asymptotically equivalent to its homogenization, i.e.
χ ∼ χhom.

Proof. Since χ ≤ χhom, it suffices to show vol(χ) = vol(χhom) (see Lemma 3.11). This follows
from Theorem 5.1, since FS(χ) = FS(χhom) by Proposition 2.14. �

Corollary 5.3. For any ϕ ∈ L∞ we have vol(IN(ϕ)) = Ẽ(Q(ϕ)) = Ẽ(ϕ?).

Proof. Since IN(ϕ?) = IN(ϕ) (see (2.15)), we may assume that ϕ is lsc, and hence Ẽ(ϕ) =

Ẽ(Q(ϕ)), see (4.13). Now FS(IN(ϕ)) = Q(ϕ), by Proposition 2.29, and we conclude by Theo-
rem 5.1. �
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5.2. The Darvas metric on HR. Recall from Corollary 2.18 that the operators

FS: (TR, d∞)� (HR, d∞), IN: (HR,d∞) ↪→ (TR,d∞)

are isometries such that FS ◦ IN = id.
For any p ∈ [1,∞], the pseudo-metric dp on TR ⊂ NR satisfies dp ≤ d∞; it is thus constant

along the fibers of FS, and hence descends to a pseudo-metric dp on HR, such that

FS: (TR, dp)� (HR,dp), IN: (HR,dp) ↪→ (TR, dp)

are isometries. Theorem A asserts that dp is a metric on HR. Since dp ≥ d1, this follows from
the following more precise result.

Theorem 5.4. The pseudo-metric d1 on HR is a metric, uniquely characterized by

ϕ ≥ ψ =⇒ d1(ϕ,ψ) = E(ϕ)− E(ψ); (5.1)

d1(ϕ,ψ) = inf{d1(ϕ, τ) + d1(τ, ψ) | τ ∈ HR, τ ≤ ϕ ∧ ψ}, (5.2)

for all ϕ,ψ ∈ HR.

Proof. We first prove that d1 satisfies (5.1) and (5.2), which will take care of uniqueness. Pick
ϕ,ψ ∈ HR, and set χ := IN(ϕ), χ′ := IN(ψ). Then FS(χ) = ϕ, FS(χ′) = ψ, and Theorem 5.1
implies vol(χ) = E(ϕ), vol(χ′) = E(ψ). If ϕ ≥ ψ, then χ ≥ χ′, and (3.14) yields

d1(ϕ,ψ) = d1(χ, χ′) = vol(χ)− vol(χ′) = E(ϕ)− E(ψ),

which proves (5.1). Next, pick ε > 0. Applying Theorem 3.18 to χ ∧ χ′ yields χ′′ ∈ TR such
that χ′′ ≤ χ ∧ χ′ and d1(χ′′, χ ∧ χ′) ≤ ε. If we set τ := FS(χ′′) ∈ HR, then τ ≤ ϕ,ψ, and

d1(ϕ, τ) + d1(τ, ψ) = d1(χ, χ′′) + d1(χ′′, χ′)

≤ d1(χ, χ ∧ χ′) + d1(χ ∧ χ′, χ′) + 2ε

= d1(χ, χ′) + 2ε = d1(ϕ,ψ) + 2ε,

where we have used (3.14). This proves (5.2). Assume now d1(ϕ,ψ) = 0. By (5.1) and (5.2),
there exists a sequence (τi) in HR such that τi ≤ ϕ,ψ and E(τi) → E(ϕ) and E(τi) → E(ψ).
By [BoJ22a, Proposition 12.6], it follows that (τi) converges to both ϕ and ψ in E1, and hence
ϕ = ψ, since the topology is separated. This proves, as desired, that d1 is a metric on HR (this
conclusion alternatively follows from (5.7) below). �

5.3. The Darvas metric on E1. We next prove that the metric d1 on HR canonically extends
to E1, yielding an analogue in our context of the metric introduced by Darvas [Dar15b] in the
complex analytic setting.

Theorem 5.5. There exists a unique metric d1 on E1 that defines the strong topology and
restricts to the previous metric d1 on HR. Further:

(i) for all ϕ,ψ ∈ CPSH, we have

d1(ϕ,ψ) = E(ϕ) + E(ψ)− 2 Ẽ(P(ϕ ∧ ψ)); (5.3)

(ii) the metric space (E1,d1) is complete iff the envelope property holds for (X,L);
(iii) if the envelope property holds, then (5.3) remains valid for all ϕ,ψ ∈ E1, and P(ϕ∧ψ) ∈

E1.
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Recall that the envelope property holds whenever X is smooth and char(k) = 0, and fails
if X is not unibranch. We refer to the metric d1 on E1 as the Darvas metric. By [Reb20],
(E1, d1) is a geodesic metric space.

Our strategy to extend d1 to E1 is to compare it to the functional

I(ϕ,ψ) := I(ϕ,ψ) + | supϕ− supψ|.

It was indeed proven in [BoJ22a, §12.1] that I is a quasi-metric on E1 that defines the strong
topology, and further satisfies

I(ϕ,ψ) = I(ϕ,ϕ ∨ ψ) + I(ϕ ∨ ψ,ψ) (5.4)

Set

I(ϕ) := I(ϕ, 0), d1(ϕ) := d1(ϕ, 0).

By the quasi-triangle inequality, (5.4) implies

I(ϕ ∨ ψ) . max{I(ϕ), I(ψ)}. (5.5)

Lemma 5.6. The quasi-metrics d1 and I on HR are Hölder comparable, in the sense that

d1(ϕ,ψ) . I(ϕ,ψ)α max{I(ϕ), I(ψ)}1−α (5.6)

I(ϕ,ψ) . d1(ϕ,ψ)α max{d1(ϕ), d1(ψ)}1−α, (5.7)

with α := 1/2n. In particular, d1(ϕ) ≈ I(ϕ).

Proof. Assume ϕ ≥ ψ. Then (5.1) and (4.6) show that

d1(ϕ,ψ) = E(ϕ)− E(ψ) ≈
ˆ

(ϕ− ψ) MA(ψ),

and hence

I(ϕ,ψ) =

ˆ
(ϕ− ψ)(MA(ψ)−MA(ϕ)) . d1(ϕ,ψ).

Now we can write

I(ϕ,ψ) =

ˆ
(ϕ− ψ) MA(ψ) +

ˆ
(ϕ− ψ)(MA(0)−MA(ϕ)). (5.8)

As a special case of [BoJ22a, Lemma 7.30] we also have the estimate∣∣∣∣ˆ (ϕ− ψ)(MA(0)−MA(ϕ))

∣∣∣∣ . I(ϕ,ψ)α max{I(ϕ), I(ψ)}1−α.

Since I ≤ I, this yields on the one hand

d1(ϕ,ψ) . I(ϕ,ψ) + I(ϕ,ψ)α max{I(ϕ), I(ψ)}1−α

. I(ϕ,ψ)α max{I(ϕ,ψ), I(ϕ), I(ψ)}1−α

. I(ϕ,ψ)α max{I(ϕ), I(ψ)}1−α.

Since I . d1, we get on the other hand

I(ϕ,ψ) . d1(ϕ,ψ) + d1(ϕ,ψ)α max{d1(ϕ), d1(ψ)}1−α

. d1(ϕ,ψ)α max{d1(ϕ),d1(ψ)}1−α.

This proves (5.6), and (5.7) when ϕ ≥ ψ.
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Now consider arbitrary ϕ,ψ ∈ HR. To prove (5.6), set σ := ϕ∨ψ ∈ HR. From what precedes
and (5.5), we have

d1(ϕ, σ) . I(ϕ, σ)α max{I(ϕ), I(ψ}1−α and d1(ψ, σ) . I(ψ, σ)α max{I(ϕ), I(ψ}1−α,
which together with the triangle inequality for d1 yields (5.6).

The proof of (5.7) is similar. By (5.2) we can pick τ ∈ HR with τ ≤ ϕ,ψ such that
max{d1(τ, ϕ), d1(τ, ψ)} . d1(ϕ,ψ), and hence d1(τ) . max{d1(ϕ),d1(ψ}. Since τ ≤ ϕ,ψ, the
first step yields

I(ϕ, τ) . d1(ϕ, τ)α max{d1(ϕ), d1(τ)}1−α . d1(ϕ,ψ)α max{d1(ϕ),d1(ψ}1−α,
I(ψ, τ) . d1(ψ, τ)α max{d1(ψ), d1(τ)}1−α . d1(ϕ,ψ)α max{d1(ϕ),d1(ψ}1−α,

and the quasi-triangle inequality for I yields (5.7). �

Proof of Theorem 5.5. Since HR is dense in E1, uniqueness is clear. Given ϕ,ψ ∈ E1, pick
sequences (ϕi), (ψi) in HR converging strongly to ϕ and ψ, respectively (for example, we can
use decreasing sequences). Thus limi I(ϕi, ϕ) = limi I(ψi, ψ) = 0. Using (5.6) this implies that
(d1(ϕi, ψi))i is a Cauchy sequence, so that d1(ϕ,ψ) := limj d1(ϕj , ψj) exists. It is easy to
see that it does not depend on the choice of sequence (ϕi) and (ψi), and that the extension
is a pseudo-metric on E1. Further, the estimates of Lemma 5.6 still hold for ϕ,ψ ∈ E1. In
particular d1(ϕ,ψ) = 0 iff I(ϕ,ψ) = 0 iff ϕ = ψ, so d1 is a metric on E1. These estimates also
show that d1 and I share the same Cauchy sequences in E1, so that (E1,d1) is complete iff
(E1, I) is complete. By [BoJ22a, Theorem 12.8], this is also equivalent to the envelope property
for (X,L), which proves (ii).

Next, pick ϕ,ψ ∈ HR. By (5.1) and (5.2), we have

d1(ϕ,ψ) = inf {d1(ϕ, τ) + d1(τ, ψ) | τ ∈ HR, τ ≤ ϕ ∧ ψ}
= E(ϕ) + E(ψ)− 2 sup{E(ψ) | ψ ∈ HR, ψ ≤ ϕ ∧ ψ}

= E(ϕ) + E(ψ)− 2 Ẽ(P(ϕ ∧ ψ)),

see (4.13). Since d1 ≤ d∞, all terms are continuous with respect to uniform convergence, and
the identity therefore remains valid on CPSH, which yields (i).

Finally, assume that the envelope property holds. Pick ϕ,ψ ∈ E1, set ρ := P(ϕ ∧ ψ),
and choose decreasing nets (ϕi), (ψi) in HR converging to ϕ,ψ. By Lemma 4.4, we either have
ρ ∈ PSH or ρ ≡ −∞, and P(ϕi∧ψi) decreases pointwise to ρ. Since (5.3) holds for ϕi, ψi ∈ HR,
it also holds for ϕ,ψ, by continuity of E along decreasing nets. In particular, E(ρ) is finite,
and hence ρ ∈ E1. This proves (iii). �

As in [DDL18, Theorem 3.7], we next provide a comparison of the Darvas metric d1 on E1

with the functional I1 : E1 × E1 → R≥0 defined by

I1(ϕ,ψ) :=

ˆ
|ϕ− ψ|(MA(ϕ) + MA(ψ)).

This functional is obviously symmetric, and it separates points, as a consequence of the Dom-
ination Principle (see [BoJ22a, Corollary 10.6]). For all ϕ,ψ ∈ E1, we further have

I1(ϕ,ψ) = I1(ϕ,ϕ ∨ ψ) + I1(ϕ ∨ ψ,ψ). (5.9)

As with I and I, this follows from the Locality Principle (see [BoJ22a, Theorem 7.40, Proposi-
tion 7.45]).

Theorem 5.7. For all ϕ,ψ ∈ E1 we have d1(ϕ,ψ) ≈ I1(ϕ,ψ).
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The proof relies on the following analogue of [DDL18, Lemma 3.8].

Lemma 5.8. If ϕ,ψ ∈ E1 and ρ := 1
2(ϕ+ ψ), then d1(ϕ,ψ) ≈ d1(ϕ, ρ) + d1(ρ, ψ).

Proof. By approximation, we may assume ϕ,ψ ∈ HR. Pick any τ ∈ HR with τ ≤ ϕ∧ ψ. Then
τ ≤ ϕ,ψ, ρ, and (5.1) yields

d1(ϕ, ρ) + d1(ρ, ψ) ≤ d1(ϕ, τ) + d1(ψ, τ) + 2 d1(ρ, τ)

= (E(ϕ)− E(τ)) + (E(ψ)− E(τ)) + 2(E(ρ)− E(τ))

≈
ˆ

(ϕ− τ) MA(τ) +

ˆ
(ψ − τ) MA(τ) + 2

ˆ
(ρ− τ) MA(τ)

= 2

ˆ
(ϕ− τ) MA(τ) + 2

ˆ
(ψ − τ) MA(τ)

≈ (E(ϕ)− E(τ) + E(ψ)− E(τ)) = d1(ϕ, τ) + d1(ψ, τ).

Here the first inequality is simply the triangle inequality for d1, whereas the third and fifth
lines follow from (4.6). By (5.2), the infimum over τ of the right-hand side equals d1(ϕ,ψ) and
we are done. �

Proof of Theorem 5.7. Since d1(ϕ,ψ) and I1(ϕ,ψ) are both continuous along decreasing nets,
we may assume wlog ϕ,ψ ∈ HR. Let us start by proving d1(ϕ,ψ) . I1(ϕ,ψ). By (5.9) and the
triangle inequality for d1, it suffices to consider the case ϕ ≥ ψ. But in this case,(4.6) yields

d1(ϕ,ψ) = E(ϕ)− E(ψ) ≈
ˆ

(ϕ− ψ) MA(ψ) ≤ I1(ϕ,ψ)

It remains to prove d1(ϕ,ψ) & I1(ϕ,ψ). Set ρ := 1
2(ϕ + ψ) ∈ HR, so that Lemma 5.8 gives

d1(ϕ,ψ) ≈ d1(ϕ, ρ)+d1(ρ, ψ). Pick ε > 0. By (5.2), we can find σ, τ ∈ HR such that σ ≤ ϕ∧ρ,
τ ≤ ρ ∧ ψ, and

d1(ϕ, ρ) ≥ d1(ϕ, σ) + d1(σ, ρ)− ε and d1(ρ, ψ) ≥ d1(ρ, τ) + d1(τ, ψ)− ε,
and hence

d1(ϕ,ψ) & d1(σ, ρ) + d1(ρ, τ)− 2ε.

As σ ≤ ρ, we have

d1(σ, ρ) = E(ρ)− E(σ) ≥
ˆ

(ρ− σ) MA(ρ) ≥ 2−n
ˆ

(ρ− σ)(MA(ϕ) + MA(ψ)),

where the last inequality follows by expanding MA(ρ) = MA(1
2(ϕ+ ψ)). Combining this with

the analogous lower bound on d1(ρ, τ) yields

d1(ϕ,ψ) &
ˆ

(2ρ− σ − τ)(MA(ϕ) + MA(ψ))− 2ε.

We conclude by noting that 2ρ− σ − τ ≥ 1
2 |ϕ− ψ| and letting ε→ 0. �

5.4. The Darvas metric on M1. By [BoJ22a, Proposition 12.7], the Monge–Ampère oper-
ator induces a topological embedding with dense image

MA: E1/R ↪→M1,

where E1 and M1 are both equipped with the strong topology. In particular, the quotient
topology of E1/R is Hausdorff. Since the action of R on E1 by translation preserves d1, the
topology of E1/R is defined by the quotient metric

d1(ϕ,ψ) = inf
c∈R

d1(ϕ+ c, ψ). (5.10)
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Note also that the isometric surjection FS: (TR, d1)� (HR, d1), being equivariant with respect
to the action of R, induces an isometric surjection

FS: (TR/R,d1)� (HR/R, d1), (5.11)

where d1 respectively denotes the restriction of the quotient metric on NR/R and E1/R.
As in the proof of Lemma 3.15, we have:

Lemma 5.9. For all ϕ,ψ ∈ E1, there exists c ∈ R such that d1(ϕ,ψ) = d1(ϕ + c, ψ) and
|c| ≤ 2 d1(ϕ,ψ) . max{I(ϕ), I(ψ)}.

This provides another reason why (5.10) defines a metric on E1/R.

Theorem 5.10. There exists a unique metric d1 on M1 that defines the strong topology and
restricts to the quotient metric (5.10) on E1/R ↪→M1. Furthermore, the metric space (M1,d1)
is complete.

Note that completeness this time holds with or without the envelope property, in contrast
with Theorem 5.5. As with the latter, the proof is based on a comparison of d1 with the
translation invariant functional I : E1 × E1 → R≥0.

Lemma 5.11. The quasi-metrics d1 and I on E1/R are Hölder comparable, i.e.

d1(ϕ,ψ) . I(ϕ,ψ)α max{I(ϕ), I(ψ)}1−α, (5.12)

I(ϕ,ψ) . d1(ϕ,ψ)α max{d1(ϕ), d1(ψ)}1−α (5.13)

for all ϕ,ψ ∈ E1, with α := 1/2n. In particular, d1(ϕ) ≈ I(ϕ).

Proof. By translation invariance of I and d1, we may assume supϕ = supψ = 0. Then (5.12)
follows directly from (5.6), since d1(ϕ,ψ) ≤ d1(ϕ,ψ). By Lemma 5.9, we can find c ∈ R such
that d1(ϕ,ψ) = d1(ϕ+ c, ψ) and |c| . max{I(ϕ), I(ψ)}. By (5.7) we infer

I(ϕ,ψ) ≤ I(ϕ+ c, ψ) . d1(ϕ,ψ)α max{I(ϕ), I(ψ)}1−α. (5.14)

In particular, I(ϕ) . d1(ϕ)α I(ϕ)1−α, hence I(ϕ) . d1(ϕ), and (5.13) follows. �

Proof of Theorem 5.10. Since E1/R ↪→M1 has dense image, uniqueness is clear. By [BoJ22a,
Theorem 10.12], the strong topology ofM1 is defined by a certain quasi-metric I∨, that further
satisfies I∨(MA(ϕ),MA(ψ)) ≈ I(ϕ,ψ). Using the estimates of Lemma 5.11 and arguing just as
in the proof of Theorem 5.5, we infer the existence of an extension of d1 to a pseudo-metric d1

on M1 such that

d1(µ, δvtriv) ≈ I∨(µ, δvtriv) ≈ E∨(µ) (5.15)

d1(µ, µ′) . I∨(µ, µ′)α max{E∨(µ),E∨(µ′)}1−α (5.16)

I∨(µ, µ′) .d1(µ, µ′)α max{E∨(µ)),E∨(µ′)}1−α (5.17)

for all µ, ν ∈ M1 (recalling that MA(0) = δvtriv). This shows that d1 separates points, and
hence is a metric on M1, which further shares the same convergent and Cauchy sequences as
I∨. It thus defines the strong topology of M1, and (M1,d1) is complete, because (M1, I∨) is
complete by [BoJ22a, Theorem 10.14]. �

Combining the above estimates with a key estimate for Monge–Ampère integrals from [BoJ22a],
we get the following Hölder continuity property:
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Theorem 5.12. There exist α1, α2, α3 ∈ R>0, only depending on n, such that
∑

i αi = 1 and∣∣∣∣ˆ ∣∣ϕ− ϕ′∣∣ (µ− µ′)∣∣∣∣ . d1(ϕ,ϕ′)α1 d1(µ, µ′)α2Mα3 (5.18)

for all ϕ,ϕ′ ∈ E1 and µ, µ′ ∈ M1, where M := max{I(ϕ), I(ϕ′),E∨(µ),E∨(µ′)}. Further, there
exists α ∈ (0, 1) only depending on n such that

‖ϕ− ϕ′‖L1(µ) . d1(ϕ,ϕ′)α max{I(ϕ), I(ϕ′),E∨(µ)}1−α. (5.19)

Proof. By [BoJ22a, Theorem 10.3], we have∣∣∣∣ˆ (ϕ− ϕ′)(µ− µ′)
∣∣∣∣ . I(ϕ,ϕ′)α I∨(µ, µ′)

1
2M

1
2
−α.

Injecting (5.13) and (5.17) yields∣∣∣∣ˆ (ϕ− ϕ′)(µ− µ′)
∣∣∣∣ . d1(ϕ,ϕ′)α1 d1(µ, µ′)α2Mα3 (5.20)

with α1, α2, α3 as above. Next, write

|ϕ− ϕ′| = 2(τ − ϕ′) + (ϕ′ − ϕ)

with τ := ϕ ∨ ϕ′ ∈ E1. On the one hand, we have I(τ) .M . On the other hand, Theorem 5.7
and (5.9) yield

d1(τ, ϕ′) ≈ I1(τ, ϕ′) ≤ I1(ϕ,ϕ′) ≈ d1(ϕ,ϕ′).

Applying (5.20) to τ, ϕ′ and ϕ′, ϕ now yields (5.18). Assume now µ′ = MA(ϕ). Then E∨(µ) ≈
I(ϕ), and hence∣∣∣∣ˆ ∣∣ϕ− ϕ′∣∣ (µ−MA(ϕ))

∣∣∣∣ . d1(ϕ,ϕ′)α max{I(ϕ), I(ϕ′),E∨(µ)}1−α.

By Theorem 5.7, we have on the other hand
´
|ϕ − ϕ′|MA(ϕ) . d1(ϕ,ϕ′), and summing up

these estimates yields (5.19). �

6. Divisorial and maximal norms

The restriction of the pseudometric d1 to the subspace N hom
R ⊂ NR of homogeneous norms

is still not a metric unless dimX = 0, see Example 3.10. Here we study further subspaces on
which d1 does induce a metric.

One such subspace consists of divisorial norms, defined by finitely many divisorial valua-
tions. These play an important role in the notion of divisorial stability introduced and studied
in [BoJ22c]. We then show that, at least in characteristic zero, there is a canonical maximal
subspace of N hom

R on which d1 is a metric. In particular, we prove Theorem D.

6.1. General infimum norms. The following construction generalizes the one in §2.4.

Definition 6.1. For any non-pluripolar set Σ ⊂ Xan, and any bounded function ϕ : Σ → R,
let INΣ(ϕ) ∈ N hom

R denote the homogeneous norm defined for s ∈ Rm by

INΣ(ϕ)(s) = inf
v∈Σ
{v(s) +mϕ(v)}. (6.1)
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Note that exp(− INΣ(ϕ)(s)) coincides with the more usual supnorm supΣ |s|e−mϕ. The
filtration corresponding to INΣ(ϕ) is given by

F λRm = {s ∈ Rm | v(s) +mϕ(v) ≥ λ for all v ∈ Σ} , λ ∈ R.
The condition that Σ is non-pluripolar, which is equivalent to T(Σ) <∞ (see (4.1)) and holds
as soon as Σ ∩X lin 6= ∅, guarantees that INΣ(ϕ) is indeed a (linearly bounded) norm. More
precisely:

Lemma 6.2. For any subset Σ ⊂ Xan and any bounded function ϕ : Σ → R, (6.1) defines
a (linearly bounded) norm iff the closure Σ ⊂ Xan is non-pluripolar. Further, we then have
T(Σ) = λmax(INΣ(0)).

Proof. Since ϕ is bounded, it is clear that INΣ(ϕ) is a norm iff

T′(Σ) := sup

{
m−1 inf

v∈Σ
v(s) | s ∈ Rm \ {0} with m sufficiently divisible

}
is finite. By continuity of v 7→ v(s) for any section s, we have T′(Σ) = T′(Σ), and we may
thus further assume that Σ is closed. It will then be enough to show that T(Σ) = T′(Σ)
(the case of a single point being [BoJ22a, Lemma 4.46]). Note that T′(Σ) = supϕ(− supΣ ϕ)

where ϕ runs over L-psh functions of the form ϕ = m−1 log |s| with s ∈ Rm \ {0}. Since
supXan ϕ = ϕ(vtriv) = 0, we infer T(Σ) ≥ T′(Σ). Conversely, pick ϕ ∈ PSH. If ϕ ∈ HR, then
writing ϕ as in (1.20) yields supXan ϕ ≤ supΣ ϕ+T′(Σ). In the general case, write ϕ as the limit
of a decreasing net in (ϕi) in HR. Since supXan ϕi = ϕi(vtriv) converges to supXan ϕ = ϕ(vtriv),
it suffices to show supΣ ϕi → supΣ ϕ. Since Xan, and hence Σ, are compact, we can find
vi ∈ Σ such that ϕi(vi) = supΣ ϕi, for each i. After passing to a subnet, we may further
assume vi → v ∈ Σ. If i ≤ j then ϕi(vj) ≥ ϕj(vj) = supΣ ϕj , and letting j → ∞ yields
ϕi(v) ≥ limj supΣ ϕj . Since limi ϕi(v) = ϕ(v), we infer supΣ ϕ ≥ ϕ(v) ≥ limj supΣ ϕj , and the
result follows. �

Remark 6.3. Except in the trivial case dimX = 0, we can always find a pluripolar subset
Σ ⊂ Xan such that Σ is non-pluripolar. Indeed, the trivial valuation vtriv, which is non-
pluripolar, lies in the closure of X(k) ⊂ Xan. By [Poi13], vtriv thus lies in the closure of a
countable subset Σ ⊂ X(k), which is necessarily pluripolar (see [BoJ22a, Lemma 4.37]).

For a fixed non-pluripolar subset Σ ⊂ Xan, we write

NΣ
R ⊂ N hom

R

for the set of norms INΣ(ϕ), with ϕ ranging over bounded functions on Σ.

Example 6.4. If ϕ : Xan → R is bounded, then INXan(ϕ) = IN(ϕ), and Theorem 2.16 thus
yields NXan

R = N hom
R .

A simple check shows that

INΣ(ϕ ∧ ϕ′) = INΣ(ϕ) ∧ INΣ(ϕ′), INΣ(ϕ+ c) = INΣ(ϕ) + c, INtΣ(t · ϕ) = t INΣ(ϕ)

and

d∞(INΣ(ϕ), INΣ(ϕ′)) ≤ sup
Σ
|ϕ− ϕ′| (6.2)

for all bounded functions ϕ,ϕ′ : Σ → R, c ∈ R and t ∈ R>0. Thus NΣ
R is invariant under the

translation action of R and under minima, and it is invariant under the scaling action of R>0

whenever Σ is.
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Proposition 6.5. Pick a non-pluripolar subset Σ ⊂ Xan. Then:

(i) each χ ∈ NΣ
R satisfies χ = INΣ(ϕ) with ϕ := FS(χ)|Σ, and ϕ is the smallest bounded

function on Σ with this property;
(ii) if Σ ⊂ Σ′ ⊂ Xan then NΣ

R ⊂ NΣ′
R .

(iii) if Σ is further dense in Σ′, then INΣ(ϕ) = INΣ′(ϕ) for each bounded, usc function
ϕ : Σ′ → R.

Proof. Pick a bounded function ψ : Σ → R such that χ = INΣ(ψ). For any v ∈ Σ and
any s ∈ Rm \ {0} we have χ(s) ≤ m−1v(s) + ψ(v). On the one hand, this implies ϕ(v) =
sups{χ(s) −m−1v(s)} ≤ ψ(v) for any v ∈ Σ, and hence INΣ(ϕ) ≤ χ. On the other hand, for
any s ∈ Rm \ {0} and any v ∈ Σ, we have m−1v(s) +ϕ(v) ≥ χ(s), so INΣ(ϕ) ≥ χ. This proves
(i).

To see (ii), pick χ ∈ NΣ
R , i.e. χ = INΣ(ϕ) with ϕ : Σ → R bounded. Pick C > 0 such that

χ(s) ≤ mC for s ∈ Rm \ {0}. We claim that χ coincides with χ′ := INΣ(ϕ′) ∈ NΣ′
R , where

ϕ′ : Σ′ → R is the extension of ϕ such that ϕ′ ≡ C on Σ′ \ Σ. To see this, pick s ∈ Rm \ {0}
For each v′ ∈ Σ′ \ Σ we have

v′(s) +mϕ(v′) ≥ mC ≥ χ(s) = inf
v∈Σ
{v(s) +mϕ(v)},

which yields, as desired, χ′(s) = infv∈Σ′{v(s) +mϕ(v)} = infv∈Σ{v(s) +mϕ(v)} = χ(s).
Finally, the inequality INΣ(ϕ) ≥ INΣ′(ϕ) in (iii) is trivial. Conversely, pick any s ∈ Rm\{0}.

Then m−1v(s) + ϕ(v) ≥ INΣ′(ϕ)(s) for all v ∈ Σ, and this inequality extends to Σ′ as v 7→
m−1v(s) +ϕ(v) is usc on Σ′ and Σ ⊂ Σ′ is dense. Thus INΣ(ϕ)(s) ≤ INΣ′(ϕ)(s), which proves
(iii). �

Corollary 6.6. Suppose Σ ⊂ Xan is non-pluripolar. If (χi) is a decreasing net in NΣ
R con-

verging pointwise to χ ∈ N hom
R (see Remark 2.6), then χ ∈ NΣ

R .

Proof. Set ϕi := FS(χi). Then ϕi is a decreasing net of functions on Xan bounded below by
ϕ := FS(χ). For any i, Proposition 6.5 (i) and Example 6.4 imply

χi = INΣ(ϕi) ≥ INΣ(ϕ) ≥ IN(ϕ) = χ.

Taking the infimum over i yields χ = INΣ(ϕ) ∈ NΣ
R . �

Next we generalize the homogenization operator.

Definition 6.7. For any non-pluripolar subset Σ ⊂ Xan, we define a projection operator
PΣ : NR → NΣ

R by setting PΣ(χ) := INΣ(FS(χ)) for χ ∈ NR.

The map PΣ is indeed a projection, by Proposition 6.5 (i); it is further 1-Lipschitz with
respect to the d∞-pseudometric, by (2.10) and (6.2).

The map PXan : NR → NXan

R = N hom
R coincides with homogenization (see Theorem 2.16).

Further Σ ⊂ Σ′ =⇒ PΣ′(χ) ≤ PΣ(χ). In particular, χ ≤ χhom ≤ PΣ(χ), and PΣ(χ) can be
characterized as the smallest norm in NΣ

R such that χ ≤ PΣ(χ). A direct check further yields:

Lemma 6.8. Let (Σi) be an increasing net of non-pluripolar subsets of Xan, and set Σ :=⋃
i Σi. Then PΣi decreases pointwise to PΣ on NR.

For later use, we also note:

Lemma 6.9. For any non-pluripolar subset Σ ⊂ Xan and χ ∈ NR, we have FS(PΣ(χ)) = FS(χ)
on Σ.
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Proof. Set ϕ := FS(χ). Since χ ≤ PΣ(χ), we have ϕ ≤ FS(PΣ(χ)). Conversely, pick v ∈ Σ. For
any s ∈ Rm \ {0}, we then have PΣ(χ)(s) = INΣ(ϕ) ≤ v(s) +mϕ(v), and hence FS(PΣ(v)) =
sups

1
m(PΣ(χ)(s)− v(s)) ≤ ϕ(v), which proves the result. �

6.2. Divisorial norms and PL functions. In the next two subsections we consider two
important cases of the construction above.

Definition 6.10. We define the set N div
R ⊂ N hom

R of divisorial norms as the (increasing)

union of NΣ
R over all finite subsets Σ ⊂ Xdiv. The set of rational divisorial norms is

N div
Q := N div

R ∩NQ.

That the union is increasing follows from Proposition 6.5 (ii). Also note that N div
R (resp.

N div
Q ) is invariant under finite minima, under the scaling action by Q>0 and under the trans-

lation action by R (resp. Q).
Concretely, a norm χ is divisorial iff it can be written as

χ = max
i
{χvi + ci} (6.3)

for a finite set of divisorial valuations (vi) and ci ∈ R, and χ is rational iff the ci can be chosen
in Q. Indeed:

Lemma 6.11. For any finite subset Σ ⊂ Xdiv, a norm χ lies in NΣ
Q iff it can be written

χ = INΣ(ϕ) for some function ϕ : Σ→ Q.

Proof. The ‘if’ part is clear. Conversely, assume χ ∈ N div
Q , and write χ = INΣ(ϕ) for some

function ϕ : Σ → R on a finite subset Σ ⊂ Xdiv. Let Σ′ := {v ∈ Σ | ϕ(v) ∈ Q} and let
ϕ′ : Σ → Q be any function such that ϕ′ ≥ ϕ with equality on Σ′. Then χ′ := INΣ(ϕ′)
equals χ. Indeed, χ′ ≥ χ, and if s ∈ Rm \ {0}, then χ(s) = minv∈Σ(mϕ(v) − v(s)). As
χ(s) ∈ Q and v(s) ∈ Q for every v ∈ Σ, the minimum cannot be attained on Σ′ \ Σ, so
χ(s) = minv∈Σ′{mϕ(v)− v(s)} = χ′(s). �

Recall from [BoJ22a] that the space PL(X) ⊂ C0(X) of piecewise linear functions ϕ : Xan →
R is defined as the Q-vector space spanned by HQ. It is independent of the choice of L, stable
under max and min, and is dense in C0(X) with respect to uniform convergence.

As we next show, rational divisorial norms arise precisely as infimum norms of PL functions:

Theorem 6.12. A norm χ ∈ NR lies in N div
Q iff χ = IN(ϕ) with ϕ ∈ PL(X).

Corollary 6.13. Any rational homogeneous norm of finite type is divisorial, i.e. T hom
Q ⊂ N div

Q .
In particular, the homogenization of any test configuration χ ∈ TZ is a rational divisorial norm.

In contrast, T hom
R is generally not contained in N div

R , see Example B.2. We refer to Appen-
dix A (and especially Theorem A.10) for a more detailed discussion of the relation between
test configurations and rational divisorial norms.

Corollary 6.14. The envelope property holds for (X,L) iff N div
R ⊂ N cont

R .

See §2.5 for the space N cont
R of continuous norms.

Example 6.15. If X is a nodal curve, then the envelope property fails, and χv ∈ N div
R is

indeed not a continuous norm if v is a divisorial valuation with center at the node.
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Proof of Theorem 6.12. Assume first χ = IN(ϕ) with ϕ ∈ PL(X). By [BoJ22a, Lemma 4.26],
there exists a finite subset Σ ⊂ Xdiv such that supXan(ψ−ϕ) = maxΣ(ψ−ϕ) for all ψ ∈ PSH(L).
In particular, for any s ∈ Rm \ {0} we have

sup
Xan

(m−1 log |s| − ϕ) = max
Σ

(m−1 log |s| − ϕ),

i.e. χ(s) = infv∈Xan{v(s) + mϕ(v)} = minv∈Σ{v(s) + mϕ(v)}. This proves IN(ϕ) = INΣ(ϕ),
which lies in N div

Q since PL functions take rational values on Xdiv.

Conversely, assume χ ∈ N div
Q , i.e. χ ∈ NΣ

Q for a finite subset Σ ⊂ Xdiv. By [BoJ22a,

Lemma 2.12], Σ is contained in the set Σa of Rees valuations of some flag ideal a of X; we may
thus assume Σ = Σa, see Proposition 6.5 (ii). By Lemma 6.11, we can write χ = INΣ(ϕ̃) for
some function ϕ̃ : Σ→ Q. By [BoJ22a, Lemma 2.28], there exists ρ ∈ PL+(X) and r � 1 such
that ϕ := rϕa − ρ ∈ PL(X) satisfies ϕ = ϕ̃ on Σ, while [BoJ22a, Lemma 2.12] shows that

sup
Xan

(ψ − ϕ) = max
Σ

(ψ − ϕ)

for all ψ ∈ PL+(X), and hence also for all ψ ∈ PSH(L) (as ψ can then be written as a
decreasing limit of functions in HQ ⊂ PL+(X)). As above, this implies IN(ϕ) = χ, which
concludes the proof. �

Proof of Corollary 6.13. Any norm χ ∈ T hom
Q satisfies χ = IN(ϕ) with ϕ := FS(χ) ∈ HQ ⊂

PL(X) (see Theorem 2.16 and Proposition 2.15). By Theorem 6.12, we thus have T hom
Q ⊂ N div

Q .
The last point follows from Lemma 2.11. �

Proof of Corollary 6.14. By Theorem 6.12, N div
R is contained in N cont

R iff IN(ϕ) is continuous
for any ϕ ∈ PL(X), i.e. FS(IN(ϕ)) ∈ C0(X) (see Theorem 2.19). Since ϕ is continuous, we
have FS(IN(ϕ)) = Q(ϕ) = P(ϕ) (see Proposition 2.29). Thus N div

R ⊂ N cont
R holds iff P(ϕ) is

continuous for each ϕ ∈ PL(X). By density of PL(X) in C0(X) and the Lipschitz property of
P wrt the supnorm, this is also equivalent to the continuity of P(ϕ) for each ϕ ∈ C0(X), which
holds in turn iff (X,L) has the envelope property (see [BoJ22a, Lemma 5.17]). �

6.3. Maximal norms and the regularized Fubini–Study operator. Specializing now the
definitions of §6.1 to Σ := Xdiv, we introduce:

Definition 6.16. We say that a norm χ ∈ NR is maximal if it lies in Nmax
R := NXdiv

R .

Explicitly, a norm is maximal iff it can be written as

χ = inf
v∈Xdiv

{χv + cv}

for a bounded set of constants (cv)v∈Xdiv . The (slightly abusive) terminology will be justified
by Corollary 6.25 below. By Proposition 6.5 (ii), we have

N div
R ⊂ Nmax

R ⊂ N hom
R ,

both inclusions being strict (except in the trivial case dimX = 0), cf. Example 6.23 below.
For each χ ∈ NR we set

χmax := PXdiv(χ) = INXdiv(FS(χ)).

Then χ ≤ χhom ≤ χmax, and χmax is the smallest norm in Nmax
R such that χ ≤ χmax.

Before going further, recall from §2.3 that the Fubini–Study operator associates to any
norm χ ∈ NR with canonical approximants χd ∈ TR a bounded, lsc function FS(χ) : Xan → R,
such that FS(χ) = supd FS(χd) with FS(χd) ∈ HR. We denote by FS?(χ) := FS(χ)? its



52 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

usc regularization, which is thus a bounded usc function on Xan. The next result will be
instrumental for what follows:

Lemma 6.17. For any norm χ ∈ NR, the following holds:

(i) FS?(χ) = FS(χ) on Xdiv;

(ii) if (X,L) has the weak envelope property, then FS?(χ) = FS(χ) on X lin, and Ẽ(FS?(χ)) =

Ẽ(FS(χ));
(iii) if FS?(χ) is L-psh (e.g., if (X,L) has the envelope property), then FS?(χ) lies in E∞↑ ⊂

E1, and FS(χd)→ FS?(χ) strongly in E1.

We refer to §4.4 for the (weak) envelope property and the space E∞↑ of psh functions ap-
proximable from below. Recall that the weak envelope property holds as soon as char k = 0,
and that the envelope property then holds if X is further smooth.

Proof. Since FS(χ) = supd FS(χd) with FS(χd) L-psh, (i) and (ii) respectively follow from
Lemmas 4.2 and 4.8 (see §4.4). If (X,L) has the envelope property, then FS?(χ) is L-psh, and
the rest of (iii) follows from Lemma 4.3. �

Proposition 6.18. For any χ ∈ NR, we have

(i) χmax = IN(FS?(χ));
(ii) χ is maximal iff χ = IN(ϕ) for some bounded usc function ϕ on Xan;

Corollary 6.19. The space Nmax
R is invariant under the scaling action by R>0, the translation

action by R, under finite minima, and under decreasing limits. Further, any χ ∈ Nmax
R can be

written as the pointwise limit of a decreasing net in N div
R .

Corollary 6.20. Each continuous norm χ ∈ N cont
R satisfies χhom = χmax. In particular, every

continuous homogeneous norm is maximal, i.e. N cont,hom
R ⊂ Nmax

R .

The first equality fails in general when χ is not continuous (see Example 6.23), and the last
inclusion is strict in general (see Corollary 6.30 below).

Corollary 6.21. If (X,L) has the weak envelope property, then Nmax
R = NXlin

R ; in particular,

χv is then maximal for any v ∈ X lin.

Proof of Proposition 6.18. Lemma 6.17 (i) implies that χmax = PXdiv(FSχ)) coincides with
INXdiv(FS?(χ)), which is also equal to IN(FS?(χ)), since FS?(χ) is usc on Xan and Xdiv is
dense (see Proposition 6.5 (iii)). This proves (i).

To see (ii), assume χ is maximal. By (i), we then have χ = χmax = IN(FS?(χ)) where
FS?(χ) is bounded and usc. Conversely, assume χ = IN(ϕ) with ϕ bounded and usc on Xan.
By density of Xdiv, Proposition 6.5 (iii) yields χ = INXdiv(ϕ), and hence χ ∈ Nmax

R . This
proves (ii). �

Proof of Corollary 6.19. For any non-pluripolar Σ ⊂ Xan, the space NΣ
R is invariant under the

translation action by R, under finite minima, and under decreasing limits, see Corollary 6.6.
By Proposition 6.18 (ii) and (2.12), Nmax

R is further invariant under the scaling action of R>0

(even though Xdiv is only invariant under the scaling action of Q>0). The final assertion is an
immediate consequence of Corollary 6.6 and Lemma 6.8. �

Proof of Corollary 6.20. If χ ∈ N cont
R then FS(χ) is continuous (see Theorem 2.19), and hence

χhom = IN(FS(χ)) = χmax, by Theorem 2.16 and Proposition 6.18 (i). �
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Proof of Corollary 6.21. Lemma 6.17 (ii) implies that PXlin(χ) = INXlin(FS(χ)) coincides with
INXlin(FS?(χ)). By Proposition 6.5 (iii), this is also equal to IN(FS?(χ)), which is in turn equal

to χmax, by Proposition 6.18 (i). Thus PXlin(χ) = χmax, and hence χ ∈ NXlin

R ⇔ χ ∈ Nmax
R . �

We can now state the main result of this section:

Theorem 6.22. For all norms χ, χ′ ∈ NR, we have χ ∼ χ′ =⇒ χmax = χ′max. If (X,L) has
the weak envelope property (e.g., if char k = 0), the converse implication holds.

Example 6.23. For any subvariety Z  X, the norm χ = χZ ∈ N hom
Z of Example 2.21

is not maximal. Indeed, χ is asymptotically equivalent to the maximal norm χtriv + 1 (see
Example 3.10), and hence χmax = χtriv + 1 6= χ.

Corollary 6.24. The restriction of d1 to Nmax
R a metric. If (X,L) has the weak envelope

property, then Nmax
R is further maximal for this property.

Corollary 6.25. Assume (X,L) has the weak envelope property, and pick any norm χ ∈ NR.
Then χ is maximal iff it is the largest norm in its asymptotic equivalence class.

Corollary 6.26. If χ, χ′ ∈ N cont
R are continuous, then χ ∼ χ⇐⇒ d∞(χ, χ′) = 0.

As a first step towards Theorem 6.22, we show:

Lemma 6.27. For all χ, χ′ ∈ NR, the following are equivalent:

(i) χmax = χ′max;
(ii) FS(χ) = FS(χ′) on Xdiv;

(iii) FS?(χ) = FS?(χ′) on Xan.

Proof. Since χmax = PXdiv(χ), Lemma 6.9 yields FS(χmax) = FS(χ) on Xdiv, and similarly for
χ′. This implies (i)⇒(ii), while Lemma 6.17 (i) yields (ii)⇔(iii). Finally, (iii)⇒(i) follows from
Proposition 6.18 (i). �

Lemma 6.28. For all χ, χ′ ∈ NR, we have

χ ∼ χ′ ⇐⇒ lim
d

d1(FS(χd),FS(χ′d)) = 0 =⇒ FS(χ) = FS(χ′) on X lin.

Proof. By construction of the d1-metric on HR, FS: (TR,d1) → (HR, d1) is an isometry, and
hence d1(χd, χ

′
d) = d1(FS(χd),FS(χ′d)) for all d sufficiently divisible. By Theorem 3.18, we

have, on the other hand, d1(χd, χ
′
d) → d1(χ, χ′). This implies the first equivalence. For any

v ∈ X lin, the measure δv lies in M1. By (5.19), we thus have

d1(FS(χd),FS(χ′d))→ 0 =⇒ FS(χd)(v)− FS(χ′d)(v)→ 0,

which yields the right-hand implication, since FS(χd)→ FS(χ) and FS(χ′d)→ FS(χ′) pointwise
on Xan. �

Proof of Theorem 6.22. If χ ∼ χ′, then FS(χ) = FS(χ′) on X lin ⊃ Xdiv, by Lemma 6.28, and
hence χmax = χ′max, by Lemma 6.27. Now assume the weak envelope property. To prove
the converse implication, it suffices to show χ ∼ χmax for any χ ∈ NR. Since χ ≤ χmax, this

amounts to vol(χ) = vol(χmax) (see Lemma 3.11). By Theorem 5.1, we have vol(χ) = Ẽ(ϕ)
with ϕ := FS(χ). On the other hand, we have χmax = IN(ϕ?) (see Proposition 6.18 (i)),

and hence vol(χmax) = Ẽ((ϕ?)?), by Corollary 5.3. Since ϕ is lsc, we have ϕ ≤ (ϕ?)? ≤ ϕ?,

so by monotonicity of the energy, it suffices to prove that Ẽ(ϕ) = Ẽ(ϕ?), which follows from
Lemma 6.17. �
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Proof of Corollary 6.24. That d1 restricts to a metric on Nmax
R is a direct consequence of

Theorem 6.22. If d1 is also a metric on a subset N ′ ⊂ NR that contains Nmax
R , then any

χ ∈ N ′ satisfies d1(χ, χmax) = 0, by Theorem 6.22, and hence χ = χmax ∈ Nmax
R . Thus

N ′ = Nmax
R . �

Proof of Corollary 6.25. Assume χ is maximal, and pick χ′ ∈ NR with χ ∼ χ′. Then χ′ ≤
χ′max = χmax = χ, by Theorem 6.22, which proves that χ is the largest norm in its equivalence
class. Conversely, this last property implies χmax ≤ χ, since χ ∼ χmax by Theorem 6.22, and
hence χ = χmax, i.e. χ ∈ Nmax

R . �

Proof of Corollary 6.26. By Theorem 2.19, FS(χ) and FS(χ′) are continuous, and are equal iff
d∞(χ, χ′) = 0. By Lemma 6.27, we thus have χ ∼ χ′ ⇒ d∞(χ, χ′) = 0, while the converse
trivially holds. �

Assuming now the envelope property (e.g. X is smooth and char k = 0), we finally state:

Theorem 6.29. If (X,L) has the envelope property, then the regularized Fubini–Study oper-
ator defines a surjective isometry FS? : (NR, d1) � (E∞↑ ,d1), which restricts to an isometric

isomorphism FS? : (Nmax
R ,d1)

∼→ (E∞↑ , d1) with inverse IN: (E∞↑ ,d1)
∼→ (Nmax

R ,d1).

Proof. Since (X,L) has the envelope property, FS?(χ) lies in E∞↑ for each χ ∈ NR (see

Lemma 6.17 (iii)). Since FS: (TR,d1) → (HR,d1) is an isometry, the canonical approximants
χd, χ

′
d ∈ TR satisfy d1(χd, χ

′
d) = d1(FS(χd),FS(χ′d)) for all d sufficiently divisible. Now, Theo-

rem 3.18 implies on the one hand d1(χd, χ
′
d)→ d1(χ, χ′). On the other hand, Lemma 6.17 (iii)

implies d1(FS(χd),FS(χ′d)) → d1(FS?(χ),FS?(χ′)), since d1 defines the strong topology of E1

(see Theorem 5.5). This proves that FS? : (NR,d1) → (E∞↑ ,d1) is an isometry, whose restric-
tion to Nmax

R is necessarily injective, by Theorem 6.22. Conversely, pick ϕ ∈ E∞↑ . Then

IN(ϕ) ∈ Nmax
R (see Proposition 6.18 (ii)). By Proposition 2.29 and Lemma 4.6 (i), we further

have FS?(IN(ϕ)) = Q?(ϕ) = ϕ. This shows that FS? : (Nmax
R , d1)

∼→ (E∞↑ , d1) is an isometric
isomorphism, and the rest follows.

�

Corollary 6.30. Assume (X,L) has the envelope property. Then

Nmax
R ⊂ N cont

R ⇐⇒ E∞↑ = CPSH⇐⇒ dimX ≤ 1.

Proof. The first equivalence follows from Theorem 2.26 and Theorem 6.29, and the second one
from [BoJ22a, Example 13.25]). �

7. The Monge–Ampère measure of a norm

Any ample test configuration for (X,L) defines a measure on Xan with finite support in
Xdiv. This defines a Monge–Ampère operator MA: TZ →M1. Here we extend this operator
to a map NR →M1 whose fibers consist of asymptotic equivalence classes modulo translation,
thus completing the proof of Theorem B. The construction, which works even when in the ab-
sence of the envelope property, restricts to a homeomorphism between divisorial norms modulo
translations and probability measures with finite support in Xdiv, thus proving Theorem C.
We also extend Dervan’s minimum norm functional from TZ to NR.
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7.1. Monge–Ampère measures of R-test configurations. We define the Monge–Ampère
measure MA(χ) ∈ M1 of an R-test configuration χ ∈ TR as the Monge–Ampère measure of
the associated Fubini–Study function FS(χ) ∈ HR (see Proposition 2.15), i.e.

MA(χ) := MA(FS(χ)).

The invariance/equivariance properties of the operators MA: HR → M1 and FS: TR → HR
imply that if χ ∈ TR, c ∈ R and t ∈ R>0, then

MA(χ+ c) = MA(χ) and MA(tχ) = t? MA(χ).

When χ ∈ TZ, the Monge–Ampère measure can be computed geometrically as follows. By
the Rees correspondence (A.7), χ is associated to an ample test configuration. Let (X ,L) be
its integral closure, with central fiber X0 =

∑
i biEi. By Lemma A.12, ϕ := FS(χ) ∈ HQ

satisfies (A.5), so by [BoJ22a, Proposition 7.19 (ii)] we have

MA(χ) =
∑
i

bi(L|nEi)δvi , (7.1)

where vi ∈ Xdiv is the divisorial valuation associated to Ei.
For general χ ∈ TR, the support of MA(χ) is a finite subset of X lin, see Lemma 4.1.

Lemma 7.1. The Monge–Ampère operator above defines an isometry

MA: (TR/R,d1)→ (M1,d1) (7.2)

with dense image.

Proof. By (5.11), the Fubini–Study operator defines an isometric surjection FS: (TR/R, d1)→
(HR/R, d1). Now HR/R is a dense subspace of (E1/R,d1), and by definition, the metric d1

on M1 has the property that MA: (E1/R, d1)→ (M1,d1) is an injective isometry with dense
image, see Theorem 5.10. It therefore follows that (7.2) is an isometry with dense image. �

7.2. Monge–Ampère measures of general norms. We now define the Monge–Ampère
operator on general norms.

Theorem 7.2. The Monge–Ampère operator above extends uniquely to an isometry

MA: (NR/R, d1)→ (M1, d1), (7.3)

with dense image.

As (M1,d1) is complete, the Monge–Ampère operator thus realizes (M1, d1) as the Hausdorff
completion of the pseudo-metric spaces (TR/R, d1) and (NR/R,d1).

Proof. By Theorem 3.18, TR is dense in (NR,d1). As a consequence, TR/R sits as a dense
subspace of (NR/R, d1), and we conclude using Lemma 7.1. �

Combining Theorem 7.2 with Lemma 3.15, we get:

Corollary 7.3. The induced map MA: (NR, d1)→ (M1, d1) is 1-Lipschitz, and its nonempty
fibers consist precisely of asymptotic equivalence classes of norms modulo translation.

The induced map MA: NR →M1 satisfies the following properties, the first of which gives
a more concrete description.

Proposition 7.4. For any norm χ ∈ NR we have:

(i) the canonical approximants (χd) satisfy limd MA(χd) = MA(χ) strongly in M1;
(ii) for c ∈ R and t ∈ R>0, we have MA(χ+ c) = MA(χ) and MA(tχ) = t? MA(χ);
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(iii) MA(χ) = MA(χhom), where χhom is the homogenization of χ;
(iv) If (X,L) has the weak envelope property, then MA(χ) = MA(χmax).
(v) if FS?(χ) is L-psh, then MA(χ) = MA(FS?(χ)).

Recall that (v) applies if (X,L) has the envelope property, or for any continuous norm
χ ∈ N cont

R .

Proof. Theorem 3.18 shows that χd ∈ TR satisfy limd d1(χd, χ) = 0, which implies (i). The
equalities in (ii) follow, since (χ+c)d = χd+c and (tχ)d = tχd, whereas (iii) and (iv) follow since
χhom ∼ χ and χmax ∼ χ, respectively, see Corollary 5.2 and Theorem 6.22. If FS?(χ) is L-psh,
then FS(χd)→ FS?(χ) strongly in E1 (see Lemma 6.17), and hence MA(χd) = MA(FS(χd))→
MA(FS?(χ)) in M1. This proves (v), in view of (i). �

Recall the space Nmax
R = NXdiv

R from §6.3. By Corollary 6.24, the pseudometric d1 restricts
to a metric on Nmax

R . Lemma 5.9 thus implies that d1 restricts to a metric on Nmax
R /R.

Corollary 7.5. The Monge–Ampère operator MA: NR →M1 induces an isometric embedding

MA: (Nmax
R /R, d1) ↪→ (M1, d1) (7.4)

with dense image. If (X,L) has the weak envelope property, then the image equals MA(NR).

Recall that the weak envelope property holds when char k = 0 or dimX ≤ 2.

Proof. Everything except for the last statement is clear by what precedes, and that statement
is an immediate consequence of Theorem 6.22. �

Remark 7.6. Even if X is smooth and char k = 0, MA(NR) is a strict subspace of M1, which
is not so easy to describe.

For later use, we also show the following version of Theorem 5.7.

Lemma 7.7. For all χ, χ′ ∈ NR we have

d1(χ, χ′) ≈
ˆ ∣∣FS(χ)− FS(χ′)

∣∣ (MA(χ) + MA(χ′)
)
.

Proof. Set ϕd := FS(χd), ϕ
′
d := FS(χ′d) and

µd := MA(ϕd) = MA(χd), µ′d := MA(ϕ′d) = MA(χ′d),

with (χd), (χ′d) the canonical approximants of χ, χ′. Since FS: (TR, d1) → (HR,d1) is an
isometry, Theorem 5.7 yields

d1(χd, χ
′
d) = d1(ϕd, ϕ

′
d) ≈

ˆ
gd (µd + µ′d).

with gd := |ϕd − ϕ′d|. Since (ϕd), (ϕ′d) are uniformly bounded and µd → µ := MA(χ), µ′d →
µ′ := MA(χ′) strongly in M1 (see Proposition 7.4 (i)), (5.18) yields

´
gd (µd + µ′d) =

´
gd (µ+

µ′) + o(1). Since (gd) is uniformly bounded and converges pointwise to g := |FS(χ)− FS(χ′)|,
dominated convergence applied to the cofinal sequence (gm!)m further yields

´
gm!(µ + µ′) →´

g (µ+ µ′). Combining this with Theorem 3.18, we conclude

d1(χ, χ′) = lim
m

d1(χm!, χ
′
m!) ≈ lim

m

ˆ
gm! (µ+ µ′) =

ˆ
g (µ+ µ′),

which proves the result. �
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7.3. Variational principle. As we next show, the Monge–Ampère equation MA(χ) = µ with
χ ∈ NR and µ ∈ M1 admits a variational characterization, that will be deduced from its
counterpart for L-psh functions.

Proposition 7.8. For any µ ∈M1, we have

E∨(µ) = sup
χ∈NR

(
vol(χ)−

ˆ
FS(χ)µ

)
.

Further, the supremum is achieved by χ ∈ NR iff MA(χ) = µ.

Proof. We have E∨(µ) = supϕ∈HQ

(
E(ϕ)−

´
ϕµ
)
, and any ϕ ∈ HQ can be written as ϕ =

FS(χ) with χ := IN(ϕ) ∈ NR. Since E(ϕ) = vol(χ), this yields

E∨(µ) ≤ sup
χ∈NR

(vol(χ)−
ˆ

FS(χ)µ).

For the reverse inequality, pick any χ ∈ NR, and consider the increasing net (ϕd) in HR defined
by ϕd := FS(χd), with (χd) the canonical approximants of χ. Then E(ϕd) −

´
ϕd µ ≤ E∨(µ).

By Theorem 3.18 and Theorem 5.1, E(ϕd) = vol(χd) → vol(χ), while
´
ϕd µ →

´
FS(χ)µ, by

monotone convergence (applied to the cofinal sequence ϕd!). Thus vol(χ)−
´

FS(χ)µ ≤ E∨(µ),
and equality holds iff E(ϕd)−

´
ϕd µ→ E∨(µ), i.e. (ϕd) is a maximizing net for µ. By [BoJ22a,

Corollary 10.13], the latter is also equivalent to MA(ϕd) → µ strongly in M1, and hence to
MA(χ) = µ, since MA(ϕd) = MA(χd)→ MA(χ) strongly in M1, by Corollary 7.3. �

Remark 7.9. With a little bit of extra effort, one can show as in [BoJ22a, Corollary 10.13]
that a net (χi) in NR computes the supremum, that is limi

(
vol(χi)−

´
FS(χi)µ

)
= E∨(µ), iff

MA(χi)→ µ strongly in M1.

7.4. Divisorial norms and divisorial measures. The image MA(NR) of the Monge–Ampère
operator is a strict subset ofM1 and not so easy to describe, but we now exhibit an important
class of measures contained in the image.

Given any compact subset Σ ⊂ Xan, denote by MΣ the set of Radon probability measures
µ on Xan with support in Σ.

Example 7.10. When Σ ⊂ Xan is finite, each µ ∈MΣ is of the form µ =
∑

v∈Σmvδv, where

mv := µ({v}), and it is easy to see that µ 7→ m = (mv) defines a homeomorphism of MΣ

(equipped with the weak topology) with the simplex
{
m ∈ RΣ

≥0 |
∑

vmv = 1
}

.

Recall that the strong topology of X lin is defined by the metric d∞ (see (1.19)); the weak
topology refers to the subset topology from Xan. For all v, w ∈ X lin we have

d∞(v, w) = sup
ϕ∈PSH

|ϕ(v)− ϕ(w)|, (7.5)

which shows that d∞ is the smallest metric on X lin such that the restriction to X lin of any
L-psh function is 1-Lipschitz. By (7.5), the weak and strong topologies coincide on a given
subset Σ ⊂ X lin iff PSH |Σ is equicontinuous for the weak topology of Σ. This is in particular
the case when Σ is strongly compact (as the identity map (Σ, strong) → (Σ,weak) is then a
homeomorphism, being continuous and bijective on a compact Hausdorff space).

Example 7.11. Every finite subset Σ ⊂ X lin is of course strongly compact. If X is smooth and
char k = 0, then the dual complex ∆X of any snc test configurations X also forms a strongly
compact subset of X lin, cf. [BoJ22a, Theorem A.4].
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Lemma 7.12. For any strongly compact subset Σ ⊂ X lin, we haveMΣ ⊂M1, and the induced
weak and strong topologies on MΣ coincide.

Proof. Since Σ is strongly compact, C := supv∈Σ T(v) is finite, and satisfies supϕ− ϕ(v) ≤ C
for each ϕ ∈ PSH and v ∈ Σ. For each µ ∈MΣ we thus have

E∨(µ) = sup
ϕ∈E1
{E(ϕ)−

ˆ
ϕµ} ≤ sup

ϕ∈E1
{supϕ−

ˆ
ϕµ} ≤ C,

and hence µ ∈ M1. Now pick a weakly convergent net µi → µ in MΣ. Since PSH |Σ is
equicontinuous, we have

´
ϕµi →

´
ϕµ uniformly for ϕ ∈ PSH. Thus

E∨(µi) = sup
ϕ∈E1
{E(ϕ)−

ˆ
ϕµ} → sup

ϕ∈E1
{E(ϕ)−

ˆ
ϕµ} = E∨(µ)

and hence µi → µ strongly in M1. �

Theorem 7.13. For any strongly compact subset Σ ⊂ X lin, the Monge–Ampère operator
induces a surjective isometry

MA: (NΣ
R /R,d1)� (MΣ,d1).

If Σ ⊂ Xdiv, or if the weak envelope property holds (e.g., if char k = 0), then this map is an
isometric isomorphism.

Recall that NΣ
R denotes the set of norms of the form χ = INΣ(ϕ) for a bounded function

ϕ : Σ→ R, see §6.1. We emphasize that Theorem 7.13 is true for an arbitrary polarized variety,
whether or not the envelope property holds. The following important special case illustrates
this.

Example 7.14. For each v ∈ X lin we have MA(χv) = δv. If the envelope property holds
for (X,L), then the function ϕv = FS(χv) belongs to CPSH, ϕv(v) = 0 and MA(ϕv) = δv.
However, in general the equation MA(ϕ) = δv may not have any solution in E1. This is the
case, for example, when X is a nodal curve and v is a divisorial valuation with center at the
node (compare Example 6.15).

Another important special case is when Σ ⊂ Xdiv is finite. Recall that the set N div
R of

divisorial norms is the union of NΣ
R over all nonempty finite subset Σ ⊂ Xdiv. We similarly

introduce:

Definition 7.15. The set Mdiv of divisorial measures on Xan is defined by

Mdiv =
⋃

Σ⊂Xdiv finite

MΣ. (7.6)

The set Mdiv is used in [BoJ22c] to define the notion of divisorial stability.

Corollary 7.16. The Monge–Ampère operator induces an isometric isomorphism

MA: (N div
R /R,d1)

∼→ (Mdiv,d1).

Further, for any χ ∈ N div
R , Σ := supp MA(χ) is the smallest finite subset of Xdiv such that

χ ∈ NΣ
R .

Example 7.17. If v ∈ X lin, then χv is divisorial iff v is divisorial. Indeed, χv ∈ N div
R =⇒

MA(χv) = δv ∈Mdiv =⇒ v ∈ Xdiv.
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We now turn to the proof of Theorem 7.13. For any χ ∈ NR and ϕ ∈ C0(X), we set

χ[ϕ] := IN(FS(χ) + ϕ) ∈ NR.
Thus χ[0] = χhom (see Theorem 2.16). The main ingredient in the proof is now the following
version of [BoJ22a, Theorem 8.5] (itself a consequence of [BGM20, Theorem A]).

Lemma 7.18. For any χ ∈ NR and ϕ ∈ C0(X), we have

d

dt

∣∣∣∣
t=0

vol (χ[tϕ]) =

ˆ
ϕ MA(χ).

Proof. For d sufficiently divisible, set ψd := FS(χd) ∈ HR. By Theorem 5.1 and Corollary 5.3,

we have vol(χ) = Ẽ(FS(χ)) = vol(χ[0]), and

vol (χd[ϕ]) = Ẽ(ψd + ϕ)→= Ẽ(FS(χ) + ϕ) = vol(χ[ϕ]). (7.7)

Assume first ϕ ∈ PL(X). By [BoJ22a, Theorem 8.5], we then have

Ẽ(ψd + tϕ) = E(ψd) + t

ˆ
ϕ MA(ψd) +O(t2)

as t → 0, where the implicit contant in O is uniform with respect to d (but does depend on
ϕ). Now MA(ψd) = MA(χd) → MA(χ) strongly in M1 (see Proposition 7.4 (i)); combined
with (7.7), this yields

vol (χ[tϕ]) = vol(χ) + t

ˆ
ϕ MA(χ) +O(t2),

which proves the result for ϕ ∈ PL(X). Consider now an arbitrary ϕ ∈ C0(X). Since PL(X)
is dense in C0(X) with respect to uniform convergence, we can find a sequence (ϕi) in PL(X)
such that δi := supXan |ϕi − ϕ| → 0. Then ϕi − δi ≤ ϕ ≤ ϕi + δi, and hence

vol (χ[tϕi])− tδi ≤ vol (χ[tϕ]) ≤ vol (χ[tϕi]) + tδi.

By the first part of the proof, this yieldsˆ
ϕi MA(χ)− δi ≤ lim inf

t→0+
t−1 (vol (χ[tϕ])− vol(χ))

≤ lim sup
t→0+

t−1 (vol (χ[tϕ])− vol(χ)) ≤
ˆ
ϕi MA(χ),

and letting i→∞ yields, as desired, limt→0 t
−1 (vol (χ[tϕ])− vol(χ)) =

´
ϕ MA(χ). �

Proof of Theorem 7.13. By Theorem 7.2, MA: (NR/R,d1)→ (M1, d1) is an isometry. Let us
first show that it maps NΣ

R /R into MΣ. Pick χ ∈ NΣ
R . We need to show that

´
ϕMA(χ) = 0

for any ϕ ∈ C0 such that ϕ|Σ = 0. Now, for any t ∈ R, we have

χ[tϕ] = IN(FS(χ) + tϕ) ≤ INΣ(FS(χ) + tϕ) = INΣ(FS(χ)) = χ.

This implies vol(χ[tϕ]) ≤ vol(χ) for all t ∈ R, and hence
´
ϕMA(χ) = 0, thanks to Lemma 7.18.

We next show that MA: NΣ
R → MΣ is onto. Pick µ ∈ MΣ, and choose a maximizing

sequence (ϕi) in HR for µ, i.e. E(ϕi) −
´
ϕi µ → E∨(µ), normalized by supϕi = 0. Since Σ is

strongly compact, the restriction of PSHsup = {ϕ ∈ PSH | supϕ = 0} to Σ is equicontinuous
and bounded, since 0 ≤ supv∈Σ(−ϕ(v)) ≤ supv∈Σ T(v) < ∞ for f ∈ PSHsup. By the Arzelà–
Ascoli theorem, we may assume, after passing to a subsequence, that ϕi|Σ converges uniformly
to some ϕ ∈ C0(Σ). We claim that χ := INΣ(ϕ) ∈ NΣ

R satisfies MA(χ) = µ, which will
conclude the proof. By Proposition 7.8, it suffices to show vol(χ)−

´
FS(χ)µ ≥ E∨(µ).
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Set χi := INΣ(ϕi). As ϕi → ϕ uniformly on Σ, (6.2) implies d1(χi, χ) → 0, and hence
vol(χi) → vol(χ). Further, χi ≥ IN(ϕi), and hence vol(χi) ≥ vol(IN(ϕi)) = E(ϕi) (see
Corollary 5.3). By Proposition 6.5 (i), we also have FS(χ)|Σ ≤ ϕ. This yields, as desired,

vol(χ)−
ˆ

FS(χ)µ ≥ vol(χ)−
ˆ
ϕµ

= lim
i

(
vol(χi)−

ˆ
ϕi µ

)
≥ lim

i

(
E(ϕi)−

ˆ
ϕi µ

)
= E∨(µ).

Finally, if Σ ⊂ Xdiv, or if the weak envelope property holds, then NΣ
R is contained in Nmax

R
(see Corollary 6.21), and the last point thus follows from Corollary 7.5. �

7.5. Dervan’s minimum norm. In [Der16], Dervan introduced the notion of the minimum
norm of a test configuration. Here we extend his notion to arbitrary norms.

Definition 7.19. We define the minimum norm ‖χ‖ of χ ∈ NR by

‖χ‖ := E∨(MA(χ)) ∈ R≥0.

By Corollary 7.3, the minimum norm is a continuous function on (NR, d1).

Proposition 7.20. For any χ ∈ NR, we have:

(i) if χ ∈ TZ is associated to an ample test configuration, then ‖χ‖ coincides, up to nor-
malization, with the minimum norm defined in [Der16];

(ii) the canonical approximants (χd) satisfy ‖χ‖ = limd ‖χd‖;
(iii) for any c ∈ R and t ∈ R>0 we have ‖χ+ c‖ = ‖χ‖, and ‖tχ‖ = t‖χ‖;
(iv) ‖χ‖ ≈ d1(χ, χtriv) ≈ ‖χ‖1; in particular, ‖χ‖ = 0 iff χ ∼ χtriv + c for some c ∈ R;
(v) if χ ∈ TR, then ‖χ‖ = E(ϕ)−

´
ϕ MA(ϕ) = I(ϕ)− J(ϕ) with ϕ := FS(χ);

(vi) if χ ∈ TQ, then ‖χ‖ ∈ Q;
(vii) ‖χ‖ = ‖χhom‖;
(viii) if (X,L) has the weak envelope property, then ‖χ‖ = ‖χmax‖.

Here ‖χ‖1 = d1(χ, χtriv + vol(χ)) is the L1-norm of χ, see Definition 3.16.

Proof. If χ ∈ TR, then MA(χ) = MA(ϕ) with ϕ := FS(χ) ∈ HR, so (4.10) yields ‖χ‖ =
E∨(µ) = I(ϕ) − J(ϕ), proving (v), and also (vi), since ϕ ∈ HQ when χ ∈ TQ. If, further,
χ ∈ TZ is a test configuration, then [BHJ17, Remark 7.12] shows that I(ϕ) − J(ϕ) coincides
(up to normalization by VL) with the minimum norm of χ as defined in [Der16, Definition 2.5].
Thus (i) holds. Now (ii), (iii), (vii) and (viii) are immediate consequence of the corresponding
properties in Proposition 7.4.

It remains to prove (iv). That ‖χ‖ ≈ d1(χ, χtriv) follows from (5.15) and Theorem 7.2,
whereas ‖χ‖1 ≈ ‖χ‖ follows from (iv) and [BHJ17, Theorem 7.9] when χ ∈ TR, and hence in
general, by density. �

By d1-density of TZ in NR (see Corollary 3.19), we infer:

Corollary 7.21. The minimum norm functional NR → R≥0 is the unique d1-continuous
extension of Dervan’s minimum norm from TZ to NR.
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7.6. Valuations of linear growth. In this final section, we specialize the above results to
prove:

Theorem 7.22. For all v, w ∈ X lin with associated norms χv, χw ∈ NR and measures δv, δw ∈
M1, we have:

(i) d∞(v, w) = d∞(χv, χw) ≈ d1(χv, χw) = d1(δv, δw);
(ii) d∞(v, vtriv) = T(v) = λmax(χv);
(iii) S(v) = vol(χv) = ‖χv‖ = E∨(δv).

Since d1 ≤ d1 ≤ dp ≤ d∞ on NR for 1 ≤ p ≤ ∞, this implies:

Corollary 7.23. For any p ∈ [1,∞], the embeddings

(X lin,d∞) ↪→ (M1,d1), (X lin, d∞) ↪→ (NR,dp)

respectively defined by v 7→ δv and v 7→ χv are bi-Lipschitz.

Note that this implies Corollary E in the introduction.

Proof of Theorem 7.22. By Theorem 7.13, we have MA(χv) = δv, MA(χw) = δv, and hence

d1(δv, δv) = d1(χv, χw) ≤ d∞(χv, χw) = d∞(v, w),

by Theorem 7.2 and Corollary 2.10. Next, note that

FS(χv)(w) = sup{m−1(v(s)− w(s))}, (7.8)

where s runs over nonzero sections of mL with m sufficiently divisible. In particular, FS(χv) ≥
0, and FS(χv)(v) = 0. Comparing (7.8) with (1.19) yields

d∞(v, w) = max{FS(χv)(w),FS(χw)(v)}. (7.9)

On the other hand, for each c ∈ R, Lemma 7.7 yields

d1(χv + c, χw) ≈
ˆ
|FS(χv) + c− FS(χw)|(δv + δw)

= |FS(χv)(w) + c|+ |c− FS(χw)(v)| ≥ FS(χv)(w) + FS(χw)(v) ≥ d∞(v, w).

Thus

d1(χv, χw) = inf
c∈R

d1(χv, χw + c) & d∞(v, w).

This proves (i), and (ii) follows. Finally, MA(χv) = δv implies ‖χv‖ = E∨(δv), by definition
of the minimum norm. Since FS(χv) vanishes at v, Proposition 7.8 further yields E∨(δv) =
vol(χv), which coincides with S(v) (see Example 3.5). This proves (iii). �

Appendix A. Test configurations, integral closure, and homogenization

In this appendix we revisit the correspondence between test configurations and integral
norms [WN12, BHJ17], and provide a description of homogenization in terms of integral closure.
We also provide a geometric description of R-test configurations, following [HL20, Ino22].
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A.1. The norm associated to a test configuration. A test configuration (X ,L) for (X,L)
consists of: a flat projective morphism π : X → A1; a Q-line bundle L on X ; a Gm-action on
(X ,L) that makes π equivariant; and a Gm-equivariant isomorphism

(X ,L)|Gm ' (X,L)×Gm. (A.1)

We denote by z the coordinate on A1 = Spec k[z] and Gm = Spec k[z±].

Example A.1. The trivial test configuration (Xtriv,Ltriv) is defined by Xtriv = X × A1,
Ltriv = p?1L.

As originally pointed out in [WN12], to any test configuration (X ,L) is associated an integral
norm χL ∈ NZ, defined on Rm = H0(X,mL) for any m ∈ N such that mL is a line bundle, as
follows. Consider the embedding H0(X ,mL) ↪→ Rm ⊗ k[z±] induced by (A.1). This yields a
decomposition

H0(X ,mL) =
⊕
λ∈Z

z−λF λRm, (A.2)

corresponding to the weight decomposition with respect to the Gm-action, where

F λRm = {s ∈ Rm | z−λs ∈ H0(X ,mL)} (A.3)

is a Z-filtration of Rm, and we define χL as the associated norm. It is clear that χL+cX0 = χL+c
for any c ∈ Q, and using flat base change, one easily checks:

Lemma A.2. If (Xd,Ld) denotes the base change of (X ,L) with respect to z 7→ zd, d ≥ 1,
then χLd = dχL.

In order to further analyze the norm χL, recall from [BoJ22a, §1.4] that a test configuration
X is integrally closed if X is integrally closed in the generic fiber of π; when X is normal, this
is equivalent to X being normal. If X0 is reduced, then X is integrally closed.

If X is integrally closed, the local ring of X at the generic point of any irreducible component
E of X0 is a DVR, which defines a divisorial valuation ordE on X ; we denote by

bE := ordE(X0) = ordE(z) (A.4)

the multiplicity of X0 along E. By (A.1) we have a function field extension k(X) ↪→ k(X ), and
the restriction of b−1

E ordE to k(X) is a divisorial valuation vE ∈ Xdiv, with values in b−1
E Z.

Conversely, any divisorial valuation can be geometrically realized in this way.
Recall also from [BoJ22a, §2.7] that any test configuration (X ,L) for (X,L) determines a

PL function ϕL ∈ PL(X), whose restriction to the dense subset Xdiv ⊂ Xan is given as follows.
Pick v ∈ Xdiv, and choose an integrally closed test configuration X ′ for X such that v = vE
is associated to an irreducible component E ⊂ X ′0 and such that the canonical Gm-equivariant
birational maps µ : X ′ → X and ρ : X ′ → Xtriv are morphisms. Then µ?L − ρ?Ltriv = D for a
Q-Cartier divisor D supported on X ′0, and

ϕL(vE) = b−1
E ordE(D). (A.5)

Conversely, any PL function on Xan can be realized in this way (see [BoJ22a, Theorem 2.31]).

Proposition A.3. Pick an integrally closed test configuration (X ,L), set ϕ := ϕL, and denote
by Σ ⊂ Xdiv the (finite) set of valuations attached to the irreducible components of X0. Then:

(i) χL = bINΣ(ϕ)c = bIN(ϕ)c;
(ii) χhom

L = INΣ(ϕ) = IN(ϕ);
(iii) if X0 is reduced, then χL is homogeneous.
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Here INΣ(ϕ) is defined in §6.1.

Lemma A.4. Under the above assumptions we have

χL = χµ?L, ϕL = ϕµ?L

for any morphism of test configurations µ : X ′ → X .

Proof. By Zariski’s main theorem, we have µ?OX ′ = OX (see [BoJ22a, Lemma 1.12]). Com-
bined with the projection formula, this shows H0(X ,mL) = H0(X ′,mµ?L) for m sufficiently
divisible. The first point follows, while the second one holds by (A.5). �

Proof of Proposition A.3. Pick s ∈ Rm with m sufficiently divisible and λ ∈ Z. Then z−λs
determines a rational section σ of mL which is regular outside X0, and hence is regular on X
iff ordE(σ) ≥ 0 for each irreducible component E of X (see [BoJ22a, Lemma 1.23]). Now (A.5)
implies

b−1
E ordE(σ) = −λ+ vE(s) + ϕ(vE),

and we infer

χL(s) = max

{
λ ∈ Z | λ ≤ min

E
{vE(s) + ϕ(vE)}

}
= bINΣ(ϕ)(s)c.

Next, pick v ∈ Xdiv, and choose an integrally closed test configuration X ′ that dominates X
via µ : X ′ → X and such that v lies in the corresponding set Σ′ ⊂ Xdiv. Lemma A.4 and the
first step of the proof yield

χL(s) = χµ?L(s) = bINΣ′(ϕ)(s)c ≤ v(s) + ϕ(v).

By density of Xdiv and continuity of ϕ, we infer

χL(s) ≤ inf
v∈Xdiv

{v(s) + ϕ(v)} = IN(ϕ)(s) ≤ INΣ(ϕ)(s).

Since χL = bINΣ(ϕ)c, this proves (i), and (ii) follows, cf. Example 2.5. Finally, if X0 is reduced,
then each v ∈ Σ is integer valued on k(X)×. Since ϕ(v) is rational (see (A.5)), we get

INΣ(ϕ)(s) = min
v∈Σ
{v(s) +mϕ(v)} ∈ Z

for s ∈ Rm with m sufficiently divisible, and (iii) now follows from (i) and (ii). �

Remark A.5. Proposition A.3 (ii) implies χhom
L ∈ NΣ

Q , and hence MA(χL) = MA(χhom
L ) ∈

MΣ (see Theorem 7.13). The coefficients of this measure admit an explicit description in
terms of positive intersection classes on the canonical compactification X̄ → P1, see [Li21,
Theorem 1.1].

Consider now an arbitrary test configuration (X ,L), and denote by (X̃ , L̃) its integral clo-

sure, i.e. X̃ → X is the integral closure of X in the generic fiber of X → A1, and L̃ is the
pullback of L.

Theorem A.6. For any test configuration (X ,L) for (X,L), we have

χhom
L = χhom

L̃ = IN(ϕL) and χL̃ = bχhom
L c.

In other words, integral closure is the round-down of homogenization.

Lemma A.7. We have χL ≤ χL̃ ≤ χ
hom
L .
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Proof. Pick s ∈ Rm r {0} with m sufficiently divisible. Since L̃ is the pullback of L to X̃ ,

χL(s) ≤ χL̃(s) =: µ follows directly from (A.3). Since σ := z−µs ∈ H0(X̃ ,mL̃) is integral over

OX , it satisfies σd +
∑d

i=1 σiσ
d−i = 0 for some d ≥ 1 and σi ∈ H0(X , imL). By (A.2), we have

a Laurent expansion σi =
∑

λ∈Z σi,λz
−λ with σi,λ ∈ H0(X,mL) such that χL(σi,λ) ≥ λ, and

tracing the coefficient of z−dµ yields sd+
∑d

i=1 σi,iµs
d−i = 0. Since χhom

L (σi,iµ) ≥ χL(σi,iµ) ≥ iµ,
we infer

dχhom
L (s) = χhom

L (sd) ≥ min
1≤i≤d

{iµ+ (d− i)χhom
L (s)};

hence χhom
L (s) ≥ µ = χL̃(s), and we are done. �

Proof of Theorem A.6. Lemma A.7 implies χhom
L = χhom

L̃
, which is equal to IN(ϕL̃) = IN(ϕL),

by Proposition A.3 (ii) and pullback invariance of ϕL. The final identity follows from Propo-
sition A.3. �

As a consequence, we get the following geometric description of homogenization:

Corollary A.8. For any test configuration (X ,L), χhom
L lies in N div

Q , and is equal to d−1χL̃d
for any sufficiently divisible d ∈ Z≥1.

As above, (Xd,Ld) denotes the base change of (X ,L) with respect to z 7→ zd, and (X̃d, L̃d)
is its integral closure.

Proof. By [BoJ22a, Corollary 2.35], the central fiber of (X̃d, L̃d) is reduced for d sufficiently
divisible. Then χhom

Ld = χhom
L̃d

= χL̃d , by Theorem A.6 and Proposition A.3 (iii). By Lemma A.2,

we have, on the other hand, χLd = dχL, and hence χhom
Ld = dχhom

L . Thus χhom
L = d−1χhom

L̃d
,

which lies in N div
Q , by Proposition A.3 (ii). �

Remark A.9. Corollary A.8 can be used to provide a more elementary proof of Theorem 2.3
in the case of rational norms.

Finally, we relate (integrally closed) test configurations and (rational) divisorial norms, as
follows:

Theorem A.10. For any χ ∈ NZ, the following are equivalent:

(i) χ = χL is associated to some integrally closed test configuration (X ,L) for (X,L);
(ii) χ = bχ′c for some χ′ ∈ N div

Q , which is then uniquely determined as χ′ = χhom.

Proof. That (i) implies (ii) follows from Proposition A.3. Conversely, pick χ′ ∈ N div
Q , and set

χ := bχ′c, so that χ′ = χhom (see Example 2.5). By Theorem 6.12, we have χ′ = IN(ϕ) for some
ϕ ∈ PL(X), which can in turn be written ϕ = ϕL for some integrally closed test configuration
(X ,L). By Proposition A.3, we then have χL = bχ′c = χ, which shows (ii)⇒(i). �

A.2. The Rees correspondence. A test configuration (X ,L) is ample if L is ample. For d
sufficiently divisible, the graded k[z]-algebra R(X , dL) =

⊕
m∈N H0(X ,mdL) is then generated

in degree 1, which shows that χ = χL ∈ TZ is of finite type. Note further that

R(X0, dL) ' grχR
(d) (A.6)

for d sufficiently divisible. Thus (X0,L0) can be identified with the central fiber of χ (see (1.14)).
Denoting by T the set of ample test configurations, (X ,L) 7→ ϕL yields a map T → TZ. A

map in the reverse direction is indeed provided by the Rees construction. Given χ ∈ TZ, pick
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d ≥≥ 1 such that χ is represented by an integral norm on R(d) = R(X, dL) generated in degree

1, with associated filtration (F λR(d))λ∈Z. The Rees algebra

R :=
⊕
λ∈Z

z−λF λR(d)

is a graded k[z]-algebra (with respect to the N-grading inherited from that of R(d)), generated
in degree 1, and we set X := Projk[z]R and L = d−1OX (1). This yields a map TZ → T which

is an inverse of the previous one (see [BHJ17, Proposition 2.15]). We shall refer to the 1–1
map

T ' TZ (A.7)

so defined as the Rees correspondence.
By (A.6), the central fiber X0 of an ample test configuration (X ,L) is reduced iff grχL R

(d)

is reduced for d sufficiently divisible, which holds iff χL is homogeneous (i.e. the converse
of Proposition A.3 (iii) holds for ample test configurations). The Rees correspondence thus
induces a bijection between T hom

Z and the set of ample test configurations with reduced central
fiber.

Denote by T int ⊂ T the set of ample integrally closed test configurations, and by T int
Z ⊂ TZ

its image under the Rees correspondence. Any test configuration with reduced central fiber is
integrally closed, and hence

T hom
Z ⊂ T int

Z ⊂ TZ.

Theorem A.11. Homogenization induces a bijection T int
Z

∼→ T hom
Q , with inverse provided by

round-down.

Proof. Pick χ ∈ T int
Z . Then χhom ∈ T hom

Q (see Lemma 2.11, or Corollary A.8), and χ = bχhomc
(see Proposition A.3). Conversely, pick χ′ ∈ T hom

Q . By Corollary 2.18, χ′ = χhom for some

χ ∈ TZ, i.e. χ = χL for some ample test configuration (X ,L). After passing to the integral

closure (X̃ , L̃) (which remains ample, since X̃ → X is finite), we may further assume that (X ,L)
is integrally closed (see Theorem A.6), and hence χ ∈ T int

Z . Then χ = bχ′c, by Proposition A.3

again, and χ′ = χhom, which completes the proof. �

Finally, we note:

Lemma A.12. For any ample test configuration (X ,L) for (X,L) we have

ϕL = FS(χL) = FS(χhom
L ).

Proof. The second equality follows from Proposition 2.14. Since χhom
L = IN(ϕL) (see The-

orem A.6) and ϕL ∈ HQ, Proposition 2.29 further yields FS(χhom
L ) = Q(ϕL) = ϕL, which

completes the proof. �

Combining Theorem A.11 with the bijection FS: T hom
Q

∼→ HQ, we thus recover [BoJ22a,

Corollary 2.32]:

Corollary A.13. The map (X ,L) 7→ ϕL restricts to a bijection T int ∼→ HQ.

A.3. The case of higher rank. Following [HL20, §2.2] and [Ino22, §2.2], we briefly discuss
a version of the Rees correspondence for R-test configurations.

Definition A.14. For any r ∈ N, we define a rank r test configuration (X ,L, ξ) for (X,L)
as the following data:

• a flat projective scheme morphism π : X → Ar;
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• a Q-line bundle L on X ;
• a Grm-action on (X ,L) that makes π equivariant (with respect to the standard action

on Ar);
• a Grm-equivariant isomorphism (X ,L)|Grm ' (X,L)×Grm;
• a vector ξ ∈ Rr+ with Q-linearly independent components.

A usual test configuration as in §A.1 is thus a rank 1 test configuration, up to the scaling
factor ξ ∈ R>0.

Denote by z1, . . . , zr the coordinates on Ar = Spec k[z1, . . . , zr] and Grm = Spec k[z±1 , . . . , z
±
r ].

The above data yields an embedding

H0(X ,mL) ↪→ Rm[z±1 , . . . , z
±
r ]

for m sufficiently divisible, and we define a norm χL,ξ ∈ NR by setting

χL,ξ(s) = max
{
〈ξ, α〉 | α ∈ Zr, z−αs ∈ H0(X ,mL)

}
for s ∈ Rm, where zα :=

∏
i z
αi
i . Note that χL,ξ ∈ NΛ with Λ :=

∑
i Zξi ' Zr.

Proposition A.15. For any rank r test configuration (X ,L, ξ) with L relatively ample, the
associated norm χL,ξ is of finite type; this norm is further of rank r, and its central fiber can be
identified with the fiber (X0,L0) of π over 0 ∈ Ar. Conversely, any R-test configuration χ ∈ TR
arises in this way.

Proof. We sketch the argument, and refer to [Ino22, Proposition 2.20] for details. Assume L is
relatively ample, and set χ = χL,ξ. The restriction map R(X , dL) → R(X0, dL0) is surjective

for d sufficiently divisible, and one checks that it induces an isomorphism grχR
(d) ' R(X0, dL0)

as N× Zr-graded algebras. The rest easily follows.
Conversely, pick χ ∈ TR, of rank r. As in Example 1.11, one can find an embedding X ↪→ PN

such that O(1)|X = dL, an action of a torus T ' Grm on (PN ,O(1)) and ξ ∈ NR ' Rr, such
that the induced norm on R(PN ,O(1)) restricts to χ. Acting on X defines a T -equivariant
morphism T → Hilb to the Hilbert scheme of PN . Pick a regular top-dimensional cone σ ⊂ NR
that contains ξ in its interior, and denote by B ' Ar the corresponding toric affine variety.
After passing to a finer cone, one may assume, by toric resolution of singularities, that the
corresponding T -equivariant rational map B 99K Hilb is a morphism, and pulling back the
universal family yields the desired polarized family (X ,L). �

Appendix B. The toric case

We give a brief account of how some of the main results in the paper specialize to the toric
setting [Ful93, BPS11]. See also Appendix B in [BoJ22a].

Consider an algebraic torus T ' Gnm, with associated dual lattices M := Hom(T,Gm)
and N := Hom(Gm, T ). We have a canonical embedding M ↪→ k(T )× onto the set T -invariant
functions, and a dual canonical embedding NR ↪→ T val onto the set of T (k)-invariant valuations,
such that v(u) = 〈v, u〉 for all v ∈ NR and u ∈M ↪→ k(T )×.

A polarized toric variety (X,L) is determined by a rational polytope P ⊂MR, such that, for
each m sufficiently divisible, the set of weights of the T (k)-module Rm = H0(X,mL) coincides

with mP ∩ M , each with multiplicity 1. Denoting by P̂ := R≥0({1} × P ) ⊂ R × MR the
(rational polyhedral) cone over P , this yields, for d sufficiently divisible, a 1–1 correspondence
between:
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• the set of toric (i.e. T (k)-invariant) norms χ on R(d) = R(X, dL) and superadditive

functions h : Γ(d) → R on the semigroup Γ(d) := (dN ×M) ∩ P̂ such that h(m,α) =
O(m);
• the subset of toric homogeneous norms χ and concave, bounded functions g : P → R,

the corresponding superadditive function on Γ(d) being h(m,α) = mg(m−1α).

Such a function g is automatically lsc on P (see [GKR68]), but might be discontinuous at some
boundary points. Denote by g∨ : NR → R its (convex) Legendre transform, defined by

g∨(ξ) = sup
α∈P
{〈α, ξ〉+ g(α)},

and let also λP be the Lebesgue measure of P , normalized to mass 1. Then:

(i) FS(χ)|NR = g∨ − 0∨, where 0∨ coincides with the support function of P ;
(ii) vol(χ) =

´
g λP ;

(iii) d∞(χ, χ′) = supP |g − g′|, and dp(χ, χ
′) = ‖g − g′‖Lp(λP ) for p ∈ [1,∞);

(iv) χ ∈ TR (resp. TQ) iff g∨(v) = maxi{〈αi, v〉+λi} for a finite set αi ∈ P ∩MQ and λi ∈ R
(resp. Q);

(v) χ ∈ N cont
R ⇐⇒ g ∈ C0(P )⇐⇒ g usc ⇐⇒ χ ∈ Nmax

R ;

(vi) χ ∈ N div
R (resp. N div

Q ) iff g(α) = minj{〈ξj , α〉+ cj} for a finite set ξj ∈ NQ and cj ∈ R
(resp. Q);

(vii) MA(χ) = MAR(g∨) = (∇g)?λP , where MAR is the real Monge–Ampère operator and
∇g is the (λP -a.e. defined) gradient of g.

By (iv), (vi) and basic convex geometry, it follows that any toric homogeneous norm χ satisfies

χ ∈ N div
Q ⇐⇒ χ ∈ TQ.

However, both implications fail when Q is replaced with R.

Example B.1. Assume (X,L) = (P1,O(1)), and consider the toric divisorial norm

χ := min{χv, χtriv + c} ∈ N div
R ,

where v = ord0 with 0 is the origin in A1 ⊂ P1, and c ∈ [0, 1]. The corresponding concave
function is g(α) = min{α, c} with α ∈ P = [0, 1] ⊂MR = R, and a simple computation yields

g∨(ξ) = max{ξ + c, cξ + c, 0}
for v ∈ NR = R. Using (iv), this shows χ ∈ TR ⇐⇒ c ∈ Q.

Example B.2. For any ξ ∈ NR ⊂ X lin, χξ is of finite type (see Example 1.10). However, χξ
is divisorial iff ξ ∈ NQ (see Example 7.17).
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Martin Sombra). arXiv:1712.00980.

[HL20] J. Han and C. Li. Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of
Fano varieties. arXiv:2009.01010.

[Ino22] E. Inoue. Entropies in µ-framework of canonical metrics and K-stability, II – Non-archimedean
aspect: non-archimedean µ-entropy and µK-semistability. arXiv:2202.12168.

[KK12] K. Kaveh, A.G. Khovanskii. Newton–Okounkov bodies, semigroups of integral points, graded alge-
bras and intersection theory. Ann. of Math. (2) 176 (2012), no. 2, 925–978.
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