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Abstract. Consider a polarized complex manifold (X,L) and a ray of positive metrics onL defined
by a positive metric on a test configuration for (X,L). For many common functionals in Kähler ge-
ometry, we prove that the slope at infinity along the ray is given by evaluating the non-Archimedean
version of the functional (as defined in our earlier paper [BHJ17]) at the non-Archimedean metric
on L defined by the test configuration. Using this asymptotic result, we show that coercivity of
the Mabuchi functional implies uniform K-stability, as defined in [Der15, BHJ17]. As a partial
converse, we show that uniform K-stability implies coercivity of the Mabuchi functional when re-
stricted to Bergman metrics.
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Introduction

Let (X,L) be a polarized complex manifold, i.e. a smooth projective complex variety
X endowed with an ample line bundle L. A central problem in Kähler geometry is to
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2906 Sébastien Boucksom et al.

give necessary and sufficient conditions for the existence of canonical Kähler metrics
in the corresponding Kähler class c1(L), for example, constant scalar curvature Kähler
metrics (cscK metrics for short). To fix ideas, suppose the reduced automorphism group
Aut(X,L)/C∗ is discrete. In this case, the celebrated Yau–Tian–Donaldson conjecture
asserts that c1(L) admits a cscK metric iff (X,L) is K-stable. That K-stability follows
from the existence of a cscK metric was proved by Stoppa [Stop09], building upon work
of Donaldson [Don05], but the reverse direction is considered wide open in general.

This situation has led people to introduce stronger stability conditions that would
hopefully imply the existence of a cscK metric. Building upon ideas of Donaldson
[Don05], Székelyhidi [Szé06] proposed to use a version of K-stability in which, for
any test configuration (X ,L) for (X,L), the Donaldson–Futaki invariant DF(X ,L) is
bounded below by a positive constant times a suitable norm of (X ,L). (See also [Szé15]
for a related notion.)

Following this lead we defined, in the prequel [BHJ17] to this paper, (X,L) to be
uniformly K-stable if there exists δ > 0 such that

DF(X ,L) ≥ δJNA(X ,L)

for any normal and ample test configuration (X ,L). Here JNA(X ,L) is a non-Archimed-
ean analogue of Aubin’s J -functional. It is equivalent to the L1-norm of (X ,L) as well as
the minimum norm considered by Dervan [Der15]. The norm is zero iff the normalization
of (X ,L) is trivial, so uniform K-stability implies K-stability.

In [BHJ17] we advocated the point of view that a test configuration defines a non-
Archimedean metric on L, that is, a metric on the Berkovich analytification of (X,L)with
respect to the trivial norm on the ground field C. Further, we defined non-Archimedean
analogues of many classical functionals in Kähler geometry. One example is the func-
tional JNA above. Another is MNA, a non-Archimedean analogue of the Mabuchi
K-energy functional M . It agrees with the Donaldson–Futaki invariant, up to an explicit
error term, and uniform K-stability is equivalent to

MNA(X ,L) ≥ δJNA(X ,L)

for any ample test configuration (X ,L). In [BHJ17] we proved that canonically polarized
manifolds and polarized Calabi–Yau manifolds are always uniformly K-stable.

A first goal of this paper is to exhibit precise relations between the non-Archimedean
functionals and their classical counterparts. From now on we do not a priori assume that
the reduced automorphism group of (X,L) is discrete. We prove

Theorem A. Let (X ,L) be an ample test configuration for a polarized complex mani-
fold (X,L). Consider any smooth strictly positive S1-invariant metric 8 on L defined
near the central fiber, and let (φs)s be the corresponding ray of smooth positive metrics
on L. Denoting by M and J the Mabuchi K-energy functional and Aubin J -functional,
respectively, we then have

lim
s→+∞

M(φs)

s
= MNA(X ,L) and lim

s→+∞

J (φs)

s
= JNA(X ,L).
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The corresponding equalities also hold for several other functionals (see Theorem 3.6).
More generally, we prove that these asymptotic properties hold in the logarithmic setting,
for subklt pairs (X,B) and with weaker positivity assumptions (see Theorem 4.2).

At least when the total space X is smooth, the assertion in Theorem A regarding
the Mabuchi functional is closely related to several statements appearing in the litera-
ture [PRS08, Corollary 2], [PT09, Corollary 1], [Li12, Remark 12, p. 38], [Tia17, Lem-
ma 2.1], following the seminal work [Tia97]. A special case appears already in [DT92,
p. 328]. However, to the best of our knowledge, neither the general and precise statement
given here nor its proof is available in the literature.

As in [PRS08], the proof of Theorem A uses Deligne pairings, but the analysis here
is more delicate since the test configuration X is not smooth. Using resolution of sin-
gularities, we can make X smooth, but then we lose the strict positivity of 8. It turns
out that the situation can be analyzed by estimating integrals of the form

∫
Xτ e

29|Xτ

as τ → 0, where X → C is an snc test configuration for X, and 9 is a smooth
metric on the (logarithmic) relative canonical bundle of X near the central fiber (see
Lemma 3.11).

Donaldson [Don99] (see also [Mab87, Sem92]) has advocated the point of view that
the space H of positive metrics on L is an infinite-dimensional symmetric space. One
can view the space HNA of positive non-Archimedean metrics on L as (a subset of) the
associated (conical) Tits building. Theorem A gives justification to this paradigm.

The asymptotic formulas in Theorem A allow us to study coercivity properties of the
Mabuchi functional. As an immediate consequence of Theorem A, we have

Corollary B. If the Mabuchi functional is coercive in the sense that

M ≥ δJ − C

on H for some positive constants δ and C, then (X,L) is uniformly K-stable, that is,

DF(X ,L) ≥ δJNA(X ,L)

for any normal ample test configuration (X ,L).

Coercivity of the Mabuchi functional is known to hold ifX is a Kähler–Einstein manifold
without vector fields. This was first established in the Fano case by [PS+08]; an ele-
gant proof can be found in [DR17]. As a special case of a very recent result of Berman,
Darvas and Lu [BDL16], coercivity of the Mabuchi functional also holds for general
polarized varieties admitting a metric of constant scalar curvature and having discrete re-
duced automorphism group. Thus, if (X,L) admits a constant scalar curvature metric and
Aut(X,L)/C∗ is discrete, then (X,L) is uniformly K-stable. The converse statement is
not currently known in general, but see below for the Fano case.

Next, we study coercivity of the Mabuchi functional when restricted to the space of
Bergman metrics. For any m ≥ 1 such that mL is very ample, let Hm be the space of
Fubini–Study type metrics on L, induced by the embedding of X ↪→ PNm via mL.
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Theorem C. Fix m such that (X,mL) is linearly normal, and δ > 0. Then the following
conditions are equivalent:

(i) there exists C > 0 such that M ≥ δJ − C on Hm.
(ii) DF(Xλ,Lλ) ≥ δJNA(Xλ,Lλ) for all one-parameter subgroups λ of GL(Nm,C);

(iii) MNA(Xλ,Lλ) ≥ δJNA(Xλ,Lλ) for all one-parameter subgroups λ of GL(Nm,C).
Here (Xλ,Lλ) is the test configuration for (X,L) defined by λ.

Note that a different condition equivalent to (i)–(iii) appears in [Pau13, Theorem 1.1].
The equivalence of (ii) and (iii) stems from the close relation between the Donaldson–

Futaki invariant and the non-Archimedean Mabuchi functional. In view of Theorem A,
the equivalence between (i) and (iii) can be viewed as a generalization of the Hilbert–
Mumford criterion. The proof uses in a crucial way a deep result of Paul [Pau12], which
states that the restrictions to Hm of the Mabuchi functional and the J -functional have log
norm singularities (see §5).

Since every ample test configuration arises as a one-parameter subgroup λ of
GL(Nm,C) for some m, Theorem C implies

Corollary D. A polarized manifold (X,L) is uniformly K-stable iff there exist δ > 0 and
a sequence Cm > 0 such that M ≥ δJ − Cm on Hm for all sufficiently divisible m.

Following Paul and Tian [PT06, PT09], we say that (X,mL) is CM-stable when there
exist C, δ > 0 such that M ≥ δJ − C on Hm.

Corollary E. If (X,L) is uniformly K-stable, then (X,mL) is CM-stable for any suffi-
ciently divisible positive integer m. Hence the reduced automorphism group is finite.

Here the last statement follows from a result by Paul [Pau13, Corollary 1.1].
Let us now comment on the relation of uniform K-stability to the existence of Kähler–

Einstein metrics on Fano manifolds. In [CDS15], Chen, Donaldson and Sun proved that a
Fano manifold X admits a Kähler–Einstein metric iff it is K-polystable; see also [Tia15].
Since then, several new proofs have appeared. Datar and Székelyhidi [DSz15] proved an
equivariant version of the conjecture, using Aubin’s original continuity method. Chen,
Sun and Wang [CSW18] gave a proof using the Kähler–Ricci flow.

In [BBJ15], Berman and the first and last authors of the current paper used a varia-
tional method to prove a slightly different statement: in the absence of vector fields, the
existence of a Kähler–Einstein metric is equivalent to uniform K-stability. In fact, the
direct implication uses Corollary B above.

In §6 we outline a different proof of the fact that a uniformly K-stable Fano manifold
admits a Kähler–Einstein metric. Our method, which largely follows ideas of Tian, relies
on Székelyhidi’s partial C0-estimates [Szé16] along the Aubin continuity path, together
with Corollary D.

As noted above, uniform K-stability implies that the reduced automorphism group of
(X,L) is discrete. In the presence of vector fields, there should presumably be a natural
notion of uniform K-polystability. We hope to address this in future work.

There have been several important developments since a first draft of the current pa-
per was circulated. First, Z. Sjöström Dyrefelt [SD18] and independently R. Dervan and
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J. Ross [DR17] proved a transcendental version of Theorem A. Second, as mentioned
above, it was proved in [BBJ15] that in the case of a Fano manifold without holomorphic
vector fields, uniform K-stability is equivalent to coercivity of the Mabuchi functional,
and hence to the existence of a Kähler–Einstein metric. Finally, the results in this paper
were used in [BDL16] to prove that an arbitrary polarized pair (X,L) admitting a cscK
metric must be K-polystable.

The organization of the paper is as follows. In the first section, we review several clas-
sical energy functionals in Kähler geometry and their interpretation as metrics on suitable
Deligne pairings. Then, in §2, we recall some non-Archimedean notions from [BHJ17].
Specifically, a non-Archimedean metric is an equivalence class of test configurations, and
the non-Archimedean analogues of the energy functionals in §1 are defined using inter-
section numbers. In §3 we prove Theorem A relating the classical and non-Archimedean
functionals via subgeodesic rays. These results are generalized to the logarithmic setting
in §4. Section 5 is devoted to the relation between uniform K-stability and CM-stability.
In particular, we prove Theorem C and Corollaries D and E. Finally, in §6, we show how
to use Székelyhidi’s partial C0-estimates along the Aubin continuity path together with
CM-stability to prove that a uniformly K-stable Fano manifold admits a Kähler–Einstein
metric.

1. Deligne pairings and energy functionals

In this section we recall the definition and main properties of the Deligne pairing, as well
as its relation to classical functionals in Kähler geometry.

1.1. Metrics on line bundles

We use additive notation for line bundles and metrics. If, for i = 1, 2, φi is a metric on
a line bundle Li on X and ai ∈ Z, then a1φ1 + a2φ2 is a metric on a1L1 + a2L2. This
allows us to define metrics on Q-line bundles. A metric on the trivial line bundle will be
identified with a function on X.

If σ is a (holomorphic) section of a line bundle L on a complex analytic spaceX, then
log |σ | stands for the corresponding (possibly singular) metric on L. For any metric φ
on L, log |σ | − φ is therefore a function, and

|σ |φ := |σ |e
−φ
= exp(log |σ | − φ)

is the length of σ in the metric φ.
We normalize the operator dc so that ddc = i

π
∂∂̄ , and set (somewhat abusively)

ddcφ := −ddc log |σ |φ

for any local trivializing section σ of L. The globally defined (1, 1)-form (or current)
ddcφ is the curvature of φ, normalized so that it represents the (integral) first Chern class
of L.
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If X is a complex manifold of dimension n and η is a holomorphic n-form on X, then

|η|2 :=
in

2

2n
η ∧ η̄

defines a natural (smooth, positive) volume form onX. More generally, there is a bijection
between smooth metrics on the canonical bundleKX and (smooth, positive) volume forms
on X, which associates to a smooth metric φ on KX the volume form e2φ locally defined
by

e2φ
:= |η|2/|η|2φ

for any local section η of KX.
If ω is a positive (1, 1)-form on X and n = dimX, then ωn is a volume form, so

−
1
2 logωn is a metric on −KX in our notation. The Ricci form of ω is defined as the

curvature
Ricω := −ddc 1

2 logωn

of this metric; it is thus a smooth (1, 1)-form in the cohomology class c1(X) of −KX.
If φ is a smooth positive metric on a line bundle L on X, we denote by Sφ ∈ C∞(X)

the scalar curvature of the Kähler form ddcφ; it satisfies

Sφ(dd
cφ)n = nRic(ddcφ) ∧ (ddcφ)n−1. (1.1)

1.2. Deligne pairings

While the construction below works in greater generality [Elk89, Zha96, MG00], we will
restrict ourselves to the following setting. Let π : Y → T be a flat, projective morphism
between smooth complex algebraic varieties, of relative dimension n ≥ 0. Given line
bundles L0, . . . , Ln on Y , consider the intersection product

L0 · . . . · Ln · [Y ] ∈ CHdimY−(n+1)(Y ) = CHdim T−1(Y ).

Its push-forward belongs to CHdim T−1(T ) = Pic(T ) since T is smooth, and hence defines
an isomorphism class of line bundle on T . The Deligne pairing of L0, . . . , Ln selects in
a canonical way a specific representative of this isomorphism class, denoted by

〈L0, . . . , Ln〉Y/T .

The pairing is functorial, multilinear, and commutes with base change. It further satisfies
the following key inductive property: if Z0 is a non-singular divisor in Y , flat over T and
defined by a section σ0 ∈ H

0(Y, L0), then we have a canonical identification

〈L0, . . . , Ln〉Y/T = 〈L1|Z0 , . . . , Ln|Z0〉Z0/T . (1.2)

For n = 0, 〈L0〉Y/T coincides with the norm of L0 with respect to the finite flat morphism
Y → T . These properties uniquely characterize the Deligne pairing. Indeed, if we write
each Li as a difference of very ample line bundles, multilinearity reduces the situation to
the case where the Li are very ample. We may thus find non-singular divisors Zi ∈ |Li |
with

⋂
i∈I Zi non-singular and flat over T for each set I of indices, and we get

〈L0, . . . , Ln〉Y/T = 〈Ln|Z0∩···∩Zn−1〉Z0∩···∩Zn−1/T .
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1.3. Metrics on Deligne pairings

We use [Elk90, Zha96, Mor99] as references. Given a smooth metric φj on each Lj , the
Deligne pairing 〈L0, . . . , Ln〉Y/T can be endowed with a continuous metric

〈φ0, . . . , φn〉Y/T ,

smooth over the smooth locus of π , the construction being functorial, multilinear, and
commuting with base change. It is basically constructed by requiring that

〈φ0, . . . , φn〉Y/T = 〈φ1|Z0 , . . . , φn|Z0〉Z0/T−

∫
Y/T

log |σ0|φ0dd
cφ1∧· · ·∧dd

cφn (1.3)

in the notation of (1.2), with
∫
Y/T

denoting fiber integration, i.e. the push-forward by π
as a current. By induction, the continuity of the metric 〈φ0, . . . , φn〉 reduces to that of∫
Y/T

log |σ0|φ0dd
cφ1 ∧ · · · ∧ dd

cφn, and thus follows from [Stol66, Theorem 4.9].

Remark 1.1. As explained in [Elk90, I.1], arguing by induction, the key point in check-
ing that (1.3) is well-defined is the following symmetry property: if σ1 ∈ H

0(Y, L1) is a
section with divisor Z1 such that both Z1 and Z0 ∩ Z1 are non-singular and flat over T ,
then∫

Y/T

log |σ0|φ0dd
cφ1 ∧ α +

∫
Z0/T

log |σ1|φ1α

=

∫
Y/T

log |σ1|φ1dd
cφ0 ∧ α +

∫
Z1/T

log |σ0|φ0α

with α = ddcφ2 ∧ · · · ∧ dd
cφn. By the Lelong–Poincaré formula, the above equality

reduces to

π∗(log |σ0|φ0dd
c log |σ1|φ1 ∧ α) = π∗(log |σ1|φ1dd

c log |σ0|φ0 ∧ α),

which holds by Stokes’ formula applied to a monotone regularization of the quasi-psh
functions log |σi |φi .

Metrics on Deligne pairings satisfy the following two crucial properties, which are direct
consequences of (1.3).

(i) The curvature current of 〈φ0, . . . , φn〉Y/T satisfies

ddc〈φ0, . . . , φn〉Y/T =

∫
Y/T

ddcφ0 ∧ · · · ∧ dd
cφn, (1.4)

where again
∫
Y/T

denotes fiber integration.
(ii) Given another smooth metric φ′0 on L0, we have the change of metric formula

〈φ′0, φ1, . . . , φn〉Y/T − 〈φ0, φ1, . . . , φn〉Y/T =

∫
Y/T

(φ′0 − φ0)dd
cφ1 ∧ · · · ∧ dd

cφn.

(1.5)
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1.4. Energy functionals

Let (X,L) be a polarized manifold, i.e. a smooth projective complex variety X with an
ample line bundle L. Set

V := (Ln) and S̄ := −nV −1(KX · L
n−1),

where n = dimX. Denote by H the set of smooth positive metrics φ on L. For φ ∈ H, set
MA(φ) := V −1(ddcφ)n. Then MA(φ) is a probability measure equivalent to Lebesgue
measure, and

∫
X
Sφ MA(φ) = S̄ by (1.1).

We recall the following functionals in Kähler geometry. Fix a reference metric
φref ∈ H. Our notation largely follows [BB+13, BB+11].

(i) The Monge–Ampère energy functional is given by

E(φ) =
1

n+ 1

n∑
j=0

V −1
∫
X

(φ − φref)(dd
cφ)j ∧ (ddcφref)

n−j . (1.6)

(ii) The J -functional is a translation invariant version of E, defined as

J (φ) :=

∫
X

(φ − φref)MA(φref)− E(φ). (1.7)

The closely related I -functional is defined by

I (φ) :=

∫
X

(φ − φref)MA(φref)−

∫
X

(φ − φref)MA(φ). (1.8)

(iii) For any closed (1, 1)-form θ , the θ -twisted Monge–Ampère energy is given by

Eθ (φ) =
1
n

n−1∑
j=0

V −1
∫
X

(φ − φref)(dd
cφ)j ∧ (ddcφref)

n−1−j
∧ θ. (1.9)

Taking θ := −nRic(ddcφref), we obtain the Ricci energy R := −EnRic(ddcφref).
(iv) The entropy of φ ∈ H is defined as

H(φ) :=
1
2

∫
X

log
[

MA(φ)
MA(φref)

]
MA(φ), (1.10)

that is, (half) the relative entropy of the probability measure MA(φ) with respect to
MA(φref). We have H(φ) ≥ 0, with equality iff φ − φref is constant.

(v) The Mabuchi functional (or K-energy) can now be defined via the Chen–Tian for-
mula [Che00] (see also [BB17, Proposition 3.1]) as

M(φ) = H(φ)+ R(φ)+ S̄E(φ). (1.11)
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These functionals vanish at φref and satisfy the variational formulas

δE(φ) = MA(φ) = V −1(ddcφ)n,

δEθ (φ) = V
−1(ddcφ)n−1

∧ θ,

δR(φ) = −nV −1(ddcφ)n−1
∧ Ric(ddcφref),

δH(φ) = nV −1(ddcφ)n−1
∧ (Ric(ddcφref)− Ric(ddcφ)),

δM(φ) = (S̄ − Sφ)MA(φ).

In particular, φ is a critical point of M iff ddcφ is a cscK metric.
The functionals I , J and I − J are comparable in the sense that

1
n
J ≤ I − J ≤ nJ (1.12)

on H. For φ ∈ H we have J (φ) ≥ 0, with equality iff φ−φref is constant. These properties
are thus also shared by I and I − J .

The functionals H , I , J , M are translation invariant in the sense that H(φ + c) =
H(φ) for c ∈ R. For E and R we instead have E(φ + c) = E(φ) + c and R(φ + c) =
R(φ)− S̄c, respectively.

1.5. Energy functionals as Deligne pairings

The functionals above can be expressed using Deligne pairings, an observation going
back at least to [PS04]. Note that any metric φ ∈ H induces a smooth metric 1

2 log MA(φ)
on KX. The following identities are now easy consequences of the change of metric for-
mula (1.5).

Lemma 1.2. For any φ ∈ H we have

(n+ 1)VE(φ) = 〈φn+1
〉X − 〈φ

n+1
ref 〉X,

V J (φ) = 〈φ, φnref〉X − 〈φ
n+1
ref 〉X −

1
n+ 1

[〈φn+1
〉X − 〈φ

n+1
ref 〉X],

V I (φ) = 〈φ − φref, φ
n
ref〉X − 〈φ − φref, φ

n
〉X,

V R(φ) =
〈 1

2 log MA(φref), φ
n
〉
X
−
〈 1

2 log MA(φref), φ
n
ref
〉
X
,

VH(φ) =
〈 1

2 log MA(φ), φn
〉
X
−
〈 1

2 log MA(φref), φ
n
〉
X
,

VM(φ) =
〈 1

2 log MA(φ), φn
〉
X
−
〈 1

2 log MA(φref), φ
n
ref
〉
X

+
S̄

n+ 1
[〈φn+1

〉X − 〈φ
n+1
ref 〉X],

where 〈 〉X denotes the Deligne pairing with respect to the constant map X→ {pt}.

Remark 1.3. The formulas above make it evident that instead of fixing a reference metric
φref ∈ H, we could view E,H+R andM as metrics on suitable multiples of the complex
lines 〈Ln+1

〉X, 〈KX, Ln〉X, and (n+ 1)〈KX, Ln〉X + S̄〈Ln+1
〉X, respectively.
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Remark 1.4. In the definition of R, we could replace −Ric(ddcφref) by ddcψref for
any smooth metric ψref on KX. Similarly, in the definition of H , we could replace the
reference measure MA(φref) by e2ψref . Doing so, and keeping the Chen–Tian formula,
would only change the Mabuchi functional M by an additive constant.

1.6. The Ding functional

Now suppose X is a Fano manifold, that is, L := −KX is ample. Any metric φ on L then
induces a positive volume form e−2φ on X. The Ding functional [Din88] on H is defined
by

D(φ) = L(φ)− E(φ), where L(φ) = −
1
2

log
∫
X

e−2φ .

This functional has proven an extremely useful tool for the study of the existence of
Kähler–Einstein metrics, which are realized as the critical points ofD (see e.g. [Berm16,
BBJ15]).

2. Test configurations as non-Archimedean metrics

In this section we recall some notions and results from [BHJ17]. Let X be a smooth
projective complex variety and L a line bundle on X.

2.1. Test configurations

As in [BHJ17] we adopt the following flexible terminology for test configurations.

Definition 2.1. A test configuration X for X consists of the following data:

(i) a flat, projective morphism of schemes π : X → C;
(ii) a C∗-action on X lifting the canonical action on C;

(iii) an isomorphism X1 ' X.

We denote by τ the coordinate on C, and by Xτ the fiber over τ .
These conditions imply that X is reduced and irreducible [BHJ17, Proposition 2.6]. If

X ,X ′ are test configurations for X, then there is a unique C∗-equivariant birational map
X ′ 99K X compatible with the isomorphism in (iii). We say that X ′ dominates X if this
birational map is a morphism; when it is an isomorphism we somewhat abusively identify
X and X ′. Any test configuration X is dominated by its normalization X̃ .

An snc test configuration forX is a smooth test configuration X whose central fiber X0
has simple normal crossing support (but is not necessarily reduced).

When X is a test configuration, we define the logarithmic canonical bundle as

K
log
X := KX + X0,red.

Setting K log
C := KC + [0], we define the relative logarithmic canonical bundle as

K
log
X /C := K

log
X − π

∗K
log
C = KX /C + X0,red − X0;
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this is well behaved under base change τ 7→ τ d (see [BHJ17, §4.4]). Despite the termi-
nology,KX ,KX /C,K log

X andK log
X /C are only Weil divisor classes in general; they are line

bundles when X is smooth.

Definition 2.2. A test configuration (X ,L) for (X,L) consists of a test configuration X
for X, together with the following additional data:

(iv) a C∗-linearized Q-line bundle L on X ;
(v) an isomorphism (X1,L1) ' (X,L).

A pull-back of a test configuration (X ,L) is a test configuration (X ′,L′) where X ′ dom-
inates X and L′ is the pull-back of L. In particular, the normalization (X̃ , L̃) is the pull-
back of (X ,L) with ν : X̃ → X the normalization morphism.

A test configuration (X ,L) is trivial if X = X×C with C∗ acting trivially onX. This
implies that (X ,L + cX0) = (X,L) × C for some constant c ∈ Q. A test configuration
for (X,L) is almost trivial if its normalization is trivial.

We say that (X ,L) is ample (resp. semiample, resp. nef) when L is relatively am-
ple (resp. relatively semiample, resp. nef). The pull-back of a semiample (resp. nef) test
configuration is semiample (resp. nef).

If L is ample, then for every semiample test configuration (X ,L) there exists a unique
ample test configuration (Xamp,Lamp) that is dominated by (X ,L) and satisfies µ∗OX =
OXamp , where µ : X → Xamp is the canonical morphism (see [BHJ17, Proposition 2.17]).

Note that while X can often be chosen smooth Xamp will not be smooth, in general. It
is, however, normal whenever X is.

2.2. One-parameter subgroups

Suppose L is ample. Ample test configurations are then essentially equivalent to one-
parameter degenerations of X. See [BHJ17, §2.3] for details on what follows.

Fixm ≥ 1 such thatmL is very ample, and consider the corresponding closed embed-
ding X ↪→ PNm−1 with Nm := h0(X,mL). Then every one-parameter subgroup (1-PS
for short) λ : C∗→ GL(Nm,C) induces an ample test configuration (Xλ,Lλ) for (X,L).
By definition, Xλ is the Zariski closure in P(V )×C of the image of the closed embedding
X×C∗ ↪→ P(V )×C∗ mapping (x, τ ) to (λ(τ )x, τ ). Note that (Xλ,Lλ) is trivial iff λ is
a multiple of the identity. We emphasize that Xλ is not normal in general.

In fact, every ample test configuration may be obtained as above. Using one-parameter
subgroups, we can produce test configurations that are almost trivial but not trivial, as
observed in [LX14, Remark 5]. See [BHJ17, Proposition 2.12] for an elementary proof
of the following result.

Proposition 2.3. For everym divisible enough, there exists a 1-PS λ : C∗→ GL(Nm,C)
such that the test configuration (Xλ,Lλ) is non-trivial but almost trivial.

2.3. Valuations and log discrepancies

By a valuation on X we mean a real-valued valuation v on the function field C(X) (triv-
ial on the ground field C). The trivial valuation vtriv is defined by vtriv(f ) = 0 for



2916 Sébastien Boucksom et al.

f ∈ C(X)∗. A valuation v is rational divisorial if it is of the form v = c ordF , where
c ∈ Q>0 and F is a prime divisor on a projective normal variety Y admitting a birational
morphism onto X. We denote by Xdiv

Q the set of valuations on X that are either ratio-
nal divisorial or trivial, and equip it with the weakest topology such that v 7→ v(f ) is
continuous for every f ∈ C(X)∗.

The log discrepancy AX(v) of a valuation in Xdiv
Q is defined as follows. First, we set

AX(vtriv) = 0. For a rational divisorial valuation v = c ordF as above, we set AX(v) =
c(1+ ordF (KY/X)), where KY/X is the relative canonical (Weil) divisor.

Now consider a normal test configuration X of X. Since C(X ) ' C(X)(τ), any
valuation w on X restricts to a valuation r(w) on X. Let E be an irreducible component
of the central fiber X0 =

∑
bEE. Then ordE is a C∗-invariant rational divisorial valuation

on C(X ) and satisfies ordE(t) = bE . If we set vE := r(b−1
E ordE), then vE is a valuation

in Xdiv
Q . Conversely, every valuation v ∈ Xdiv

Q has a unique C∗-invariant preimage w
under r normalized by w(τ) = 1, and w is associated to an irreducible component of the
central fiber of some test configuration for X (cf. [BHJ17, Theorem 4.6]).

Note that ordE is a rational divisorial valuation on X × C. By [BHJ17, Proposi-
tion 4.11], the log discrepancies of ordE and vE are related as follows: AX×C(ordE) =
bE(1+ AX(vE)).

2.4. Compactifications

For some purposes it is convenient to compactify test configurations. The following notion
provides a canonical way of doing so.

Definition 2.4. The compactification X̄ of a test configuration X for X is defined by
gluing together X and X × (P1

\ {0}) along their respective open subsets X \ X0 and
X× (C \ {0}), using the canonical C∗-equivariant isomorphism X \X0 ' X× (C \ {0}).

The compactification X̄ comes with a C∗-equivariant flat morphism X̄ → P1, still de-
noted by π . By construction, π−1(P1

\{0}) is C∗-equivariantly isomorphic toX×(P1
\{0})

over P1
\ {0}.

Similarly, a test configuration (X ,L) for (X,L) admits a compactification (X̄ , L̄),
where L̄ is a C∗-linearized Q-line bundle on X̄ . Note that L̄ is relatively (semi)ample iff
L is.

The relative canonical bundle and relative logarithmic canonical bundle are now de-
fined by

KX̄ /P1 := KX̄ − π
∗KP1 ,

K
log
X̄ /P1 := K

log
X̄ − π

∗K
log
P1 = KX̄ /P1 + X0,red − X0.

2.5. Non-Archimedean metrics

Following [BHJ17, §6] (see also [BJ18]) we introduce:
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Definition 2.5. Two test configurations (X1,L1), (X2,L2) for (X,L) are equivalent if
there exists a test configuration (X3,L3) that is a pull-back of both (X1,L1) and (X2,L2).
An equivalence class is called a non-Archimedean metric on L, and is denoted by φ. We
denote by φtriv the equivalence class of the trivial test configuration (X,L)× C.

A non-Archimedean metric φ is called semipositive if some (or, equivalently, any) repre-
sentative (X ,L) of φ is nef. Note that this implies that L is nef.

When L is ample, we say that a non-Archimedean metric φ on L is positive if some
(or, equivalently, any) representative (X ,L) of φ is semiample. We denote by HNA the set
of all non-Archimedean positive metrics on L. By [BHJ17, Lemma 6.3], every φ ∈ HNA

is represented by a unique normal, ample test configuration.
The set of non-Archimedean metrics on a line bundleL admits two natural operations:

(i) a translation action of Q, denoted by φ 7→ φ + c and induced by the map (X ,L) 7→
(X ,L+ cX0);

(ii) a scaling action of the semigroup N∗ of positive integers, denoted by φ 7→ φd and
induced by the base change of (X ,L) by τ 7→ τ d .

When L is ample (resp. nef) these operations preserve the set of positive (resp. semiposi-
tive) metrics. The trivial metric φtriv is fixed by the scaling action.

As in §1.1, we use additive notation for non-Archimedean metrics. A non-Archimed-
ean metric on OX induces a bounded (and continuous) function on Xdiv

Q .

Remark 2.6. As explained in [BHJ17, §6.8], a non-Archimedean metric φ on L, as de-
fined above, can be viewed as a metric on the Berkovich analytification [Berk90] of L
with respect to the trivial absolute value on the ground field C. See also [BJ18] for a more
systematic analysis, itself building upon [BFJ16, BFJ15a].

2.6. Intersection numbers and Monge–Ampère measures

Following [BHJ17, §6.6] we define the intersection number (φ0·. . .·φn) of non-Archimed-
ean metrics φ0, . . . , φn on line bundles L0, . . . , Ln on X as follows. Pick representatives
(X ,Li) of φi , 0 ≤ i ≤ n, with the same test configuration X for X and set

(φ0 · . . . · φn) := (L̄0 · . . . · L̄n),
where (X̄ , L̄i) is the compactification of (X ,Li). It follows from the projection formula
that this does not depend of the choice of the Li . Note that (φn+1

triv ) = 0. When L0 = OX,
so that L0 = OX(D) for a Q-Cartier Q-divisor D =

∑
rEE supported on X0, we can

compute the intersection number as (φ0 · . . . · φn) =
∑
E rE(L1|E · . . . · Ln|E).

To a non-Archimedean metric φ on a big and nef line bundle L on X we associate, as
in [BHJ17, §6.7], a signed finite atomic Monge–Ampère measure on Xdiv

Q . Pick a repre-
sentative (X ,Li) of φ, and set

MANA(φ) = V −1
∑
E

bE(L|nE)δvE ,

whereE ranges over irreducible components of X0=
∑
E bEE, vE = r(b−1

E ordE)∈Xdiv
Q ,

and V = (Ln). When the φi are semipositive, the mixed Monge–Ampère measure is a
probability measure.
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2.7. Functionals on non-Archimedean metrics

Following [BHJ17, §7] we define non-Archimedean analogues of the functionals consid-
ered in §1.4. Fix a line bundle L.

Definition 2.7. Let W be a set of non-Archimedean metrics on L that is closed under
translation and scaling. A functional F : W → R is

(i) homogeneous if F(φd) = dF(φ) for all φ ∈ W and d ∈ N∗;
(ii) translation invariant if F(φ + c) = F(φ) for all φ ∈ W and c ∈ Q.

When L is ample, a functional F on HNA may be viewed as a function F(X ,L) on
the set of all semiample test configurations (X ,L) that is invariant under pull-back, i.e.
F(X ′,L′) = F(X ,L) whenever (X ′,L′) is a pull-back of (X ,L) (and, in particular,
invariant under normalization). Homogeneity amounts to F(Xd ,Ld) = d F(X ,L) for all
d ∈ N∗, and translation invariance to F(X ,L) = F(X ,L+ cX0) for all c ∈ Q.

For each non-Archimedean metric φ on L, choose a normal representative (X ,L)
that dominates X × C via ρ : X → X × C. Then L = ρ∗(L × C) + D for a uniquely
determined Q-Cartier divisor D supported on X0. Write X0 =

∑
E bEE and let (X̄ , L̄)

be the compactification of (X ,L).
In this notation, we may describe our non-Archimedean functionals as follows. As-

sume L is big and nef. Let φtriv and ψtriv be the trivial metrics on L and KX, respectively.

(i) The non-Archimedean Monge–Ampère energy of φ is

ENA(φ) :=
(φn+1)

(n+ 1)V
=

(L̄n+1)

(n+ 1)V
.

(ii) The non-Archimedean I -functional and J -functional are given by

INA(φ) := V −1(φ · φntriv)− V
−1((φ − φtriv) · φ

n)

= V −1(L̄ · (ρ∗(L× P1))n)− V −1(D · L̄n)

and

JNA(φ) := V −1(φ · φntriv)− E
NA(φ)

=
1
V
(L̄ · (ρ∗(L× P1))n)−

1
(n+ 1)V

(L̄n+1).

(iii) The non-Archimedean Ricci energy is

RNA(φ) := V −1(ψtriv · φ
n) = V −1(ρ∗K

log
X×P1/P1 · L̄n).

(iv) The non-Archimedean entropy is

HNA(φ) :=

∫
Xdiv
Q

AX(v)MANA(φ)

= V −1(K
log
X̄ /P1 · L̄

n)− V −1(ρ∗K
log
X×P1/P1 · L̄n).
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(v) The non-Archimedean Mabuchi functional (or K-energy) is

MNA(φ) := HNA(φ)+ RNA(φ)+ S̄ENA(φ)

= V −1(K
log
X̄ /P1 · L̄

n)+
S̄

(n+ 1)V
(L̄n+1).

Note the resemblance to the formulas in §1.5. All of these functionals are homogeneous.
They are also translation invariant, except for ENA and RNA, which satisfy

ENA(φ + c) = ENA(φ)+ c and RNA(φ + c) = RNA(φ)− S̄c (2.1)

for all φ ∈ HNA and c ∈ Q.
The functionals INA, JNA and INA

− JNA are comparable on semipositive metrics in
the same way as in (1.12). By [BHJ17, Lemma 7.7, Theorem 5.16], when φ is positive,
the first term in the definition of JNA satisfies

V −1(φ · φntriv) = (φ − φtriv)(vtriv) = max
Xdiv
Q

(φ − φtriv) = max
E
b−1
E ordE(D).

Further, JNA(φ) ≥ 0, with equality iff φ = φtriv+c for some c ∈ Q, and JNA is com-
parable to both a natural L1-norm and the minimum norm in the sense of Dervan [Der15]
(see [BHJ17, Theorem 7.9, Remark 7.12]). For a normal ample test configuration (X ,L)
representing φ ∈ HNA we also denote the J-norm by JNA(X ,L).

2.8. The Donaldson–Futaki invariant

As explained in [BHJ17], the non-Archimedean Mabuchi functional is closely related to
the Donaldson–Futaki invariant. We have

Proposition 2.8. Assume L is ample. Let φ ∈ HNA be the class of an ample test con-
figuration (X ,L) for (X,L), and denote by (X̃ , L̃) its normalization, which is thus the
unique normal, ample representative of φ. Then

MNA(φ) = DF(X̃ , L̃)− V −1((X̃0 − X̃0,red) · L̃n), (2.2)

DF(X ,L) = DF(X̃ , L̃)+ 2V −1
∑
E

mE(E · Ln), (2.3)

where E ranges over the irreducible components of X0 contained in the singular lo-
cus of X and mE ∈ N∗ is the length of (ν∗OX̃ )/OX at the generic point of E, with
ν : X̃ → X the normalization.

In particular, DF(X ,L) ≥ MNA(φ), and equality holds iff X is regular in codimen-
sion one and X0 is generically reduced.

Indeed, formulas (2.2) and (2.3) follow from the discussion in [BHJ17, §7.3] and
from [BHJ17, Proposition 3.15], respectively. Note that intersection-theoretic formulas
for the Donaldson–Futaki invariant appeared already in [Wan12] and [Oda13].
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For a general non-Archimedean metric φ on L we can define

DF(φ) = MNA(φ)+ V −1((X0 − X0,red) · L̄n)

= V −1(KX̄ /P1 · L̄n)+
S̄

(n+ 1)V
(L̄n+1)

for any normal representative (X ,L) of φ. Clearly MNA(φ) ≤ DF(φ) when φ is semi-
positive.

2.9. The non-Archimedean Ding functional [BHJ17, §7.7]

Suppose X is weakly Fano, that is, L := −KX is big and nef. In this case, we define the
non-Archimedean Ding functional on the space of non-Archimedean metrics on L by

DNA(φ) = LNA(φ)− ENA(φ),

where LNA is defined by

LNA(φ) = inf
v

(
AX(v)+ (φ − φtriv)(v)

)
,

the infimum taken over all valuations v on X that are rational divisorial or trivial. Recall
from §2.5 that φ − φtriv is a non-Archimedean metric on OX and induces a bounded
function onXdiv

Q . Note thatLNA(φ+c) = LNA(φ)+c; henceDNA is translation invariant.
We always have DNA

≤ JNA (see [BHJ17, Proposition 7.28]). When φ is semiposi-
tive, we have DNA(φ) ≤ MNA(φ) (see [BHJ17, Proposition 7.32]).

2.10. Uniform K-stability

As in [BHJ17, §8] we make the following definition.

Definition 2.9. A polarized complex manifold (X,L) is uniformly K-stable if there exists
a constant δ > 0 such that the following equivalent conditions hold:

(i) MNA(φ) ≥ δJNA(φ) for every φ ∈ HNA(L);
(ii) DF(φ) ≥ δJNA(φ) for every φ ∈ HNA(L);

(iii) DF(X ,L) ≥ δJNA(X ,L) for any normal ample test configuration (X ,L).

Here the equivalence between (ii) and (iii) is definitional, and (i)⇒(ii) follows immedi-
ately from DF ≤ MNA. The implication (ii)⇒(i) follows from the homogeneity of MNA

together with the fact that DF(φd) = MNA(φd) for d sufficiently divisible. See [BHJ17,
Proposition 8.2] for details.

The fact that JNA(φ) = 0 iff φ = φtriv+ c implies that uniform K-stability is stronger
than K-stability as introduced by [Tia97, Don02]. Our notion of uniform K-stability is
equivalent to uniform K-stability defined either with respect to the L1-norm or the mini-
mum norm in the sense of [Der15] (see [BHJ17, Remark 8.3]).
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In the Fano case, uniform K-stability is further equivalent to uniform Ding stability:

Theorem 2.10. Assume L := −KX is ample and fix a number δ with 0 ≤ δ ≤ 1. Then
the following conditions are equivalent:

(i) MNA
≥ δJNA on HNA;

(ii) DNA
≥ δJNA on HNA.

This is proved in [BBJ15] using the Minimal Model Program as in [LX14]. See [Fuj16]
for a more general result, and also [Fuj18].

3. Non-Archimedean limits

In this section we prove Theorem A and Corollary B.

3.1. Rays of metrics and non-Archimedean limits

For any line bundleL onX, there is a bijection between smooth rays (φs)s>0 of metrics on
L and S1-invariant smooth metrics8 on the pull-back ofL toX×1∗, with1∗ = 1∗1 ⊂ C
the punctured unit disc. The restriction of 8 to Xτ for τ ∈ 1∗ is given by pull-back
of φlog |τ |−1

under the map Xτ → X given by the C∗-action. Similarly, smooth rays
(φs)s>s0 correspond to S1-invariant smooth metrics on the pull-back of L to X × 1∗r0 ,
with r0 = e−s0 .

A subgeodesic ray is a ray (φs) whose corresponding metric 8 is semipositive. Such
rays can of course only exist when L is nef.

Definition 3.1. We say that a smooth ray (φs) admits a non-Archimedean metric φNA as
non-Archimedean limit if there exists a test configuration (X ,L) representing φNA such
that the metric 8 on L × 1∗ corresponding to (φs)s extends to a smooth metric on L
over 1.

In other words, a non-Archimedean limit exists iff 8 has analytic singularities along
X×{0}, i.e. splits into a smooth part and a divisorial part after pulling back to a blow-up.

Lemma 3.2. Given a ray (φs)s in H, the non-Archimedean limit φNA
∈ HNA is unique,

if it exists.

Proof. Letψ1 andψ2 be non-Archimedean limits of (φs)s and let8 be the smooth metric
on L×1∗ defined by the ray (φs). For i = 1, 2, pick a representative (Xi,Li) of ψi such
that 8 extends as a smooth metric on Li over 1. After replacing (Xi,Li) by suitable
pull-backs, we may assume that X1 = X2 =: X and X is normal. Then L2 = L1+D for
a Q-divisorD supported on X0. Now a smooth metric on L1 induces a singular metric on
L1 +D that is smooth iff D = 0. Hence L1 = L2, so that ψ1 = ψ2. ut

Remark 3.3. Following [Berk09, §2] (see also [Jon16, BJ17]) one can construct a com-
pact Hausdorff spaceXAn fibering over the interval [0, 1] such that the fiberXAn

ρ over any
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point ρ ∈ (0, 1] is homeomorphic to the complex manifold X, and the fiber XAn
0 over 0

is homeomorphic to the Berkovich analytification of X with respect to the trivial norm
on C. Similarly, the line bundle L induces a line bundle LAn over XAn. If a ray (φs)s>0
admits a non-Archimedean limit φNA, then it induces a continuous metric on LAn whose
restriction to LAn

ρ is given by φlog ρ−1
and whose restriction to Xan

0 is given by φNA. In
this way, φNA is indeed the limit of φs as s →+∞.

3.2. Non-Archimedean limits of functionals

For the rest of §3, assume that L is ample.

Definition 3.4. A functional F : H → R admits a functional FNA
: HNA

→ R as a
non-Archimedean limit if, for every smooth subgeodesic ray (φs) in H admitting a non-
Archimedean limit φNA

∈ HNA, we have

lim
s→+∞

F(φs)

s
= FNA(φNA). (3.1)

Proposition 3.5. If F : H→ R admits a non-Archimedean limit FNA
: HNA

→ R, then
FNA is homogeneous.

Proof. Consider a semiample test configuration (X ,L) representing a non-Archimedean
metric φNA

∈ HNA, and let (φs)s be a smooth subgeodesic ray admitting φNA as a non-
Archimedean limit. For d ≥ 1, let (Xd ,Ld) be the normalized base change induced by
τ → τ d . The associated non-Archimedean metric φNA

d is then the non-Archimedean
limit of the subgeodesic ray (φds), so lims→+∞ s

−1F(φds) = F
NA(φNA

d ). On the other
hand, we clearly have lims→+∞(ds)

−1F(φds) = lims→+∞ s
−1F(φs) = FNA(φNA).

The result follows. ut

3.3. Asymptotics of the functionals

The following result immediately implies Theorem A and Corollary B.

Theorem 3.6. The functionals E,H , I , J ,M and R on H admit non-Archimedean limits
on HNA given, respectively, by ENA, HNA, INA, JNA, MNA and RNA.

In addition, we have the following result due to Berman [Berm16, Proposition 3.8]. See
also [BBJ15, Theorem 3.1] for a more general result.

Theorem 3.7. If L := −KX is ample, then the Ding functional D on H admits DNA on
HNA as non-Archimedean limit.

Remark 3.8. In §4 we will extend the previous two results to the logarithmic setting and
with relaxed positivity assumptions.

The main tool in the proof of Theorem 3.6 is the following result (compare [PRS08,
Lemma 6]).
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Lemma 3.9. For i = 0, . . . , n, let Li be a line bundle onX with a smooth reference met-
ric φi,ref. Let also (X ,Li) be a smooth test configuration for (X,Li), 8i an S1-invariant
smooth metric on Li near X0, and denote by (φsi ) the corresponding ray of smooth metrics
on Li . Then

〈φs0, . . . , φ
s
n〉X − 〈φ0,ref, . . . , φn,ref〉X = s(L̄0 · . . . · L̄n)+O(1)

as s → +∞. Here (X̄ , L̄i) is the compactification of (X ,Li) for 0 ≤ i ≤ n and
〈·, . . . , ·〉X denotes the Deligne pairing with respect to the constant morphism X→ {pt}.

Proof. The Deligne pairing F := 〈L0, . . . ,Ln〉X /C is a line bundle on C, endowed
with a C∗-action and a canonical identification of its fiber at τ = 1 with the com-
plex line 〈L0, . . . , Ln〉X. It extends to a line bundle 〈L̄0, . . . , L̄n〉X̄ /P1 on P1 that is C∗-
equivariantly trivial on P1

\ {0}. Denoting by w ∈ Z the weight of the C∗-action on the
fiber at 0, we have

w = deg 〈L̄0, . . . , L̄n〉X̄ /P1 = (L̄0, . . . , L̄n).

Pick a non-zero vector v ∈ F1 = 〈L0, . . . , Ln〉X. The C∗-action produces a section
τ 7→ τ · v of F on C∗, and σ := τ−w(τ · v) is a nowhere vanishing section of F on C
(see [BHJ17, Corollary 1.4]).

Since the metrics 8i are smooth and S1-invariant, 9 := 〈80, . . . , 8n〉X /C is a con-
tinuous S1-invariant metric on F near 0 ∈ C. Hence the function log |σ |9 is bounded
near 0 ∈ C.

The S1-invariant metric9 defines a ray (ψ s) of metrics on the line F1 through |v|ψs =
|τ · v|9τ , for s = log |τ |−1, where 9τ is the restriction of 9 to Fτ . Thus

log |v|ψs = log |τ · v|9τ = w log |τ | + log |σ |9τ = −sw +O(1).

By functoriality, the metric ψ s on F1 is nothing but the Deligne pairing 〈φs0, . . . , φ
s
n〉. If

we set ψref = 〈φ0,ref, . . . , φn,ref〉X, it therefore follows that

〈φs0, . . . , φ
s
n〉X − 〈φ0,ref, . . . , φn,ref〉X = log |v|ψref − log |v|ψs = sw +O(1),

which completes the proof. ut

Proof of Theorem 3.6. Let (φs)s be a smooth subgeodesic ray in H admitting a non-
Archimedean limit φNA

∈ HNA. Pick a test configuration (X ,L) representing φNA such
that X is smooth and X0 has snc support. Thus L is relatively semiample and (φs)s
corresponds to a smooth S1-invariant semipositive metric8 on L over1. By Lemma 1.2,
we have

(n+ 1)V (E(φs)− E(φref)) = 〈φ
s, . . . , φs〉X − 〈φref, . . . , φref〉X.

From Lemma 3.9, it follows that

lim
s→+∞

E(φs)

s
=

(L̄n+1)

(n+ 1)V
= ENA(φNA),
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which proves the result for the Monge–Ampère energyE. The case of the functionals I , J
and R is similarly a direct consequence of Lemmas 1.2 and 3.9. In view of the Chen–Tian
formulas for M and MNA, it remains to consider the case of the entropy functional H . In
fact, it turns out to be easier to treat the functional H + R.

By Lemma 1.2 we have

V (H(φs)+ R(φs)) =
〈 1

2 log MA(φs), φs, . . . , φs
〉
X
− 〈ψref, φref, . . . , φref〉X,

where ψref =
1
2 log MA(φref), so we must show that〈 1

2 log MA(φs), φs, . . . , φs
〉
X
− 〈ψref, φref, . . . , φref〉X = s(K

log
X̄ /P1 · L̄

n)+ o(s). (3.2)

The collection of metrics 1
2 log MA(8|Xτ ) with τ 6= 0 defines a smooth metric 9 on

K
log
X /C over 1∗, but the difficulty here (as opposed to the situation in [PRS08]) is that 9

will not a priori extend to a smooth (or even locally bounded) metric on K log
X /C over 1.

Indeed, since we have assumed that X is smooth, there is no reason for 8 to be strictly
positive.

Instead, pick a smooth, S1-invariant reference metric 9ref on K log
X /C over 1, and de-

note by (ψ sref)s>0 the corresponding ray of smooth metrics on KX. By Lemma 3.9 we
have

〈ψ sref, φ
s, . . . , φs〉X − 〈ψref, φref, . . . , φref〉X = s(K

log
X̄ /P1 · L̄

n)+O(1).

Since〈 1
2 log MA(φs), φs, . . . , φs

〉
X
− 〈ψ sref, φ

s, . . . , φs〉X =
1
2

∫
X

log
[

MA(φs)

e2ψsref

]
(ddcφs)n,

Theorem 3.6 is a consequence of the following result. ut

Lemma 3.10. We have
∫
X

log
[MA(φs )

e
2ψsref

]
(ddcφs)n = O(log s) as s →+∞.

Let us first prove an estimate of independent interest. See [BJ17] for more precise results.

Lemma 3.11. Let X be an snc test configuration for X and 9 a smooth metric on K log
X /C

near X0. Denote by e29τ the induced volume form on Xτ for τ 6= 0. Then∫
Xτ
e29τ ∼ (log |τ |−1)d as τ → 0, (3.3)

with d denoting the dimension of the dual complex of X0, so that d + 1 is the largest
number of local components of X0.

Here A ∼ B means that A/B is bounded from above and below by positive constants.
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Proof. Since X0 is an snc divisor, every point of X0 admits local coordinates (z0, . . . , zn)

that are defined in a neighborhood of B := {|zi | ≤ 1} and such that zb0
0 . . . z

bp
p = ετ with

0 ≤ p ≤ n and ε > 0. Here bi ∈ Z>0 is the multiplicity of X0 along {zi = 0}. The inte-
ger d in the statement of the theorem is then the largest such integer p. By compactness
of X0, it will be enough to show that∫

B∩Xτ
e29τ ∼ (log |τ |−1)p.

The holomorphic n-form

η :=
1

p + 1

p∑
j=0

(−1)j

bj

dz0

z0
∧ · · · ∧

d̂zj

zj
∧ · · · ∧

dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

satisfies
η ∧

dτ

τ
=
dz0

z0
∧ · · · ∧

dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn.

Thus η defines a local frame of K log
X /C on B, so the holomorphic n-form ητ := η|Xτ

satisfies
C−1
|ητ |

2
≤ e29τ ≤ C|ητ |

2

for a constant C > 0 independent of τ . Hence it suffices to prove
∫
B∩Xτ |ητ |

2
∼

(log |τ |−1)p.
To this end, we parametrize B ∩ Xτ in (logarithmic) polar coordinates as follows.

Consider the p-dimensional simplex

σ =
{
w ∈ Rp+1

≥0

∣∣∣ p∑
j=0

bjwj = 1
}
,

the p-dimensional (possibly disconnected) commutative compact Lie group

T =
{
θ ∈ (R/Z)p+1

∣∣∣ p∑
j=0

bj θj = 0
}
,

and the polydisc Dn−p ⊂ Cn−p. We may cover C∗ by two simply connected open sets,
on each of which we fix a branch of the complex logarithm. We then define a diffeomor-
phism χτ from σ × T × Dn−p to B ∩ Xτ by setting

zj = e
wj log(ετ )+2πiθj for 0 ≤ j ≤ p.

A simple computation shows that

χ∗τ (|ητ |
2) = const (log |ετ |−1)pdV,

where dV denotes the natural volume form on σ ×T ×Dn−p. It follows that, for |τ | � 1,∫
B∩Xτ

|ητ |
2
∼

∫
σ×T×Dn−p

χ∗τ (|ητ |
2) ∼ (log |τ |−1)p,

which completes the proof. ut
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Proof of Lemma 3.10. On the one hand, we have

V −1
∫
X

log
[

MA(φs)

e2ψsref

]
(ddcφs)n

=

∫
X

log
[

MA(φs)

e2ψsref/
∫
X
e2ψsref

]
MA(φs)− log

∫
X

e2ψsref ≥ − log
∫
X

e2ψsref ,

since the first term on the second line is the relative entropy of the probability measure
MA(φs) with respect to the probability measure e2ψsref/

∫
X
e2ψsref . By Lemma 3.11 we

have
∫
X
e2ψsref = O(sd), where 0 ≤ d ≤ n. This gives the lower bound in Lemma 3.10.

To get the upper bound, it suffices to prove that the function gτ :=
(ddc8|Xτ )

n

e29τ on Xτ
is uniformly bounded from above. Indeed, if τ = e−s , we then see that∫

X

log
[

MA(φs)

e2ψsref

]
(ddcφs)n =

∫
Xτ
(logV −1

+ log gτ )(ddc8|Xτ )
n

is uniformly bounded from above, since (ddc8|Xτ )
n has fixed mass V for all τ .

To bound gτ from above, we use local coordinates (zj )nj=0 as in the proof of Lemma
3.11. With the notation in that proof, it suffices to prove that the function (�|Xτ )

n/e29τ

on Xτ is uniformly bounded from above, where� := i
2
∑n
j=0 dzj ∧dz̄j . Indeed, we have

ddc8 ≤ C� for some constant C > 0. It then further suffices to prove the bound

indz0 ∧ dz̄0 ∧ · · · ∧ ̂dzj ∧ dz̄j ∧ · · · ∧ dzn ∧ dzn
∣∣
Xτ ≤ Ce

29τ (3.4)

for 0 ≤ j ≤ p and a uniform constant C > 0.
To prove (3.4) we use the logarithmic polar coordinates in the proof of Lemma 3.10.

Namely, if χτ : σ × T × Dn−p → B ∩Xτ is the diffeomorphism in that proof, we have

χ∗τ (e
29τ ) ∼ (log |τ |−1)pdV,

χ∗τ (i
ndz0 ∧ dz̄0 ∧ · · · ∧ ̂dzj ∧ dz̄j ∧ · · · ∧ dzn ∧ dzn) ∼ (log |τ |−1)p

∏
0≤l≤p, l 6=j

|zl |
2dV .

Thus (3.4) holds, which completes the proof. ut

4. The logarithmic setting

In this section we extend, for completeness, Theorem 3.6—and hence Theorem A and
Corollary B—to the logarithmic setting. We will also relax the positivity assumptions
used. Our conventions and notation largely follow [BB+11].

4.1. Preliminaries

If X is a normal projective variety of dimension n, and φ1, . . . , φn are smooth metrics
on Q-line bundles L1, . . . , Ln on X, then we define ddcφ1 ∧ · · · ∧ dd

cφn as the push-
forward of the measure ddcφ1|Xreg ∧ · · · ∧ dd

cφn|Xreg from Xreg to X. This is a signed
Radon measure of total mass (L1 · . . . · Ln), positive if the φi are semipositive.
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A boundary on X is a Weil Q-divisor B on X such that the Weil Q-divisor class

K(X,B) := KX + B

is Q-Cartier. Note that B is not necessarily effective. We call (X,B) a pair.
The log discrepancy of a rational divisorial valuation v = c ordF with respect to

(X,B) is defined as in §2.3, using A(X,B)(v) = c(1+ ordF (KY/(X,B))) and A(X,B)(vtriv)

= 0. The pair (X,B) is subklt if A(X,B)(v) > 0 for all rational divisorial valuations v. (It
is klt when B is further effective.)

A pair (X,B) is log smooth ifX is smooth and B has simple normal crossing support.
A log resolution of (X,B) is a projective birational morphism f : X′ → X, with X′

smooth, such that Exc(f ) + f−1
∗ (B) has simple normal crossing support. In this case,

there is a unique snc divisor B ′ on X′ such that f∗B ′ = B and K(X′,B ′) = f ∗K(X,B). In
particular the pair (X′, B ′) is log smooth. The pair (X,B) is subklt iff (X′, B ′) is subklt,
and the latter is equivalent to B ′ having coefficients < 1.

A smooth metric ψ on K(X,B) canonically defines a smooth positive measure µψ on
Xreg \ B as follows. Let φB be the canonical singular metric on OXreg(B), with curvature
current given by [B]. Then ψ − φB is a smooth metric on KXreg\B , and hence induces a
smooth positive measure

µψ := e
2(ψ−φB )

on Xreg \ B. The fact that (X,B) is subklt means precisely that the total mass of µψ is
finite. Thus we can view µψ as a finite positive measure on X that is smooth on Xreg \ B

and gives no mass to B or Xsing.

4.2. Archimedean functionals

Let X be a normal complex projective variety of dimension n. Fix a big and nef Q-line
bundle L on X and set V := (Ln) > 0. For a smooth metric φ on L, set MA(φ) =
V −1(ddcφ)n.

Fix a smooth positive reference metric φref on L The energy functionals E, I and J
are defined on smooth metrics on L exactly as in (1.6), (1.8) and (1.7), respectively;
they are normalized by E(φref) = I (φref) = J (φref) = 0. The functionals I and J are
translation invariant, whereas E(φ + c) = E(φ) + c. All three functionals are pull-back
invariant in the following sense. Let q : X′ → X be a birational morphism, with X′

normal and projective, and set L′ := q∗L. For any smooth metric φ on L, we have
E(φ′) = E(φ), I (φ′) = I (φ) and J (φ′) = J (φ), where φ′ = q∗φ and where the
functionals are computed with respect to the reference metric φ′ref := q

∗φref.
Now consider a boundary B on X. Set S̄B := −nV −1(K(X,B) · L

n−1) and fix a
smooth reference metric ψref on K(X,B). When X is smooth and B = 0, we could pick
ψref =

1
2 log MA(φref), but in general there seems to be no canonical way to get ψref

from φref.
The analogue of the Ricci energy R is defined on smooth metrics φ on L by

RB(φ) :=

n−1∑
j=0

1
V

∫
Xreg

(φ − φref)dd
cψref ∧ (dd

cφ)j ∧ (ddcφref)
n−1−j .
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It satisfies RB(φ + c) = RB(φ) − S̄Bc and is pull-back invariant in the following sense.
Suppose q : X′ → X is a birational morphism, with X′ projective normal, and define B ′

by q∗B ′ = B and q∗K(X,B) = K(X′,B ′). Set φ′ref = q∗φref and ψ ′ref := q∗ψref. Then
RB(φ) = RB ′(φ

′), where φ′ = q∗φ.
Now assume (X,B) is subklt and let µref = µψref be the finite positive measure

defined in §4.1. It is smooth and positive onXref \B, and may be assumed to have mass 1,
after adding a constant to ψref. For a smooth semipositive metric φ on L, set

HB(φ) :=
1
2

∫
Xreg

log
MA(φ)
µref

MA(φ) =
1
2

∫
Xreg

log
MA(φ)
e2(ψref−φB )

MA(φ).

We may have HB(φref) 6= 0. However, HB is bounded from below and translation invari-
ant. It is also pull-back invariant in the sense above, with reference measure µ′ref = µψ ′ref
on X′.

Lemma 4.1. If φ is a smooth semipositive metric on L, then HB(φ) <∞.

Proof. By pull-back invariance we may assume that (X,B) is log smooth. In this case
MA(φ) and µref are smooth measures on X that are strictly positive on Xreg. Consider
any point ξ ∈ B and pick local coordinates (z1, . . . , zn) at ξ such that the irreducible
components of B are given by {zi = 0}, 0 ≤ i ≤ p. Fix a volume form dV near ξ .
Then µref = g

∏p

i=0 |zi |
2aidV , and MA(φ) = hdV , with ai > −1, g > 0 and h ≥ 0

smooth. If f = h log
(
h
g

∏p

i=0 |zi |
−2ai

)
, then f is locally integrable with respect to dV .

This completes the proof. ut

As in §1.4, we define the Mabuchi functional on semipositive smooth metrics by

MB := HB + RB + S̄BE.

Then MB is translation invariant and pull-back invariant in the sense above. At least for-
mally, the critical points of MB satisfy

n(Ric(ddcφ)− [B]) ∧ (ddcφ)n−1
= S̄B(dd

cφ)n

and should be conical cscK metrics (see [Li18]).
Finally consider the (weak) log Fano case, in which L := −K(X,B) is big and nef.

The Ding functional is then defined on smooth metrics as DB = LB − E, with

LB(φ) := −
1
2

log
∫
Xreg

e−2(φ+φB ).

If we use ψref = −φref, then the formula for the Mabuchi functional simplifies to

MB(φ) = HB(φ)−

(
E(φ)−

∫
Xreg

(φ − φref)MA(φ)
)
.

We have DB ≤ MB on smooth semipositive metrics.



Uniform K-stability and asymptotics of energy functionals 2929

4.3. Non-Archimedean functionals

The extensions of the non-Archimedean functionals in §2.7 to the logarithmic setting
were studied in [BHJ17, §7]. Let us briefly review them.

Consider a normal complex projective variety X and a big and nef Q-line bundle L
on X. Let φ be a non-Archimedean metric on L, represented by a normal test configura-
tion (X ,L) for (X,L), that we assume dominates (X × C, L× C) via ρ : X → X × C.
The formulas in §2.7 for ENA(φ), INA(φ) and JNA(φ) are still valid.

Given a boundary B on X we set

RNA
B (φ) := V −1(ψtriv · φ

n) = V −1(ρ∗K
log
(X×P1,B×P1)/P1 · L̄n).

Now assume (X,B) is subklt and let B (resp. B̄) be the (componentwise) Zariski
closure of B × C∗ in X (resp. X̄ ). Then

HNA
B (φ) :=

∫
Xdiv
Q

A(X,B)(v)MANA(φ)

= V −1(K
log
(X̄ ,B̄)/P1 · L̄

n)− V −1(ρ∗K
log
(X×P1,B×P1)/P1 · L̄n).

and

MNA
B (φ) := HNA

B (φ)+ RNA
B (φ)+ S̄BE

NA(φ)

=
1
V
(K

log
(X̄ ,B̄)/P1 · L̄

n)+
S̄B

(n+ 1)V
(L̄n+1).

While the definitions ofHNA
B (φ) andMNA

B (φ)make sense for arbitrary non-Archimedean
metrics φ, we will usually assume that φ is semipositive.

All the functionals above have the same invariance properties as their Archimedean
cousins. They are also homogeneous in the sense of Definition 2.7.

Finally, when (X,B) is weakly log Fano, so that (X,B) is subklt and L := −K(X,B)
is big and nef, the non-Archimedean Ding functional is defined by

DNA
B (φ) = LNA

B (φ)− ENA(φ),

where
LNA
B (φ) = inf

v

(
A(X,B)(v)+ (φ − φtriv)(v)

)
,

the infimum taken over all valuations v ∈ Xdiv
Q .

The Ding functionalDNA
B is translation invariant and pull-back invariant. The formula

for the Mabuchi functional simplifies in the log Fano case to

MNA
B (φ) = HNA

B (φ)−

(
ENA(φ)−

∫
Xdiv
Q

(φ − φref)MANA(φ)

)
.

We haveDNA
B ≤ min{MNA

B , JNA
} on semipositive metrics (see [BHJ17, Propositions 7.28

and 7.32].
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4.4. Asymptotics

The following result generalizes Theorem 3.6 and shows that if F is one of the functionals
E, I , J , HB , RB or MB on H, then F admits a non-Archimedean limit on HNA given
by FNA. For future reference, we state the result in detail.

Theorem 4.2. Let X be a normal projective variety, L a big and nef Q-line bundle
onX, and (X ,L) a test configuration for (X,L) inducing a non-Archimedean metric φNA

on L. Further, let 8 be a smooth, S1-invariant metric on L near X0, inducing a smooth
ray (φs)s>s0 of metrics on L. Fix a smooth reference metric φref on L. Then

lim
s→+∞

F(φs)

s
= FNA(φNA), (4.1)

where F is any of the functionals E, I , J .
Further, if B is a boundary on X and ψref is a smooth reference metric on K(X,B),

then (4.1) also holds for F = RB . Finally, if (X,B) is subklt and 8 is semipositive,
then (4.1) holds for F = HB and F = MB .

In addition, Berman proved that in the log Fano case, the Ding functionalDB admitsDNA
B

as non-Archimedean limit. Indeed, the following result follows from [Berm16, Proposi-
tion 3.8 and §4.3].

Theorem 4.3. Let (X,B) be a subklt pair with L := −K(X,B) big and nef, (X ,L) a
test configuration for (X,L) inducing a non-Archimedean metric φNA on L, and 8 a
semipositive smooth, S1-invariant metric on L near X0, inducing a smooth ray (φs)s>s0
of semipositive metrics on L. Then lims→+∞

1
s
DB(φ

s) = DNA
B (φNA).

In fact, it is enough to assume 8 is semipositive and locally bounded in Theorem 4.3.

Remark 4.4. Theorems 4.2 and 4.3 remain true even when 8 is not S1-invariant, in the
following sense. For τ ∈ 1∗, let φτ be the metric on L defined as the pull-back of 8|Xτ
under the C∗-action. Then limτ→0 (log |τ |−1)−1F(φτ ) = F

NA(φNA).

4.5. Proof of Theorem 4.2

By pull-back invariance, we may assume that X is smooth. After further pull-back, we
may also assume that X is smooth and dominates X × C. In this case, the asymptotic
formulas for E, I and J follow immediately from Lemma 3.9.

When considering the remaining functionals, we may similarly, by pull-back invari-
ance, assume that the pair (X,B) is log smooth. The asymptotic formula for RB now
follows from Lemma 3.9 since we can express RB(φ) in terms of Deligne pairings:

RB(φ) = 〈ψref, φ
n
〉X − 〈ψref, φ

n
ref〉X,

whereas the non-Archimedean counterpart is given by the intersection number

RNA
B (φ) = V −1(ρ∗K

log
(X×P1,B×P1)/P1 · L̄n)X̄ .
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Finally we consider the functionals HB and MB . Thus assume (X,B) is log smooth
and subklt. We may further assume that the divisor X0 + B has simple normal crossing
support, where B is the (componentwise) Zariski closure of the pull-back of B×C∗ in X .

As in §3.3 it suffices to prove the asymptotic formula for the functional HB + RB .
To this end, we express HB in terms of Deligne pairings. Write B =

∑
i ciBi , where Bi ,

i ∈ I , are the irreducible components ofB and ci ∈ Q. Fix a smooth metricψi on OX(Bi)

for i ∈ I . Then ψB :=
∑
i ciψi is a smooth metric on OX(B), and it follows from (1.3)

that

VHB(φ) =
1
2

∫
X

log
MA(φ)
e2(ψref−ψB )

(ddcφ)n +
∑
i∈I

ci

∫
X

log |σi |ψi (dd
cφ)n

=
〈 1

2 log MA(φ), φn
〉
X
− 〈ψref, φ

n
〉X + 〈ψB , φ

n
〉X +

∑
i∈I

ci(〈φ
n
〉Bi − 〈ψi, φ

n
〉X)

=
〈 1

2 log MA(φ), φn
〉
X
− 〈ψref, φ

n
〉X +

∑
i∈I

ci〈φ
n
〉Bi

for any smooth semipositive metric φ on L. This implies

V (HB(φ)+ RB(φ)) =
〈 1

2 log MA(φ), φn
〉
X
− 〈ψref, φ

n
ref〉X +

∑
i∈I

ci〈φ
n
〉Bi

= V (H(φ)+ R(φ))+ n
∑
i∈I

ci(L
n−1
· Bi)E(φ|Bi )+O(1).

On the non-Archimedean side, we have

V (HNA
B (φNA)+ RNA

B (φNA)) = (K
log
(X̄ ,B̄)/P1 · L̄

n)X̄ = (K
log
X̄ /P1 · L̄

n)X̄ + (B̄ · L̄
n)X̄

= V (HNA(φNA)+ RNA(φNA))+
∑
i∈I

ci(L̄|nB̄i )B̄i

= V (HNA(φNA)+ RNA(φNA))+ n
∑
i∈I

ci(L
n−1
· Bi)E

NA(φNA
i ),

where φNA
i is the non-Archimedean metric on L|Bi represented by L|Bi .

It now follows from Theorem 3.6 that1

lim
s→+∞

1
s
(H(φs)+ R(φs)) = HNA(φNA)+ R(φNA).

Applying Theorem 3.6 on Bi and Bi , we also get lims→+∞
1
s
E(φsi ) = E

NA(φNA
i ). Thus

lim
s→+∞

1
s
(HB(φ

s)+ RB(φ
s)) = HNA

B (φNA)+ RB(φ
NA),

which completes the proof of Theorem 4.2.

1 While Theorem 3.6 is stated in the case when L and L are ample and 8 is positive, the proof
extends to the weaker positivity assumptions used here.
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4.6. Coercivity and uniform K-stability

Let us finally extend Corollary B to the logarithmic setting. Consider a pair (X,B) and a
big and nef line bundle L on X. The Donaldson–Futaki invariant of a normal test config-
uration (X ,L) for (X,L) is given by

DFB(X ,L) :=
1
V
(K(X̄ .B̄)/P1 · L̄n)+ S̄B

(L̄n+1)

(n+ 1)V
= MNA

B (φ)+
1
V
((X0−X0,red) ·Ln),

where φ is the non-Archimedean metric on L represented by φ. Now assume L is ample.
We then define ((X,B);L) to be uniformlyK-stable if the following two equivalent con-
ditions hold:

(i) there exists δ > 0 such that MNA
B (φ) ≥ δJNA(φ) for every φ ∈ HNA(L);

(ii) there exists δ > 0 such that DFB(X ,L) ≥ δJNA(X ,L) for any normal ample test
configuration (X ,L).

The equivalence between the two conditions is proved in [BHJ17, Proposition 8.2].

Corollary 4.5. Let (X,B) be a subklt pair and L an ample line bundle on X. Suppose
that the Mabuchi functional is coercive in the sense that there exist positive constants δ
and C such that MB(φ) ≥ δJ (φ) − C for every positive smooth metric φ on L. Then
((X,B);L) is uniformly K-stable; more precisely DFB(X ,L) ≥ MB(φ) ≥ δJ

NA(φ) for
every positive non-Archimedean metric on L, where (X ,L) is the unique normal ample
representative of φ.

5. Uniform K-stability and CM-stability

From now on, X is smooth. In this section we explore the relationship between uniform
K-stability and (asymptotic) CM-stability. In particular we prove Theorem C, Corollary D
and Corollary E.

5.1. Functions with log norm singularities

In this section, G denotes a reductive complex algebraic group.

Definition 5.1. We say that a function f : G → R has log norm singularities if there
exist finitely many rational numbers ai , finite-dimensional complex vector spaces Vi en-
dowed with an algebraic G-action and non-zero vectors vi ∈ Vi such that

f (g) =
∑
i

ai log ‖g · vi‖ +O(1)

for some choice of norms on the Vi’s.

Remark 5.2. By the equivalence of norms on a finite-dimensional vector space, the de-
scription of f is independent of the choice of norms on the Vi . In particular, given a
maximal compact subgroup K of G, the norms may be assumed to be K-invariant, so
that f descends to a function on the Riemannian symmetric space G/K .
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Remark 5.3. Taking appropriate tensor products, it is easy to see that every function f
on G with log norm singularities may be written as

f (g) = a(log ‖g · v‖ − log ‖g · w‖)+O(1), (5.1)

where a ∈ Q>0 and v, w are vectors in a normed vector space V endowed with a G-
action.

An algebraic group homomorphism λ : C∗ → G is called a one-parameter subgroup
(1-PS for short). The following generalization of the Kempf–Ness/Hilbert–Mumford cri-
terion is closely related to [Pau13]. Our argument, which is based on Mumford’s origi-
nal proof of the Hilbert–Mumford criterion [MFF, §2.1], fixes in particular the proof of
[Pau13, Theorem 4.2], as well as an incorrect argument provided in a previous version of
the present paper.

Theorem 5.4. Let f be a function on G with log norm singularities.

(i) For each 1-PS λ : C∗→ G, there exists f NA(λ) ∈ Q such that

(f ◦ λ)(τ ) = f NA(λ) log |τ |−1
+O(1) for |τ | ≤ 1.

(ii) The function f is bounded below on G iff f NA(λ) ≥ 0 for all 1-PS λ.

The chosen notation stems from the fact that f NA induces a function on the (conical) Tits
building of G, i.e. the non-Archimedean analogue of G/K (compare [MFF, §2.2]).

By Remark 5.3 we may and do assume that f is of the form

f (g) := log ‖g · v‖ − log ‖g · w‖,

where v, w are nonzero vectors in a finite-dimensional normed vector space V equipped
with a linear G-action. In that case, the following variant of the Kempf–Ness criterion,
observed in [Pau13, Proposition 4], translates Theorem 5.4 into an algebro-geometric
statement.

Lemma 5.5. The function f (g) = log ‖g · v‖ − log ‖g · w‖ is bounded below on G if
and only if the Zariski closure of the orbit of [v,w] ∈ P(V ⊕W) does not intersect the
subspace P({0} ⊕W).

Proof. As with any algebraic group action, the orbit G · [v,w] is a complex algebraic
subvariety of P(V ⊕ W), i.e. a locally closed subset in the Zariski topology. Its Zariski
closure therefore coincides with its closure in the Euclidean topology, and the argument is
then elementary. Indeed, assume f (gi)→−∞ for some sequence gi ∈ G, i.e. ‖gi ·v‖ =
o(‖gi · w‖). After passing to a subsequence, w̃i := (gi · w)/‖gi · w‖ converges (in the
Euclidean topology) to a non-zero vector in W , while ṽi := (gi · v)/‖gi · w‖ tends
to 0; hence gi · [v,w] ∈ G · [v,w] converges to [0, w̃] ∈ P({0} ⊕ W). Conversely, if
gi · [v,w] → [0, w̃] for some sequence gi ∈ G and non-zero w̃ ∈ W , then ci(gi · v)→ 0
in V and ci(gi · w) → w̃ in W with ci ∈ C∗, and hence f (gi) = log ‖ci(gi · v)‖ −
log ‖ci(gi · w)‖ → −∞. ut
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The key ingredient in the proof of Theorem 5.4 is the following algebro-geometric result,
which will be obtained as a consequence of the Iwahori decomposition theorem, very
much as in [MFF].

Theorem 5.6. Let G be a complex reductive group with a linear action on a finite-
dimensional complex vector space U . If the (Zariski) closure of the G-orbit of a point
x ∈ P(U) meets a G-invariant Zariski closed subset Z ⊂ P(U), then some z ∈ Z ∩G · x
can be reached by a 1-PS λ of G, i.e. limτ→0 λ(τ) · x = z.

Remark 5.7. As explained in [Don12, §5], it is however not true in general that any
z ∈ Z ∩G · x can be reached by a 1-PS λ, unless the stabilizer of z in G is reductive.

Introduce the formal power series ring R = C[[t]] and its fraction field K := C((t)),
and let X be a complex algebraic variety. Viewed as a C-scheme, X is separated, and
thus the set X(R) of R-points, i.e. morphisms γ : SpecR → X over SpecC, injects
into X(K). Further, each γ ∈ X(R) admits a reduction γ̃ ∈ X(C). If X is proper (i.e.
X(C) is compact), the valuative criterion yields X(R) = X(K), which means that any
‘meromorphic arc’ γ : SpecK → X uniquely extends across the closed point of SpecR,
whose image is γ̃ . In case X = P(U) for a complex vector space U , this becomes very
concrete: for each γ ∈ X(K) = P(UK), there exists u ∈ UR , unique up to multiplication
by a unit of R, such that γ = [u] and ũ 6= 0 in U , and we then have γ̃ = [ũ].

The following valuative criterion was used without precise reference in Mumford’s
proof of the Hilbert–Mumford criterion [MFF, p. 54]. We provide here some details (see
[Ant, §4] for a closely related discussion).

Lemma 5.8. Let φ : Y → X be a morphism between complex algebraic varieties, and
let x ∈ X(C) be a closed point. Then x belongs to the (Zariski) closure of the image φ(Y )
if and only if there exists γ ∈ Y (K) with φ(γ ) ∈ X(R) and φ̃(γ ) = x.

Proof. The condition is clearly sufficient. Assume conversely that x is in the Zariski clo-
sure of φ(Y ). Replacing X with the closure of φ(Y ), we may assume that φ is dominant.
By Chevalley’s theorem, φ(Y ) is constructible, i.e. a finite union of locally closed subsets;
being dense in X, it thus contains a non-empty open subset U ⊂ X. Using for instance
Noether normalization, it is easy to construct a closed point p ∈ C on a smooth alge-
braic curve and a morphism f : C → X with f (p) = x and f−1(U) non-empty [Kem,
Lemma 7.2.1]. It follows that the restriction of the induced morphism SpecOC,p → X

to the generic point lifts to Y , and passing to the formal completion of C at p yields the
result. ut

Proof of Theorem 5.6. The action ofG onX := P(U), being algebraic, induces an action
of the group G(K) on the set X(K). Since K is an extension of C, the closed point
x ∈ X can be viewed as an element of X(K), and our goal is to find a point λ ∈ G(K)
corresponding to a one-parameter subgroup of G such that the reduction of λ · x ∈ X(K)
belongs to Z.

Given any 1-PS λ ∈ G(K) and ξ ∈ X(K), we first claim that the reduction of
λ · ξ ∈ X(K) only depends on ξ̃ ∈ X(C). Indeed, denote by U =

⊕
m∈Z Um the weight
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decomposition with respect to λ. As mentioned above, there exists u ∈ UR , unique up to
a unit in R, such that ξ = [u] and ũ 6= 0. The reduction of

λ · ξ =
[∑
m

tmum

]
is equal to [ũp] with p := min{m | ũm 6= 0}, and hence only depends on ξ̃ = [ũ].

Now let φ : G → X be the orbit morphism φ(g) = g · x. By assumption, φ(G)
contains a closed point z ∈ Z in its Zariski closure, and Lemma 5.8 thus implies the
existence of γ ∈ G(K) such that the reduction of φ(γ ) = γ · x ∈ X(K) is equal to z.

By Iwahori’s theorem (cf. [MFF, p. 52]), we can find a decomposition γ = αλβ in
G(K) with α, β ∈ G(R) and λ ∈ G(K) induced by a 1-PS. By G-invariance of Z, the
reduction of (λβ) · x belongs to Z. After replacing λ with β̃λβ̃−1 and β with β̃−1β, we
may assume that β̃ = e ∈ G(C). As a result, x̃ = β̃ · x, and the above claim implies that
λ̃ · x = ˜(λβ) · x belongs to Z. ut

Proof of Theorem 5.4. (i) Let λ : C∗ → G be a one-parameter subgroup, and denote by
V =

⊕
m∈Z Vm the corresponding weight decompositon. For τ ∈ C∗, we then have

λ(τ) · v =
∑
m

τmvm,

and hence

log ‖λ(τ) · v‖ = max
vm 6=0

(m log |τ | + log ‖vm‖)+O(1) = −
(

min
vm 6=0

m
)

log |τ |−1
+O(1)

for |τ | ≤ 1. This proves (i) with with f NA(λ) = min{m | wm 6= 0} −min{m | vm 6= 0}.
(ii) By (i), f NA(λ) ≥ 0 for all 1-PS λ if and only if f ◦ λ is bounded below on C∗

for all λ. By Lemma 5.5, f ◦ λ is bounded below on C∗ iff limτ→0 λ(τ) · [v,w] does not
belong to the G-invariant Zariski closed subset Z := P({0} ⊕ W), while f is bounded
below on G iff Z ∩G · [v,w] = ∅. The equivalence now follows from Theorem 5.6. ut

5.2. Proof of Theorem C and Corollaries D and E

Replacing L with mL, we may assume for notational simplicity that m = 1. Set N :=
h0(L) and G := SL(N,C), so that each σ ∈ G defines a Fubini–Study type metric φσ
on L. Note thatM−δJ is bounded below on H1 ' GL(N,C)/U(N) iffM(φσ )−δJ (φσ )
is bounded below for σ ∈ G, by translation invariance of M and J .

The key ingredient is the following result of S. Paul [Pau12] (see also [Kap13]):

Theorem 5.9. The functionals E, J and M all have log norm singularities on G.

Granted this result we can deduce Theorem C. The equivalence of (ii) and (iii) follows
from the same argument as for [BHJ17, Proposition 8.2], so it suffices to show that (i)
and (iii) are equivalent. By Theorem 5.9, the function f (σ) := M(φσ ) − δJ (φσ ) on G
has log norm singularities. By Theorem 5.4, it is thus bounded below iff

lim
s→+∞

(f ◦ λ)(e−s)

s
≥ 0
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for each one-parameter subgroup λ : C∗ → G. We obtain the desired result since by
Theorem B, this limit is equal to MNA(φλ) − δJ

NA(φλ), where φλ ∈ HNA is the non-
Archimedean metric on L defined by λ.

Corollary D follows since every ample test configuration of (X,L) is induced by
a 1-PS (see §2.2). The first assertion of Corollary E follows immediately, and the fact
that the reduced automorphism group of (X,L) is finite is a consequence of [Pau13,
Corollary 1.1].

Proof of Theorem 5.9. Recall from [Pau12] that to the linearly normal embedding X ↪→

P(H 0(X,L)∗) ' PN−1 are associated the X-resultant R, i.e. the Chow coordinate of X,
and the X-hyperdiscriminant 1, which cuts out the dual variety of

X × Pn−1 ↪→ PN−1
× Pn−1 ↪→ PNn−1,

the second arrow being the Segre embedding.
In our notation, we then have degR = V (n+1) and deg1 = V (n(n+1)−S̄) [Pau12,

Proposition 5.7], and [Pau12, Theorem A] becomes

M(φσ ) = V
−1 log ‖σ ·1‖ − V −1 deg1

degR
log ‖σ · R‖ +O(1), (5.2)

which proves the assertion for M(φσ ).
We next consider

J (φσ ) =

∫
X

(φσ − φref)MA(φref)− E(φσ ).

On the one hand, by [Pau04, Theorem 1] (or [Zha96, Theorems 1.6 and 3.6]) we have

E(φσ ) =
1

degR
log ‖σ · R‖ +O(1). (5.3)

On the other hand, choosing any norm on the space of complexN×N -matrices (in which
G of course embeds), it is observed in [Tia17, proof of Lemma 3.2] that∫

X

(φσ − φref)MA(φref) = log ‖σ‖ +O(1).

The assertion for J (φσ ) follows. ut

5.3. Discussion of [Tia17]

The statement of [Tia17, Lemma 3.1] sounds overoptimistic from the GIT point of view,
as it would mean that CM-stability can be tested by only considering one-parameter sub-
groups of a fixed maximal torus T .

At least, the proof is incorrect, the problem being the estimate (3.1), which claims that
φτk − φτ is uniformly bounded with respect to τ ∈ T and k ∈ K . As the next example
shows, this is not even true for a fixed k ∈ K .
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Example 5.10. Assume (s1, s2) is a basis of H 0(X,L), let k ∈ U(2) be the unitary
transformation exchanging s1 and s2, τ = (t, t−1), and pick a point x with s1(x) = 0.
Then

φτk(x)− φτ (x) = 4 log |τ |

is unbounded.

In any case, the methods here do not seem to be able to deduce CM-stability from
K-stability, because of the following fact (cf. [Li12, p. 39]).

Proposition 5.11. For each polarized manifold (X,L) and each m large and divisible
enough, there exists a non-trivial 1-PS λ in GL(Nm,C) such that J and M remain
bounded on the corresponding Fubini–Study ray φs := φλ(e−s ).

Proof. As originally observed in [LX14] (cf. Proposition 2.3), (X,L) admits a non-trivial
ample test configuration (X ,L) that is almost trivial, i.e. with trivial normalization. As
recalled in §2.2, for each m large and divisible enough, (X ,L) can be realized as the test
configuration induced by a 1-PS λ : C∗→ GL(Nm,C), which is non-trivial since (X ,L)
is. Since the normalization of (X ,L) is trivial, the associated non-Archimedean metric is
of the form φtriv + c for some c ∈ Q, and hence MNA(φλ) = JNA(φλ) = 0. Since M
and J have log norm singularities on GL(Nm,C) by Theorem 5.9, M and J are indeed
bounded on φs by Theorem 5.4. ut

6. Remarks on the Yau–Tian–Donaldson conjecture

As explained in the introduction, we will here give a simple argument, following ideas
of Tian, for the existence of a Kähler–Einstein metric on a Fano manifold X, assuming
(X,−KX) is uniformly K-stable and the partial C0-estimates due to Székelyhidi.

6.1. Partial C0-estimates and the continuity method

For the moment, consider an arbitrary polarized manifold (X,L). For each m such that
mL is very ample, we have a ‘Bergman kernel approximation’ map Pm : H → Hm,
defined by setting Pm(φ) to be the Fubini–Study metric induced by the L2-scalar product
on H 0(X,mL) defined by mφ.

Definition 6.1. A subset A ⊂ H satisfies partial C0-estimates at level m if there exists
C > 0 such that |Pm(φ)− φ| ≤ C for all φ ∈ A.

Now assume X is Fano, and set L := −KX. Given a Kähler form α ∈ c1(X), consider
Aubin’s continuity method

Ric(ωt ) = tωt + (1− t)α. (6.1)

It is well-known that there exists a unique maximal solution (ωt )t∈[0,T ), where 0 <

T ≤ 1. The following important result, due to Székelyhidi [Szé16], confirms a conjecture
of Tian.
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Theorem 6.2. The setA := {ωt | t ∈ [0, T )} satisfies partial C0-estimates at levelm for
arbitrarily large positive integers m.

Given this result, we shall prove

Theorem 6.3. Any uniformly K-stable Fano manifold admits a Kähler–Einstein metric.

By working (much) harder, Datar and Székelyhidi [DSz15] have in fact been able to
deduce from Theorem 6.2 a much better result dealing with K-polystability and allowing
a compact group action.

6.2. CM-stability and partial C0-estimates

We first present in some detail well-known ideas due to Tian [Tia12, §4.3]. In this section,
(X,L) is an arbitrary polarized manifold.

Proposition 6.4. Assume that (X,mL) is CM-stable, and that A ⊂ H satisfies partial
C0-estimates at level m. Then there exist δ, C > 0 such that M ≥ δJ − C on A.

The proof, which is similar to the arguments in [Szé16, §5], is based on two lemmas.

Lemma 6.5. For any two metrics φ,ψ ∈ H, we have

(i) |J (φ)− J (ψ)| ≤ 2 sup(φ − ψ);
(ii) M(φ) ≥ M(ψ) − C sup |φ − ψ | for some C > 0 only depending on a one-sided

bound (either upper or lower) for the Ricci curvature of the Kähler metric ddcψ .

Proof. Recall that

E(φ)− E(ψ) =
1

n+ 1

n∑
j=0

V −1
∫
X

(φ − ψ)(ddcφ)j ∧ (ddcψ)n−j .

As a consequence, |E(φ)− E(ψ)| ≤ sup |φ − ψ |, and (i) follows immediately.
For (ii), we basically argue as in [Tia17, proof of Lemma 3.1]. By the Chen–Tian

formula (1.11), we have

M(φ)−M(ψ) = Hψ (φ)+ S̄(E(φ)− E(ψ))+ ERic(ddcψ)(ψ)− ERic(ddcψ)(φ).

Here the entropy term Hψ (φ) is non-negative, and we have

ERic(ddcψ)(φ)− ERic(ddcψ)(ψ)

=

n−1∑
j=0

V −1
∫
X

(φ − ψ)(ddcφ)j ∧ (ddcψ)n−j−1
∧ Ric(ddcψ).

Assume Ric(ddcψ) ≤ Cddcψ for some constant C > 0. We may then write

(ddcφ)j ∧ (ddcψ)n−j−1
∧ Ric(ddcψ)

= C(ddcφ)j ∧ (ddcψ)n−j − (ddcφ)j ∧ (ddcψ)n−j−1
∧ (C′ddcψ − Ric(ddcψ)),
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a difference of two positive measures of mass CV and CV + (Ln−1
· KX), respectively,

and the desired estimate follows.
The case where Ric(ddcψ) ≥ −C′ddcψ is treated similarly (and will anyway not be

used in what follows). ut

We next recall a well-known upper bound for the Ricci curvature of restrictions of Fubini–
Study metrics.

Lemma 6.6. We have Ric(ddcφ) ≤ Nmddcφ for all φ ∈ Hm.

Proof. Choose a basis of H 0(X,mL), and let ω be the corresponding Fubini–Study met-
ric on P := PH 0(X,mL)∗. Its curvature tensor

2(TP, ω) ∈ C
∞(P,31,1T ∗P ⊗ End(TP))

is Griffiths positive and satisfies

TrTP 2(TP, ω) = Ric(ω) = Nmω.

For each complex submanifold Y ⊂ P, the curvature of its tangent bundle TY with
respect to ω|Y satisfies 2(TY , ω|Y ) ≤ 2(TP, ω)|TY as (1, 1)-forms on Y with values in
the endomorphisms of TY , as a consequence of a well-known curvature monotonicity
property going back to Griffiths. We thus have

Ric(ω|Y ) = TrTY 2(TY , ω|Y ) ≤ TrTY 2(TP, ω)|TY .

Using now 2(TP, ω) ≥ 0, we have on the other hand

TrTY 2(TP, ω)|TY ≤ TrTP 2(TP, ω)|Y = Nmω|Y ,

and hence Ric(ω|Y ) ≤ Nmω|Y . Applying this to the images of X ⊂ P under projective
transformations yields the desired result. ut

Proof of Proposition 6.4. Since (X,mL) is CM-stable, there exist δ, C > 0 such that

M(Pm(φ)) ≥ δJ (Pm(φ))− C for all φ ∈ H. (6.2)

By assumption on A, we also have |Pm(φ) − φ| ≤ C for all φ ∈ A, and by Lemma 6.6,
the Ricci curvature of ddcPm(φ) is uniformly bounded above. Hence Lemma 6.5 shows,
as desired, that there exists C′ > 0 with M(φ) ≥ δJ (φ)− C′ for all φ ∈ A. ut

6.3. Proof of Theorem 6.3

Assume now that X is a Fano manifold and set L := −KX. Consider the continuity
method (6.1). Pick metrics ψ and φt on −KX such that α = ddcψ and ωt = ddcφt ,
respectively. After adding a constant to φt , (6.1) may be written

(ddcφt )
n
= e−2(tφt+(1−t)ψ). (6.3)

We recall the proof of the following well-known monotonicity property.
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Lemma 6.7. The function t 7→ M(φt ) is non-increasing.

Proof. We have

−
d

dt
M(φt ) = nV

−1
∫
X

φ̇t
(
Ric(ωt ) ∧ ωn−1

t − ωnt
)

= nV −1(1− t)
∫
X

φ̇tdd
c(ψ − φt ) ∧ (dd

cφt )
n−1

= nV −1(1− t)
∫
X

(ψ − φt )dd
cφ̇t ∧ (dd

cφt )
n−1.

Since dc is normalized so that ddc = i
π
∂∂ , we have

n
ddcφ̇t ∧ ω

n−1
t

ωnt
= trωt dd

cφ̇t = −
1

2π
1′′t φ̇t

with 1′′t denoting the ∂̄-Laplacian with respect to ωt . On the other hand, differentiat-
ing (6.3) yields

nddcφ̇t ∧ ω
n−1
t = 2(ψ − φt − t φ̇t )ωnt ,

and hence

ψ − φt =

(
t −

1
π
1′′t

)
φ̇t .

We get

−
d

dt
M(φt ) =

1− t
2π

∫
X

((
1
π
1′′t − t

)
φ̇t

)
(1′′t φ̇t )MA(φt )

=
1− t
2π

∫
X

〈(
1
π
1′′t − t

)
∂̄ φ̇t , ∂̄φ̇t

〉
ωt

MA(φt ).

Since Ric(ωt ) ≥ tωt , the ∂̄-Laplacian 1′′t satisfies 1
π
1′′t ≥ t on (0, 1)-forms, and the last

integral is thus non-negative. Indeed, this follows from the Bochner–Kodaira–Nakano
identity applied to

C∞(X,30,1T ∗X) ' C
∞(X,3n,1T ∗X ⊗K

∗

X)

with the fiber metric ψt = − 1
2 logωnt on K∗X = −KX, with curvature ddcψt = Ric(ωt ).

ut

We may now complete the proof of Theorem 6.3. By Corollary E, (X,−mKX) is CM-
stable for allm divisible enough. Theorem 6.2 and Proposition 6.4 therefore yield δ, C>0
such that M(φt ) ≥ δJ (φt ) − C along Aubin’s continuity path (6.1). Since M(φt ) is
bounded above by Lemma 6.7, it follows that J (φt ) remains bounded. By [Tia00, Lemma
6.19], the oscillation of φt is bounded, and well-known arguments allow us to conclude
the proof (see [Tia00, §6.2]).
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328, 339–354 (2009) Zbl 1204.53061 MR 2674882

[PRS08] Phong, D. H., Ross, J., Sturm, J.: Deligne pairings and the Knudsen–Mumford expan-
sion. J. Differential Geom. 78, 475–496 (2008) Zbl 1138.14003 MR 2396251

[PS+08] Phong, D. H., Song, J., Sturm, J., Weinkove, B.: The Moser–Trudinger inequality on
Kähler–Einstein manifolds. Amer. J. Math. 130, 1067–1085 (2008) Zbl 1158.58005
MR 2427008

[PS04] Phong, D. H., Sturm, J.: Scalar curvature, moment maps, and the Deligne pairing. Amer.
J. Math. 126, 693–712 (2004) Zbl 1077.53068 MR 2058389

[Sem92] Semmes, S.: Complex Monge–Ampère and symplectic manifolds. Amer. J. Math. 114,
495–550 (1992) Zbl 0790.32017 MR 1165352
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Zbl 1250.53044 MR 3220441

[Tia15] Tian, G.: K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68, 1085–
1156 (2015) Zbl 1318.14038 MR 3352459

[Tia17] Tian, G.: K-stability implies CM-stability. In: J.-B. Bost et al. (eds.), Geometry, Analysis
and Probability, Progr. Math. 310, Birkhäuser, Cham, 245–261 (2017) Zbl 1376.32012
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