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UNIFORM K-STABILITY, DUISTERMAAT–HECKMAN
MEASURES AND SINGULARITIES OF PAIRS

by Sébastien BOUCKSOM,
Tomoyuki HISAMOTO & Mattias JONSSON (*)

Abstract. — The purpose of this paper is to set up a formalism inspired by
non-Archimedean geometry to study K-stability. We first provide a detailed anal-
ysis of Duistermaat–Heckman measures in the context of test configurations for
arbitrary polarized schemes, characterizing in particular almost trivial test config-
urations. Second, for any normal polarized variety (or, more generally, polarized
pair in the sense of the Minimal Model Program), we introduce and study non-
Archimedean analogues of certain classical functionals in Kähler geometry. These
functionals are defined on the space of test configurations, and the Donaldson–
Futaki invariant is in particular interpreted as the non-Archimedean version of
the Mabuchi functional, up to an explicit error term. Finally, we study in detail
the relation between uniform K-stability and singularities of pairs, reproving and
strengthening Y. Odaka’s results in our formalism. This provides various examples
of uniformly K-stable varieties.

Résumé. — Le but de cet article est de mettre en place un formalisme ins-
piré par la géométrie non-archimédienne pour étudier la K-stabilité. Nous fournis-
sons d’abord une analyse détaillée des mesures de Duistermaat–Heckman dans le
contexte des configurations test de schémas polarisés arbitraires, caractérisant en
particulier les configurations test presque triviales. Nous introduisons et étudions
ensuite, pour toute variété normale polarisée (ou, plus généralement, toute paire po-
larisée au sens du Programme du Modèle Minimal), les analogues non-archimédiens
de certaines fonctionnelles classiques de la géométrie kählérienne. Ces fonctionnelles
sont définies sur l’espace des configurations test, et l’invariant de Donaldson–Futaki
est en particulier interprété comme la version non-archimédienne de la fonctionnelle
de Mabuchi, à un terme d’erreur explicite près. Enfin, nous étudions en détail les
liens entre K-stabilité uniforme et singularités des paires, redémontrant et amélio-
rant des résultats de Y. Odaka dans notre formalisme. Ceci fournit divers exemples
de variétés uniformément K-stables.
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Introduction

Let (X, L) be a polarized complex manifold, i.e. a smooth complex pro-
jective variety X endowed with an ample line bundle L. Assuming for
simplicity that the reduced automorphism group Aut(X, L)/Cú is discrete
(and hence finite), the Yau–Tian–Donaldson conjecture predicts that the
first Chern class c1(L) contains a constant scalar curvature Kähler met-
ric (cscK metric for short) i� (X, L) satisfies a certain algebro-geometric
condition known as K-stability. Building on [2, 27], it was proved in [74]
that K-stability indeed follows from the existence of a cscK metric. When
c1(X) is a multiple of c1(L), the converse was recently established ([21],
see also [81]); in this case a cscK metric is the same as a Kähler–Einstein
metric.

In the original definition of [28], (X, L) is K-semistable if the Donaldson–
Futaki invariant DF(X , L) of every (ample) test configuration (X , L) for
(X, L) is non-negative, and K-stable if we further have DF(X , L) = 0 only
when X = X ◊ C is trivial (and hence L = pú

1L with Cú acting through
a character). However, as pointed out in [59], (X, L) always admits test
configurations (X , L) with X non-trivial, but almost trivial in the sense
that its normalization ÂX is trivial. Such test configurations automatically
satisfy DF(X , L) = 0, and the solution adopted in [75, 64] was therefore to
replace ‘trivial’ with ‘almost trivial’ in the definition of K-stability.

On the other hand, G. Székelyhidi [77, 78] proposed that a uniform no-
tion of K-stability should be used to formulate the Yau–Tian–Donaldson
conjecture for general polarizations. In this uniform version, DF(X , L) is
bounded below by a positive multiple of the Lp-norm Î(X , L)Îp. Since
uniform K-stability should of course imply K-stability, one then faces the
problem of showing that test configurations with norm zero are almost
trivial.

In the first part of the paper, we prove that this is indeed the case. In
fact, the Lp-norm Î(X , L)Îp of a test configuration (X , L) can be computed
via the Duistermaat–Heckman measure DH(X ,L) associated to the test con-
figuration. We undertake a quite thorough study of Duistermaat–Heckman
measures and prove in particular that DH(X ,L) is a Dirac mass i� (X , L)
is almost trivial.

The second main purpose of the paper is to introduce a non-Archimedean
perspective on K-stability, in which test configurations for (X, L) are viewed
as non-Archimedean metrics on (the Berkovich analytification with re-
spect to the trivial norm of) L. We introduce non-Archimedean analogues
of many classical functionals in Kähler geometry, and interpret uniform
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UNIFORM K-STABILITY 745

K-stability as the non-Archimedean counterpart of the coercivity of the
Mabuchi K-energy.

Finally, in the third part of the paper, we use this formalism to analyze
the interaction between singularities of pairs (in the sense of the Minimal
Model Program) and uniform K-stability, revisiting Y. Odaka’s work [61,
63, 65, 66].

We now describe the contents of the paper in more detail.

Duistermaat–Heckman measures

Working, for the moment, over any arbitrary algebraically closed ground
field, let (X, L) be a polarized scheme, i.e. a (possibly non-reduced) scheme
X together with an ample line bundle L on X. Given a Gm-action on
(X, L), let H0(X, mL) =

m
⁄œZ H0(X, mL)⁄ be the weight decomposition.

For each d œ N, the finite sum
q

⁄œZ ⁄d dim H0(X, mL)⁄ is a polynomial
function of m ∫ 1, of degree at most dim X + d (cf. Theorem 3.1, as well
as Appendix B).

Setting Nm := dim H0(X, mL), we get, as a direct consequence, the
existence of the Duistermaat–Heckman measure

DH(X,L) := lim
mæŒ

1
Nm

ÿ

⁄œZ
dim H0(X, mL)⁄”m≠1⁄,

a probability measure with compact support in R describing the asymptotic
distribution as m æ Œ of the (scaled) weights of H0(X, mL), counted
with multiplicity. The Donaldson–Futaki invariant DF(X, L) appears in
the subdominant term of the expansion

wm

mNm
= 1

Nm

ÿ

⁄œZ
m≠1⁄ dim H0(X, mL)⁄

=
⁄

R
⁄ DH(X,L)(d⁄) ≠ (2m)≠1 DF(X, L) + O(m≠2),

where wm is the weight of the induced action on the determinant line
det H0(X, mL).

Instead of a Gm-action on (X, L), consider more generally a test config-
uration (X , L) for (X, L), i.e. a Gm-equivariant partial compactification of
(X, L)◊ (A1 \{0}). It comes with a proper, flat, Gm-equivariant morphism
fi : X æ A1, together with a Gm-linearized Q-line bundle L extending pú

1L
on X ◊ (A1 \ {0}). When the test configuration is ample, i.e. L is fi-ample,
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746 Sébastien BOUCKSOM, Tomoyuki HISAMOTO & Mattias JONSSON

the central fiber (X0, L0) is a polarized Gm-scheme, and the Duistermaat–
Heckman measure DH(X ,L) and Donaldson–Futaki invariant DF(X , L) are
defined to be those of (X0, L0).

In the previous case, where (X, L) comes with a Gm-action, the
Duistermaat–Heckman measure and Donaldson–Futaki as defined above
coincide with those of the corresponding product test configuration (X, L)◊
A1 with the diagonal action of Gm. Such a test configuration is called trivial
if the action on X is trivial.

Our first main result may be summarized as follows.

Theorem A. — Let (X, L) be a polarized scheme and (X , L) an ample
test configuration for (X, L), with Duistermaat–Heckman measure DH(X,L).

(i) The absolutely continuous part of DH(X ,L) has piecewise polyno-
mial density, and its singular part is a finite sum of point masses.

(ii) The measure DH(X ,L) is a finite sum of point masses i� (X , L)
is almost trivial in the sense that the normalization of each top-
dimensional irreducible component of X is trivial.

The piecewise polynomiality in (i) generalizes a well-known property of
Duistermaat–Heckman measures for polarized complex manifolds with a
Cú-action [31]. In (ii), the normalization of X is viewed as a test configura-
tion for the normalization of X. The notion of almost triviality is compati-
ble with the one introduced in [75, 64] for X reduced and equidimensional,
cf. Proposition 2.11.

In Theorem A, X is a possibly non-reduced scheme. If we specialize to the
case when X is a (reduced, irreducible) variety, Theorem A and its proof
yield the following characterization of almost trivial test configurations:

Corollary B. — Let (X, L) be a polarized variety and (X , L) an
ample test configuration for (X, L), with Duistermaat–Heckman measure
DH(X ,L). Then the following conditions are equivalent:

(i) the Duistermaat–Heckman measure DH(X ,L) is a Dirac mass;
(ii) for some (or, equivalently, any) p œ [1, Œ], we have Î(X , L)Îp = 0;
(iii) (X , L) is almost trivial, that is, the normalization ( ÂX , L̃) is trivial.

Here the Lp-norm Î(X , L)Îp is defined, following [29, 45, 83], as the Lp

norm of ⁄ ‘æ ⁄ ≠ ⁄̄ with respect to DH(X ,L), where ⁄̄ is the barycenter of
this measure.
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UNIFORM K-STABILITY 747

Uniform K-stability and non-Archimedean functionals

A polarized scheme (X, L) is K-semistable if DF(X , L) > 0 for each
ample test configuration. It is K-stable if, furthermore, DF(X , L) = 0 only
when (X , L) is almost trivial, in the sense of Theorem A(ii).

Assume from now on that X is irreducible and normal. By Corollary B,
the almost triviality of an ample test configuration can then be detected by
the Lp-norm Î(X , L)Îp with p œ [1, Œ]. We say that (X, L) is Lp-uniformly
K-stable if DF(X , L) > ”Î(X , L)Îp for some uniform constant ” > 0. For
p = 1, we simply speak of uniform K-stability, which is therefore implied
by Lp-uniform K-stability since Î(X , L)Îp > Î(X , L)Î1.

These notions also apply when ((X, B); L) is a polarized pair, consist-
ing of a normal polarized variety and a Q-Weil divisor on X such that
K(X,B) := KX + B is Q-Cartier, using the log Donaldson–Futaki invari-
ant DFB(X , L) of a test configuration (X , L). We show that Lp-uniform
K-stability can in fact only hold for p 6 n

n≠1 (cf. Proposition 8.5).
One of the points of the present paper is to show that (L1-)uniform

K-stability of polarized pairs can be understood in terms of the non-
Archimedean counterparts of well-known functionals in Kähler geometry.
In order to achieve this, we interpret a test configuration for (X, L) as a
non-Archimedean metric on the Berkovich analytification of L with respect
to the trivial norm on the ground field, see §6. In this language, ample test
configurations become positive metrics.

Several classical functionals on the space of Hermitian metrics in Kähler
geometry have natural counterparts in the non-Archimedean setting. For
example, the non-Archimedean Monge–Ampère energy is

ENA(X , L) = (L̄n+1)
(n + 1)V =

⁄

R
⁄ DH(X ,L)(d⁄),

where V = (Ln), (X̄ , L̄) is the natural Gm-equivariant compactification
of (X , L) over P1 and DH(X ,L) is the Duistermaat–Heckman measure of
(X , L). The non-Archimedean J-energy is

JNA(X , L) = ⁄max ≠ ENA(X , L) = ⁄max ≠
⁄

R
⁄ DH(X ,L)(d⁄) > 0,

with ⁄max the upper bound of the support of DH(X ,L). We show that this
quantity is equivalent to the L1-norm in the following sense:

cnJNA(X , L) 6 Î(X , L)Î1 6 2JNA(X , L)

for some numerical constant cn > 0.

TOME 67 (2017), FASCICULE 2



748 Sébastien BOUCKSOM, Tomoyuki HISAMOTO & Mattias JONSSON

Given a boundary B, we define the non-Archimedean Ricci energy
RNA

B (X , L) in terms of intersection numbers on a suitable test configuration
dominating (X , L). The non-Archimedean entropy HNA

B (X , L) is defined in
terms of the log discrepancies with respect to (X, B) of certain divisorial
valuations, and will be described in more detail below.

The non-Archimedean Mabuchi functional is now defined so as to sat-
isfy the analogue of the Chen–Tian formula (see [20] and also [5, Proposi-
tion 3.1])

MNA
B (X , L) = HNA

B (X , L) + RNA
B (X , L) + S̄BENA(X , L)

with
S̄B := ≠nV ≠1 !

K(X,B) · Ln≠1"
,

which, for X smooth over C and B = 0, gives the mean value of the
scalar curvature of any Kähler metric in c1(L). The whole point of these
constructions is that MNA

B is essentially the same as the log Donaldson–
Futaki invariant.(1) We show more precisely that every normal, ample test
configuration (X , L) satisfies

(0.1) DFB(X , L) = MNA
B (X , L) + V ≠1 ((X0 ≠ X0,red) · Ln) .

Further, MNA
B is homogeneous with respect to Gm-equivariant base change,

a property which is particularly useful in relation with semistable reduction,
and fails for the Donaldson–Futaki invariant when the central fiber is non-
reduced. Using this, we show that uniform K-stability of ((X, B); L) is
equivalent to the apparently stronger condition MNA

B > ”JNA, which we
interpret as a counterpart to the coercivity of the Mabuchi energy in Kähler
geometry [80].

The relation between the non-Archimedean functionals above and their
classical counterparts will be systematically studied in [16]. Let us indicate
the main idea. Assume (X, L) is a smooth polarized complex variety, and
B = 0. Denote by H the space of Kähler metrics on L and by HNA the
space of non-Archimedean metrics. The general idea is that HNA plays the
role of the ‘Tits boundary’ of the (infinite dimensional) symmetric space H.
Given an ample test configuration (X , L) (viewed as an element of HNA)
and a smooth ray („s)sœ(0,+Œ) corresponding to a smooth S1-invariant
metric on L, we shall prove in [16] that

(0.2) lim
sæ+Œ

F („s)
s

= F NA(X , L),

(1) The interpretation of the Donaldson–Futaki invariant as a non-Archimedean Mabuchi
functional has been known to Shou-Wu Zhang for quite some time, cf. [71, Remark 6].
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UNIFORM K-STABILITY 749

where F denotes the Monge–Ampère energy, J-energy, entropy, or Mabuchi
energy functional and F NA is the corresponding non-Archimedean func-
tional defined above. In the case of the Mabuchi energy, this result is closely
related to [69, 70, 71].

Singularities of pairs and uniform K-stability

A key point in our approach to K-stability is to relate the birational
geometry of X and that of its test configurations using the language of
valuations.

More specifically, let (X, L) be a normal polarized variety, and (X , L)
a normal test configuration. Every irreducible component E of X0 defines
a divisorial valuation ordE on the function field of X . Since the latter is
canonically isomorphic to k(X ◊ A1) ƒ k(X)(t), we may consider the re-
striction r(ordE) of ordE to k(X); this is proved to be a divisorial valuation
as well when E is non-trivial, i.e. not the strict transform of the central
fiber of the trivial test configuration.

This correspondence between irreducible components of X0 and diviso-
rial valuations on X is analyzed in detail in §4. In particular, we prove
that the Rees valuations of a closed subscheme Z µ X, i.e. the divisorial
valuations associated to the normalized blow-up of X along Z, coincide
with the valuations induced on X by the normalization of the deformation
to the normal cone of Z.

Given a boundary B on X, we define the non-Archimedean entropy of a
normal test configuration (X , L) mentioned above as

HNA
B (X , L) = V ≠1

ÿ

E

A(X,B)(r(ordE))(E · Ln),

the sum running over the non-trivial irreducible components of X0 and
A(X,B)(v) denoting the log discrepancy of a divisorial valuation v with
respect the pair (X, B). Recall that the pair (X, B) is log canonical (lc for
short) if A(X,B)(v) > 0 for all divisorial valuations on X, and Kawamata
log terminal (klt for short) if the inequality is everywhere strict. Our main
result here is a characterization of these singularity classes in terms of the
non-Archimedean entropy functional.

Theorem C. — Let (X, L) be a normal polarized variety, and B an
e�ective boundary on X. Then (X, B) is lc (resp. klt) i� HNA

B (X , L) > 0
(resp. > 0) for every non-trivial normal, ample test configuration (X , L).
In the klt case, there automatically exists ” > 0 such that HNA

B (X , L) >
”JNA(X , L) for all (X , L).

TOME 67 (2017), FASCICULE 2



750 Sébastien BOUCKSOM, Tomoyuki HISAMOTO & Mattias JONSSON

The strategy to prove the first two points is closely related to that of [63].
In fact, we also provide a complete proof of the following mild generalization
(in the normal case) of the main result of loc. cit.:

((X, B); L) K-semistable =∆ (X, B) lc.

The non-normal case is discussed in §9.4. If (X, B) is not lc (resp. not klt),
then known results from the Minimal Model Program allow us to construct
a closed subscheme Z whose Rees valuations have negative (resp. non-
positive) discrepancies; the normalization of the deformation to the normal
cone of Z then provides a test configuration (X , L) with HNA

B (X , L) < 0
(resp. 6 0). To prove uniformity in the klt case, we exploit the the strict
positivity of the global log canonical threshold lct((X, B); L) of ((X, B); L).

As a consequence, we are able to analyze uniform K-stability in the log
Kähler–Einstein case, i.e. when K(X,B) is numerically proportional to L.

Corollary D. — Let (X, L) be a normal polarized variety, B an ef-
fective boundary, and assume that K(X,B) © ⁄L with ⁄ œ Q.

(i) If ⁄ > 0, then ((X, B); L) is uniformly K-stable i� (X, B) is lc;
(ii) If ⁄ = 0, then ((X, B); L) is uniformly K-stable i� (X, B) is klt;
(iii) If ⁄ < 0 and lct((X, B); L) > n

n+1 |⁄|, then ((X, B); L) is uniformly
K-stable.

This result thus gives ‘uniform versions’ of [61, 65].
In the last case, when ≠K(X,B) is ample, we also prove that uniform K-

stability is equivalent to uniform Ding stability, defined as DNA
B > ”JNA,

where DNA is the non-Archimedean Ding functional that appeared in the
work of Berman [4]; see also [7, 39, 40].

Relation to other works

Since we aim to give a systematic introduction to uniform K-stability,
and to set up some non-Archimedean terminology, we have tried to make
the exposition as self-contained as possible. This means that we reprove or
slightly generalize some already known results [61, 63, 65, 66, 76].

During the preparation of the present paper, we were informed of R. Der-
van’s independent work [25] (see also [24]), which has a substantial overlap
with the present paper. First, when X is normal, ample test configura-
tions with trivial norm were also characterized in [25, Theorem 1.3]. Next,
the minimum norm introduced in loc. cit. turns out to be equivalent to
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UNIFORM K-STABILITY 751

our non-Archimedean J-functional, up to multiplicative constants (cf. Re-
mark 7.12). As a result, uniform K-stability with respect to the minimum
norm as in [25] is the same as our concept of uniform K-stability. Finally,
Corollary C above is to a large extent contained in [25, §3] and [24].

Several papers exploring K-stability through valuations have appeared
since the first version of this paper. We mention in particular [38, 39, 40,
41, 56, 57, 60].

Structure of the paper

Section 1 gathers a number of preliminary facts on filtrations and valu-
ations, with a special emphasis on the Rees construction and the relation
between Rees valuations and integral closure.

In Section 2 we provide a number of elementary facts on test configura-
tions, and discus in particular some scheme theoretic aspects.

Section 3 gives a fairly self-contained treatment of Duistermaat–Heckman
measures and Donaldson–Futaki invariants in the context of polarized
schemes. The existence of asymptotic expansions for power sums of weights
is established in Theorem 3.1, following an idea of Donaldson.

The correspondence between irreducible components of the central fiber
of a normal test configuration and divisorial valuations on X is considered
in Section 4. In particular, Theorem 4.8 relates Rees valuations and the
deformation to the normal cone.

Section 5 contains an in-depth study of Duistermaat–Heckman measures
in the normal case, leading to the proof of Theorem A and Corollary B.

Certain non-Archimedean metrics on L are introduced in Section 6 as
equivalence classes of test configurations. This is inspired by [12, 13, 14].

In Section 7 we introduce non-Archimedean analogues of the usual energy
functionals and in Section 8 we use these to define and study uniform K-
stability. In the Fano case, we relate (uniform) K-stability to the notion of
(uniform) Ding stability.

Section 9 is concerned with the interaction between uniform K-stability
and singularities of pairs. Specifically, Theorem 9.1 and Theorem 9.2 es-
tablish Theorem C as well as the generalization of [63] mentioned above.
Corollary D is a combination of Corollary 9.3, Corollary 9.4 and Proposi-
tion 9.17.

Finally, Appendix A provides a proof of the two-term Riemann–Roch the-
orem on a normal variety, whose complete proof we could not locate in the
literature, and Appendix B summarizes Edidin and Graham’s equivariant
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752 Sébastien BOUCKSOM, Tomoyuki HISAMOTO & Mattias JONSSON

version of the Riemann–Roch theorem for schemes, yielding an alternative
proof of Theorem 3.1.

1. Preliminary facts on filtrations and valuations

We work over an algebraically closed field k, whose characteristic is ar-
bitrary unless otherwise specified. Write Gm for the multiplicative group
over k and A1 = Spec k[t] for the a�ne line. The trivial absolute value | · |0
on k is defined by |0|0 = 0 and |c|0 = 1 for c œ kú.

All schemes are assumed to be separated and of finite type over k. We
restrict the use of variety to denote a reduced and irreducible scheme. A
reduced scheme is thus a finite union of varieties, and a normal scheme is
a disjoint union of normal varieties.

By an ideal on a scheme X we mean a coherent ideal sheaf, whereas a
fractional ideal is a coherent OX -submodule of the sheaf of rational func-
tions.

If X is a scheme and L a line bundle on X, then a Gm-action on (X, L)
means a Gm-action on X together with a Gm-linearization of L. This in-
duces an action on (X, rL) for any r œ Z>0. If L is a Q-line bundle on
X, then a Gm-action on (X, L) means a compatible family of actions on
(X, rL) for all su�ciently divisible r œ Z>0.

A polarized scheme (resp. variety) is a pair (X, L) where X is a projective
scheme (resp. variety) and L is an ample Q-line bundle on X.

1.1. Norms and filtrations

Let V be a finite dimensional k-vector space. In this paper, a filtration
of V will mean a decreasing, left-continuous, separating and exhaustive R-
indexed filtration F •V . In other words, it is a family of subspaces (F ⁄V )⁄œR
of V such that

(i) F ⁄V µ F ⁄Õ
V when ⁄ > ⁄Õ;

(ii) F ⁄V =
u

⁄Õ<⁄ F ⁄Õ
V ;

(iii) F ⁄V = 0 for ⁄ ∫ 0;
(iv) F ⁄V = V for ⁄ π 0.

A Z-filtration is a filtration F •V such that F ⁄V = F Á⁄ËV for ⁄ œ R.
Equivalently, it is a family of subspaces (F ⁄V )⁄œZ satisfying (i), (iii) and
(iv) above.
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UNIFORM K-STABILITY 753

With these conventions, filtrations are in one-to-one correspondence with
non-Archimedean norms on V compatible with the trivial absolute value
on k, i.e. functions Î · Î : V æ R+ such that

(i) Îs + sÕÎ 6 max {ÎsÎ, ÎsÕÎ} for all s, sÕ œ V ;
(ii) ÎcsÎ = |c|0 · ÎsÎ = ÎsÎ for all s œ V and c œ kú;
(iii) ÎsÎ = 0 ≈∆ s = 0.

The correspondence is given by

≠ log ÎsÎ = sup{⁄ œ R | s œ F ⁄V } and F ⁄V = {s œ V | ÎsÎ 6 e≠⁄}.

The successive minima of the filtration F •V is the decreasing sequence

⁄max = ⁄1 > · · · > ⁄N = ⁄min

where N = dim V , defined by

⁄j = max
)

⁄ œ R | dim F ⁄V > j
*

.

From the point of view of the norm, they are indeed the analogues of
the (logarithmic) successive minima in Minkowski’s geometry of numbers.
Choosing a basis (sj) compatible with the flag F ⁄1V µ · · · µ F ⁄N V diag-
onalizes the associated norm Î · Î, in the sense that

...
ÿ

cisi

... = max |ci|0e≠⁄i .

Next let R :=
m

mœN Rm be a graded k-algebra with finite dimensional
graded pieces Rm. A filtration F •R of R is defined as the data of a filtration
F •Rm for each m, satisfying

F ⁄Rm · F ⁄Õ
RmÕ µ F ⁄+⁄Õ

Rm+mÕ

for all ⁄, ⁄Õ œ R and m, mÕ œ N. The data of F •R is equivalent to the
data of a non-Archimedean submultiplicative norm Î · Î on R, i.e. a non-
Archimedean norm Î · Îm as above on each Rm, satisfying

Îs · sÕÎm+mÕ 6 ÎsÎmÎsÕÎmÕ

for all s œ Rm, sÕ œ RmÕ . We will use the following terminology.

Definition 1.1. — We say that a Z-filtration F •R of a graded algebra
R is finitely generated if the bigraded algebra

n

(⁄,m)œZ◊N
F ⁄Rm

is finitely generated over k.
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The condition equivalently means that the graded k[t]-algebra
n

mœN

A
n

⁄œZ
t≠⁄F ⁄Rm

B

is finitely generated.

1.2. The Rees construction

We review here a classical construction due to Rees, which yields a geo-
metric interpretation of Z-filtrations.

Start with a Gm-linearized vector bundle V on A1, and set V = V1. The
weight decomposition

H0(A1, V) =
n

⁄œZ
H0(A1, V)⁄

yields a Z-filtration F •V , with F ⁄V defined as the image of the weight-⁄
part of H0(A1, V) under the restriction map H0(A1, V) æ V . Since t has
weight ≠1 with respect to the Gm-action on A1, multiplication by t induces
an injection F ⁄+1V µ F ⁄V , so that this is indeed a decreasing filtration.

Conversely, consider a Z-filtration F •V of a k-vector space V . Thenm
⁄œZ t≠⁄F ⁄V is a torsion free, finitely generated k[t]-module. It can thus

be written as the space of global sections of a unique vector bundle V on
A1 = Spec k[t]. The grading provides a Gm-linearization of V, and the
corresponding weight spaces are given by H0(A1, V)⁄ ƒ t≠⁄F ⁄V .

Lemma 1.2. — In the above notation, we have a Gm-equivariant vector
bundle isomorphism,

(1.1) V|A1\{0} ƒ V ◊
!
A1 \ {0}

"

as well as

(1.2) V0 ƒ GrF
• V =

n

⁄œZ
F ⁄V/F ⁄+1V.

Intuitively, this says that V may be thought of as a way to degenerate
the filtration to its graded object.

Proof. — To see that (1.1) holds, consider the k-linear map
fi : H0(A1, V) æ V sending

q
⁄ t≠⁄v⁄ to

q
⁄ v⁄. This map is surjective since

F ⁄V = V for ⁄ π 0. If
q

⁄ t≠⁄v⁄ lies in the kernel, then v⁄ = w⁄+1≠w⁄ for
all ⁄, where w⁄ = ≠

q
µ>⁄ vµ œ F ⁄V . Conversely, any element of the formq

⁄ t≠⁄(w⁄+1 ≠ w⁄), where w⁄ œ F ⁄V , is in the kernel of fi, and the set of
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such elements is equal to (t≠1)H0(A1, V). Thus fi induces an isomorphism
between V1 = H0(A1, V)/(t≠1)H0(A1, V) and V , which induces (1.1) using
the Gm-action. The proof of (1.2) is similar. ⇤

Using this, it is easy to verify that the two constructions above are inverse
to each other, and actually define an equivalence of categories between Z-
filtered, finite dimensional vector spaces F •V and Gm-linearized vector
bundles V on A1, related by the Gm-equivariant isomorphism

H0(A1, V) ƒ
n

⁄œZ
t≠⁄F ⁄V.

Every filtered vector space admits a basis compatible with the filtration,
and is thus (non-canonically) isomorphic to its graded object. On the vector
bundle side, this yields (compare [29, Lemma 2]):

Proposition 1.3. — Every Gm-linearized vector bundle V on A1 is
Gm-equivariantly trivial, i.e. Gm-isomorphic to V0 ◊ A1 with V0 the fiber
at 0.

For line bundles, the trivialization admits the following particularly sim-
ple description.

Corollary 1.4. — Let L be a Gm-linearized line bundle on A1, and
let ⁄ œ Z be the weight of the Gm-action on L0. For each non-zero v œ L1,
setting s(t) := t≠⁄(t · v) defines a weight-⁄ trivialization of L.

Proof. — While this is a special case of the above construction, it can
be directly checked as follows. The section sÕ œ H0(A1 \ {0}, L) defined by
sÕ(t) := t · v defines a rational section of L. If we set µ := ord0(sÕ), then
v0 := limzæ0 z≠µsÕ(z) is a non-zero element of L0, which satisfies

t · v0 = lim
zæ0

z≠µ ((tz) · v) = tµ lim
zæ0

(tz)≠µ ((tz) · v) = tµv0.

It follows that µ coincides with the weight ⁄ of the Gm-action on L0. ⇤
We introduce the following piece of terminology.

Definition 1.5. — Let W =
m

⁄œZ W⁄ be the weight decomposition
of a Gm-module. The weight measure of W is defined as the probability
measure

µW := 1
dim W

ÿ

⁄œZ
(dim W⁄)”⁄.

For later use, we record the following immediate consequence of (1.2).
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Lemma 1.6. — Let V be a Gm-linearized vector bundle over A1, and
F •V the corresponding Z-filtration of the fiber V = V1. The weight measure
µV0 of the Gm-module V0 then satisfies

µV0{x > ⁄} = dim F Á⁄ËV

dim V
for all ⁄ œ R.

1.3. Valuations

Let K be a finitely generated field extension of k, with n := tr. deg K/k,
so that K may be realized as the function field of a (normal, projective)
n-dimensional variety.

Since we only consider real-valued valuations, we simply call valuation
v on K a group homomorphism v : Kú æ (R, +) such that v(f + g) >
min {v(f), v(g)} and v|kú © 0 [85]. It is convenient to set v(0) = +Œ. The
trivial valuation vtriv is defined by vtriv(f) = 0 for all f œ Kú. To each
valuation v is attached the following list of invariants. The valuation ring
of v is Ov := {f œ K | v(f) > 0}. This is a local ring with maximal ideal
mv := {f œ K | v(f) > 0}, and the residue field of v is k(v) := Ov/mv. The
transcendence degree of v (over k) is tr. deg(v) := tr. deg k(v)/k. Finally,
the value group of v is �v := v(Kú) µ R, and the rational rank of v is
rat. rk(v) := dimQ (�v ¢ Q).

If k µ K Õ µ K is an intermediate field extension, v is a valuation on K
and vÕ is its restriction to K Õ, the Abhyankar–Zariski inequality states that
(1.3) tr. deg(v) + rat. rk(v) 6 tr. deg(vÕ) + rat. rk(vÕ) + tr. deg K/K Õ.

Taking K Õ = k, we get tr. deg(v) + rat. rk(v) 6 n, and we say that v is
an Abhyankar valuation if equality holds; such valuations can be geomet-
rically characterized, see [36, 51, 48]. In particular, the trivial valuation is
Abhyankar; it is the unique valuation with transcendence degree n. We say
that v is divisorial if rat. rk(v) = 1 and tr. deg(v) = n ≠ 1. By a theorem of
Zariski, this is the case i� there exists a normal projective variety Y with
k(Y ) = K and a prime divisor F of Y such that v = c ordF for some c > 0.
We then have k(v) = k(F ) and �v = cZ.

If X is a variety with k(X) = K, a valuation v is centered on X if there
exists a scheme point › œ X such that v > 0 on the local ring OX,› and
v > 0 on its maximal ideal. We also say v is a valuation on X in this
case. By the valuative criterion of separatedness, the point › is unique, and
is called the center of v on X. If X is proper, the valuative criterion of
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properness guarantees that any v is centered on X. If a divisorial valuation
v is centered on X, then v = c ordF where F is a prime divisor on a normal
variety Y with a proper birational morphism µ : Y æ X; the center of v
on X is then the generic point of µ(F ).

For any valuation v centered on X, we can make sense of v(s) œ R+ for a
(non-zero) section s œ H0(X, L) of a line bundle L on X, by trivializing L at
the center › of v on X and evaluating v on the local function corresponding
to s in this trivialization. Since any two such trivializations di�er by a unit
at ›, v(s) is well-defined, and v(s) > 0 i� s(›) = 0.

Similarly, given an ideal a µ OX we set

v(a) = inf{v(f) | f œ a›}.

It is in fact enough to take the min over any finite set of generators of a›.
We also set v(Z) := v(a), where Z is the closed subscheme defined by a.

Finally, for later use we record the following simple variant of [47, The-
orem 10.1.6].

Lemma 1.7. — Assume that X = Spec A is a�ne. Let S be a finite set
of valuations on X, which is irredundant in the sense that for each v œ S
there exists f œ A with v(f) < vÕ(f) for all vÕ œ S \{v}. Then S is uniquely
determined by the function hS(f) := minvœS v(f).

Proof. — Let S and T be two irredundant finite sets of valuations with
hS = hT =: h. For each v œ S, w œ T set Cv := {f œ A | h(f) = v(f)}
and Dw := {f œ A | h(f) = w(f)}, and observe that these sets are stable
under finite products. For each v œ S, we claim that there exists w œ T
with Cv µ Dw. Otherwise, for each w there exists fw œ Cv \ Dw, i.e.
v(fw) = h(fw) < w(fw). Setting f =

r
w fw, we get for each wÕ œ T

wÕ(f) =
ÿ

wœT

wÕ(fw) >
ÿ

wœS

h(fw) =
ÿ

wœS

v(fw) = v(f) > h(f),

and taking the min over wÕ œ T yields a contradiction.
We next claim that Cv µ Dw implies that v = w. This will prove that

S µ T , and hence S = T by symmetry. Note first that v(f) = h(f) = w(f)
for each f œ Cv. Now choose gv œ A with v(gv) < vÕ(gv) for all vÕ ”= v in
S, so that gv œ Cv µ Dw. For each f œ A, we then have v(gm

v f) < vÕ(gm
v f)

for m ∫ 1, and hence gm
v f œ Cv µ Dw. It follows that

mv(gv) + v(f) = v(gm
v f) = w(gm

v f) = mw(gv) + w(f) = mv(gv) + w(f),

and hence v(f) = w(f). ⇤
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1.4. Integral closure and Rees valuations

We assume in this section that X is a normal variety. Let Z µ X be
a closed subscheme with ideal a µ OX . On the one hand, the normalized
blow-up fi : ÂX æ X along Z is the composition of the blow-up of Z in X
with the normalization morphism. On the other hand, the integral closure
a of a is the set of elements f œ OX satisfying a monic equation fd +
a1fd≠1 + · · · + ad = 0 with aj œ aj .

The following well-known connection between normalized blow-ups and
integral closures shows in particular that a is a coherent ideal sheaf.

Lemma 1.8. — Let Z µ X be a closed subscheme, with ideal a µ OX ,
and let fi : ÂX æ X be the normalized blow-up along Z. Then D := fi≠1(Z)
is an e�ective Cartier divisor with ≠D fi-ample, and we have for each
m œ N:

(i) O ÂX(≠mD) is fi-globally generated;
(ii) fiúO ÂX(≠mD) = am;
(iii) O ÂX(≠mD) = O ÂX · am = O ÂX · am;

In particular, fi coincides with the normalized blow-up of a, and also with
the (usual) blow-up of am for any m ∫ 1.

We recall the brief argument for the convenience of the reader.
Proof. — Let µ : X Õ æ X be the blow-up along Z, so that µ≠1(Z) = DÕ

is a Cartier divisor on X Õ with ≠DÕ µ-very ample, and hence OXÕ(≠mDÕ) µ-
globally generated for all m œ N. Denoting by ‹ : ÂX æ X Õ the normalization
morphism, we have ‹úDÕ = D. Since ‹ is finite, it follows that ≠D is fi-
ample and satisfies (i), which reads O ÂX(≠mD) = O ÂX · am with

am := fiúO ÂX(≠mD).

It therefore remains to establish (ii). By normality of ÂX, O ÂX(≠mD) is
integrally closed, hence so is am. As a µ a1, we have am µ am

1 µ am, and
hence am µ am.

The reverse inclusion requires more work; we reproduce the elegant geo-
metric argument of [54, II.11.1.7]. Fix m > 1. As the statement is local over
X, we may choose a system of generators (f1, . . . , fp) for am. This defines a
surjection Oüp

X æ am, which induces, after pull-back and twisting by ≠lD,
a surjection

O ÂX(≠lD)üp æ O ÂX (≠(m + l)D) = am · O ÂX(≠lD)
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for any l > 1. Since ≠D is fi-ample, Serre vanishing implies that the induced
map

aüp
l = fiúO ÂX (≠lD)üp æ a(m+l) = fiúO ÂX (≠(m + l)mD)

is also surjective for l ∫ 1, i.e. am · al = am+l. But since am+l ∏ am · al ∏
am · al, am acts on the finitely generated OX -module al by multiplication
by am, and the usual determinant trick therefore yields am µ am. ⇤

Definition 1.9. — Let Z µ X be a closed subscheme with ideal a,
and let fi : ÂX æ X be the normalized blow-up of Z, with D := fi≠1(Z).
The Rees valuations of Z (or a) are the divisorial valuations vE = ordE

ordE(D) ,
where E runs over the irreducible components of D.

Note that vE(Z) = vE(a) = vE(D) = 1 for all E. We now show that
the present definition of Rees valuations coincides with the standard one
in valuation theory (see for instance [47, Chapter 5]). The next result is a
slightly more precise version of [47, Theorem 2.2.2(3)].

Theorem 1.10. — The set of Rees valuations of a is the unique finite
set S of valuations such that:

(i) am =
u

vœS {f œ OX | v(f) > m} for all m œ N;
(ii) S is minimal with respect to (i).

Proof of Theorem 1.10. — For each finite set of valuations S, set hS(f) :=
minvœS v(f). Using that hS(fm) = mhS(f), it is straightforward to check
that any two sets S, SÕ satisfying (i) have hS = hSÕ . If S and SÕ further
satisfy (ii), then they are irredundant in the sense of Lemma 1.7, which
therefore proves that S = SÕ.

It remains to check that the set S of Rees valuations of Z satisfies (i)
and (ii). The first property is merely a reformulation of Lemma 1.8. Now
pick an irreducible component E of D. It defines a fractional ideal O ÂX(E).
Since ≠D is fi-ample, O ÂX(≠mD) and O ÂX(≠mD) · O ÂX(E) both become
fi-globally generated for m ∫ 1. Since O ÂX(≠mD) is strictly contained in
O ÂX(≠mD)·O ÂX(E), it follows that am = fiúO ÂX(≠mD) is strictly contained
in

fiú
1

O ÂX(≠mD) · O ÂX(E)
2

µ
‹

EÕ ”=E

{f œ OX | vEÕ(f) > m} ,

which proves (ii). ⇤

Example 1.11. — The Rees valuations of an e�ective Weil divisor D =qm
i=1 aiDi on a normal variety X are given by vi := 1

ai
ordDi , 1 6 i 6 m.

We end this section on Rees valuations with the following result.
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Proposition 1.12. — Let fi : Y æ X be a projective birational mor-
phism between normal varieties, and assume that Y admits a Cartier di-
visor that is both fi-exceptional and fi-ample. Then fi is isomorphic to the
blow-up of X along a closed subscheme Z of codimension at least 2, and
the divisorial valuations ordF defined by the fi-exceptional prime divisors
F on Y coincide, up to scaling, with the Rees valuations of Z.

This is indeed a direct consequence of the following well-known facts.

Lemma 1.13. — Let fi : Y æ X be a projective birational morphism
between varieties with X normal. If G is a fi-exceptional, fi-ample Cartier
divisor, then:

(i) ≠G is e�ective;
(ii) supp G coincides with the exceptional locus of fi;
(iii) for m divisible enough, fi is isomorphic to the blow-up of the ideal

am := fiúOY (mG), whose zero locus has codimension at least 2.

Conversely, the blow-up of X along a closed subscheme of codimension at
least 2 admits a fi-exceptional, fi-ample Cartier divisor.

Assertion (i) is a special (=ample) case of the Negativity Lemma [53,
Lemma 3.39]. The simple direct argument given here is taken from the al-
ternative proof of the Negativity Lemma provided in [15, Proposition 2.12].

Proof. — Set am := fiúOY (mG), viewed as a fractional ideal on X. Since
G is fi-exceptional, every rational function in fiúOY (mG) is regular in codi-
mension 1, and am is thus an ideal whose zero locus has codimension at
least 2, by the normality of X.

If we choose m ∫ 1 such that OY (mG) is fi-globally generated, then we
have OY (mG) = OY · am µ OY , which proves (i).

By assumption, supp G is contained in the exceptional locus E of fi. Since
X is normal, fi has connected fibers by Zariski’s main theorem, so E is the
union of all projective curves C µ Y that are mapped to a point of X. Any
such curve satisfies G · C > 0 by the relative ampleness of G, and hence
C µ supp G since ≠G is e�ective. Thus supp G = E, proving (ii).

Finally, the relative ampleness of G implies that the OX -algebra
m

mœN
am is finitely generated, and its relative Proj over X is isomorphic to Y . The
finite generation implies

m
lœN aml =

m
lœN al

m for all m divisible enough,
and applying ProjX shows that X is isomorphic to the blow-up of X along
am. ⇤
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1.5. Boundaries and log discrepancies

Let X be a normal variety. In the Minimal Model Program (MMP)
terminology, a boundary B on X is a Q-Weil divisor (i.e. a codimen-
sion one cycle with rational coe�cients) such that K(X,B) := KX + B
is Q-Cartier. Alternatively, one says that (X, B) is a pair to describe this
condition, and K(X,B) is called the log canonical divisor of this pair. In
particular, 0 is a boundary i� X is Q-Gorenstein. If (X Õ, BÕ) and (X, B)
are pairs and f : X Õ æ X is a morphism, then we set K(XÕ,BÕ)/(X,B) =
K(XÕ,BÕ) ≠ fúK(X,B).

To any divisorial valuation v on X is associated its log discrepancy with
respect to the pair (X, B), denoted by A(X,B)(v) and defined as follows.
For any proper birational morphism µ : Y æ X, with Y normal, and any
prime divisor F of Y such that v = c ordF , we set

A(X,B)(v) := c
!
1 + ordF

!
KY/(X,B)

""

with KY/(X,B) := KY ≠ µúK(X,B). This is well-defined (i.e. independent of
the choice of µ), by compatibility of canonical divisor classes under push-
forward. By construction, A(X,B) is homogeneous with respect to the nat-
ural action of Rú

+ on divisorial valuations by scaling, i.e. A(X,B)(c v) =
cA(X,B)(v) for all c > 0.

As a real valued function on k(X)ú, c v converges pointwise to the trivial
valuation vtriv as c æ 0. It is thus natural to set A(X,B)(vtriv) := 0.

The pair (X, B) is sublc if A(X,B)(v) > 0 for all divisorial valuations
v. It is subklt if the inequality is strict. If B is furthermore e�ective,
then (X, B) is lc (or log canonical) and klt (Kawamata log terminal), re-
spectively. If µ : X Õ æ X is a birational morphism and BÕ is defined by
K(XÕ,BÕ) = µúK(X,B) and µúBÕ = B, then A(XÕ,BÕ) = A(X,B), so (X Õ, BÕ) is
subklt (resp. sublc) i� (X, B) is subklt (resp. sublc), but the corresponding
equivalence may fail for klt or lc pairs, since BÕ is not necessarily e�ective
even when B is.

If (X, B) is a pair and D is an e�ective Q-Cartier divisor on X, then we
define the log canonical threshold of D with respect to (X, B) as

lct(X,B)(D) := sup {t œ Q | (X, B + tD) is subklt} ,

with the convention lct(X,B)(D) = ≠Œ if (X, B + tD) is not subklt for any
t. Assume lct(X,B)(D) > ≠Œ. Since A(X,B+tD)(v) = A(X,B)(v) ≠ tv(D) for
all divisorial valuations v on X, we have

lct(X,B)(D) = inf
v

A(X,B)(v)
v(D) ,
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where the infimum is taken over v with v(D) > 0.
When k has characteristic zero, we can compute lct(X,B)(D) using res-

olution of singularities. Pick a birational morphism µ : X Õ æ X, with
X Õ a smooth projective variety, such that if BÕ and DÕ are defined by
K(XÕ,BÕ) = µúK(X,B), µúBÕ = B and DÕ := µúD, then the union of the
supports of BÕ and DÕ has simple normal crossings. Then lct(X,B)(D) =
lct(XÕ,BÕ)(DÕ) = mini A(XÕ,BÕ)(ordEi)/ ordEi(DÕ), where Ei runs over the
irreducible components of DÕ.

2. Test configurations

In what follows, X is a projective scheme over k, and L is a Q-line bundle
on X. Most often, L will be ample, but it is sometimes useful to consider
the general case. Similarly, it will be convenient to allow some flexibility in
the definition of test configurations.

Definition 2.1. — A test configuration X for X consists of the follow-
ing data:

(i) a flat and proper morphism of schemes fi : X æ A1;
(ii) a Gm-action on X lifting the canonical action on A1;
(iii) an isomorphism X1 ƒ X.

By Proposition 2.6 below, X is automatically a variety (i.e. reduced and
irreducible) when X is. The central fiber X0 := fi≠1(0) is an e�ective Cartier
divisor on X by the flatness of fi.

Given test configurations X , X Õ for X, the isomorphism X Õ
1 ƒ X ƒ

X1 induces a canonical Gm-isomorphism X Õ \ X Õ
0 ƒ X \ X0. We say that

X Õ dominates X if this isomorphism extends to a morphism X Õ æ X .
When it is an isomorphism, we abuse notation slightly and write X Õ = X
(which is reasonable given that the isomorphism is canonical). Any two test
configurations X1, X2 can be dominated by a third, for example the graph
of X1 99K X2.

Definition 2.2. — A test configuration (X , L) for (X, L) consists of a
test configuration X for X, together with the following data:

(iv) a Gm-linearized Q-line bundle L on X ;
(v) an isomorphism (X1, L1) ƒ (X, L) extending the one in (iii).

By a Gm-linearized Q-line bundle L as in (iv), we mean that rL is an
actual Gm-linearized line bundle for some r œ Z>0 that is not part of the
data. The isomorphism in (v) then means (X , rL1) ƒ (X, rL).

ANNALES DE L’INSTITUT FOURIER



UNIFORM K-STABILITY 763

We say that (X , L) is ample, semiample, . . . (resp. normal, S1, . . . ) when
L (resp. X ) has the corresponding property.

A pull-back of a test configuration (X , L) for (X, L) is a test configuration
(X Õ, LÕ) where X Õ dominates X and LÕ is the pull-back of L.

For each c œ Q, the Gm-linearization of the Q-line bundle L may be
twisted by tc, in the sense that the Gm-linearization of rL is twisted by the
character trc with r divisible enough. The resulting test configuration can
be identified with (X , L + cX0).

If (X , L1) and (X , L2) are test configurations for (X, L1) and (X, L2),
respectively, and c1, c2 œ Q>0, then (X , c1L1 + c2L2) is a test configuration
for (X, c1L1 + c2L2).

If (X , L) is a test configuration of (X, OX), then there exists r œ Z>0
and a Cartier divisor D on X supported on X0 such that rL = OX (D).

Example 2.3. — Every Gm-action on X induces a diagonal Gm-action
on X◊A1, thereby defining a product test configuration X for X. Similarly,
a Gm-linearization of rL for some r > 1 induces a product test configuration
(X , L) for (X, L), which is simply (X, L) ◊A1 with diagonal action of Gm.

We denote by XA1 (resp. (XA1 , LA1) the product test configuration in-
duced by the trivial Gm-action on X (resp. (X, L)).

Example 2.4. — The deformation to the normal cone of a closed sub-
scheme Z µ X is the blow-up fl : X æ XA1 along Z ◊ {0}. Thus X is a test
configuration dominating XA1 . By [42, Chapter 5], its central fiber splits
as X0 = E + F , where E = fl≠1(Z ◊ {0}) is the exceptional divisor and F
is the strict transform of X ◊ {0}, which is isomorphic to the blow-up of
X along Z.

Example 2.5. — More generally we can blow up any Gm-invariant ideal
a on X ◊A1 supported on the central fiber. We discuss this further in §2.6.

2.1. Scheme theoretic features

Recall that a scheme Z satisfies Serre’s condition Sk i�

depth OZ,› > min{codim ›, k} for every point › œ Z.

In particular, Z is S1 i� it has no embedded points. While we will not use
it, one can show that Z is S2 i� it has no embedded points and satisfies
the Riemann extension property across closed subsets of codimension at
least 2.
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On the other hand, Z is regular in codimension k (Rk for short) i� OZ,›

is regular for every › œ X of codimension at most k. Equivalently Z is Rk

i� its singular locus has codimension greater than k. Note that Z is R0 i�
it is generically reduced.

Serre’s criterion states that Z is normal i� it is R1 and S2. Similarly, Z
is reduced i� it is R0 and S1 (in other words, i� Z is generically reduced
and without embedded points).

Proposition 2.6. — Let X be a test configuration for X.

(i) X is reduced i� so is X.
(ii) X is S2 i� X is S2 and X0 is S1 (i.e. without embedded points).
(iii) If X is R1 and X0 is generically reduced (that is, ‘without multiple

components’), then X is R1.
(iv) If X is normal and X0 is reduced, then X is normal.
(v) Every irreducible component Y (with its reduced structure) of X

is a test configuration for a unique irreducible component Y of X.
Further, the multiplicities of X along Y and those of X along Y
are equal.

(vi) X is a variety i� so is X.

Recall that the multiplicity of X along Y is defined as the length of OX

at the generic point of Y .

Proof. — The flatness of fi : X æ A1 implies that X0 is Cartier divisor
and that every associated (i.e. generic or embedded) point of X belongs to
X \X0 (cf. [44, Proposition III.9.7]). The proposition is a simple consequence
of this fact and of the isomorphism X \ X0 ƒ X ◊ (A1 \ {0}).

More specifically, since A1 \ {0} is smooth, X \ X0 is Rk (resp. Sk) i� X
is. Since X0 is a Cartier divisor, we also have

depth OX0,› = depth OX ,› ≠ 1

for each › œ X0, so that X is Sk i� X is Sk and X0 is Sk≠1.
It remains to show that X0 being generically reduced and X being R1

imply that X is R1. But every codimension one point › œ X either lies in
the open subset X \X0, in which case X is regular at ›, or is a generic point
of the Cartier divisor X0. In the latter case, the closed point of Spec OX ,›

is a reduced Cartier divisor; hence OX ,› is regular.
Now, X \ X0 is Zariski dense in X since X0 is a Cartier divisor. Hence

X is isomorphic to X ◊ A1 at each generic point, and (v) easily follows.
Finally, (vi) is a consequence of (i) and (v). ⇤

ANNALES DE L’INSTITUT FOURIER



UNIFORM K-STABILITY 765

2.2. Compactification

For many purposes it is convenient to compactify test configurations.
The following notion provides a canonical way of doing so.

Definition 2.7. — The compactification X̄ of a test configuration X
for X is defined by gluing together X and X ◊ (P1 \ {0}) along their
respective open subsets X \ X0 and X ◊ (A1 \ {0}), which are identified
using the canonical Gm-equivariant isomorphism X \ X0 ƒ X ◊ (A1 \ {0}).

The compactification comes with a Gm-equivariant flat morphism X̄ æ
P1, still denoted by fi. By construction, fi≠1(P1 \ {0}) is Gm-equivariantly
isomorphic to XP1\{0} over P1 \ {0}.

Similarly, a test configuration (X , L) for (X, L) admits a compactification
(X̄ , L̄), where L̄ is a Gm-linearized Q-line bundle on X̄ . Note that L̄ is
relatively (semi)ample i� L is.

Example 2.8. — When X is the product test configuration defined by
a Gm-action on X, the compactification X̄ æ P1 may be alternatively
described as the locally trivial fiber bundle with typical fiber X associated
to the principal Gm-bundle A2 \ {0} æ P1, i.e.

X̄ =
!
(A2 \ {0}) ◊ X

"
/Gm

with Gm acting diagonally. Note in particular that X̄ is not itself a product
in general. For instance, the Gm-action t · [x : y] = [tdx : y] on X = P1

gives rise to the Hirzebruch surface X̄ ƒ P (OP1 ü OP1(d)).

2.3. Ample test configurations and one-parameter subgroups

Let (X, L) be a polarized projective scheme. Fix r > 1 such that rL is
very ample, and consider the corresponding closed embedding X Òæ PV ú

with V := H0(X, rL).
Every one-parameter subgroup (1-PS for short) fl : Gm æ PGL(V ) in-

duces a test configuration X for X, defined as the schematic closure in
PV ú ◊ A1 of the image of the closed embedding X ◊ Gm Òæ PV ú ◊ Gm

mapping (x, t) to (fl(t)x, t). In other words, X0 is defined as the ‘flat limit’
as t æ 0 of the image of X under fl(t), cf. [44, Proposition 9.8]. By Propo-
sition 2.6, the schematic closure is simply given by the Zariski closure when
X is reduced.
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If we are now given fl : Gm æ GL(V ), then OX (1) is Gm-linearized,
and we get an ample test configuration (X , L) for (X, L) by setting L :=
1
r OX (1).

Conversely, every ample test configuration is obtained in this way, as
was originally pointed out in [73, Proposition 3.7]. Indeed, let (X , L) be an
ample test configuration, and pick r > 1 such that rL is (relatively) very
ample. The direct image V := fiúOX (rL) under fi : X æ A1 is torsion-free
by flatness of fi, and hence a Gm-linearized vector bundle on A1 with an
equivariant embedding X Òæ P(Vú) such that rL = OX (1).

By Proposition 1.3, V is Gm-equivariantly isomorphic to V ◊ A1 for a
certain Gm-action fl : Gm æ GL(V ), and it follows that (X , L) is the ample
test configuration attached to fl.

2.4. Trivial and almost trivial test configurations

The normalization ‹ : ÂX æ X of a (possibly non-reduced) scheme X
is defined as the normalization of the reduction Xred of X. Denoting by
Xred =

t
– X– the irreducible decomposition, we have ÂX =

‡
–

ÂX–, the
disjoint union of the normalizations ÂX– æ X–.

If L is a Q-line bundle and L̃ := ‹úL, we call ( ÂX, L̃) the normalization of
(X, L). If L is ample, then so is L̃ (cf. [43, §4]). The normalization ( ÂX , L̃)
of a test configuration (X , L) is similarly defined (the flatness of ÂX æ A1

being a consequence of [44, Proposition III.9.7]), and is a test configuration
for ( ÂX, L̃). By Proposition 2.6, we have ÂX =

‡
–

ÂX – with ( ÂX –, L̃–) a test
configuration for ( ÂX–, L̃–).

Definition 2.9. — A test configuration (X , L) for (X, L) is trivial if
X = XA1 . We say that (X , L) is almost trivial if the normalization ÂX – of
each top-dimensional irreducible component X – is trivial.

Note that (almost) triviality does not a priori bear on L. However, we
have:

Lemma 2.10. — A test configuration (X , L) is almost trivial i� for each
top-dimensional irreducible component X– of X, the corresponding ir-
reducible component ÂX – of the normalization of X satisfies ( ÂX –, L̃– +
c–

ÂX –
0 ) = ( ÂX–

A1 , L̃–
A1) for some c– œ Q.

Proof. — We may assume that X (and hence X) is normal and irre-
ducible. Replacing L with L ≠ LA1 , we may also assume that L = OX ,
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and we then have L = D for a unique Q-Cartier divisor D supported on
X0. If (X , L) is almost trivial, then X = XA1 , and X0 = X ◊ {0} is thus
irreducible. It follows that D is a multiple of X0; hence the result. ⇤

The next result shows that the current notion of almost triviality is
compatible with the one introduced in [64, 75].

Proposition 2.11. — Assume that L is ample, and let (X , L) be an
ample test configuration for (X, L).

(i) If X is normal, then (X , L) is almost trivial i� XA1 dominates X .
(ii) If X is reduced and equidimensional, then (X , L) is almost trivial

i� the canonical birational map XA1 99K X is an isomorphism in
codimension one.

Proof. — Consider first the case where X is normal and irreducible, and
assume that XA1 99K X is an isomorphism in codimension one. The strict
transform LÕ of L (viewed as a Q-Weil divisor class) on XA1 coincides with
LA1 outside X ◊{0}. The latter being irreducible, we thus have LÕ = LA1 +
cX ◊{0}. This shows that LÕ is (Q-Cartier and) relatively ample. Since the
normal varieties XA1 and X are isomorphic outside a Zariski closed subset of
codimension at least 2, we further have H0(X , mL) ƒ H0(XA1 , mLÕ) for all
m divisible enough, and we conclude by ampleness that (X , L) ƒ (XA1 , LÕ)
is trivial.

We now treat the reduced case, as in (ii). Observe first that XA1 is regular
at each generic point of X ◊{0}, because X is regular in codimension zero,
being reduced. As a result, ÂXA1 æ XA1 is an isomorphism in codimension
one.

Now assume that XA1 99K X is an isomorphism in codimension one.
Then X is isomorphic to XA1 at each generic point › of X0. By the previ-
ous observation, X is regular at ›, so that ÂX æ X is an isomorphism at
each generic point of ÂX0. The same therefore holds for ÂX 99K ÂXA1 , which
means that ÂX is almost trivial. Applying the first part of the proof to each
irreducible component of ÂX shows that ÂX = ÂXA1 .

Assume conversely that (X , L) is almost trivial, i.e. ÂX = ÂXA1 . Since
ÂX æ A1 factors through X æ A1 and ÂXA1 æ XA1 is an isomorphism

in codimension one, we see that the coordinate t on A1 is a uniformizing
parameter on X at each generic point of X0, and it follows easily that
X 99K XA1 is an isomorphism in codimension one.

Finally, (i) is a consequence of (ii). ⇤
At the level of one-parameter subgroups, almost triviality admits the

following simple characterization, which completes [64, Proposition 3.5].
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Proposition 2.12. — Assume that (X, L) is a polarized normal variety,
and pick r > 1 with rL very ample. Let (si) be a basis of H0(X, rL), pick
integers

a1 = · · · = ap < ap+1 6 · · · 6 aNr ,

and let fl : Gm æ GL(H0(X, rL)) be the 1-parameter subgroup such that
fl(t)si = taisi. The test configuration (X , L) defined by fl is then almost
trivial i�

u
16i6p(si = 0) = ÿ in X.

This recovers the key observation of [59, §3.1] that almost trivial, non-
trivial test configurations always exist, and gives a simple explicit way to
construct them.

Proof. — The canonical rational map

„ : X ◊ A1 99K X Òæ PNr≠1 ◊ A1

is given by

„(x, t) = (fl(t)[si(x)], t) = ([taisi(x)], t)
= ([s1(x) : · · · : sp(x) : tap+1≠a1sp+1 : · · · : taNr ≠a1sNr (x)], t),

where aj ≠ a1 > 1 for j > p. By (i) of Proposition 2.11, (X , L) is almost
trivial i� „ extends to a morphism X ◊A1 æ PNr≠1 ◊A1, and this is clearly
the case i�

u
16i6p(si = 0) = ÿ. ⇤

2.5. Test configurations and filtrations

By the reverse Rees construction of §1.2, every test configuration (X , L)
for (X, L) induces a Z-filtration of the graded algebra

R(X, rL) :=
n

mœN
H0(X, mrL)

for r divisible enough. More precisely, for each r such that rL is a line
bundle, we define a Z-filtration on R(X, rL) by letting F ⁄H0(X, mrL) be
the (injective) image of the weight-⁄ part H0(X , rmL)⁄ of H0(X , mrL)
under the restriction map

H0(X , mrL) æ H0(X , mrL)t=1 = H0(X, mrL).

Alternatively, we have

(2.1) F ⁄H0(X, mrL) =
)

s œ H0(X, mrL) | t≠⁄s̄ œ H0(X , mrL)
*

where s̄ œ H0(X \ X0, mrL) denotes the Gm-invariant section defined by
s œ H0(X, mrL).
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As a direct consequence of the projection formula, we get the following
invariance property.

Lemma 2.13. — Let (X , L) be a test configuration, and let (X Õ, LÕ) be
a pull-back of (X , L) such that the corresponding morphism µ : X Õ æ X
satisfies µúOX Õ = OX . Then (X , L) and (X Õ, LÕ) define the same filtration
on R(X, rL).

Note that µúOX Õ = OX holds automatically when X (and hence X) is
normal, by Zariski’s main theorem.

For later use, we also record the following direct consequence of the Gm-
equivariant isomorphism (1.2).

Lemma 2.14. — Let (X , L) be a test configuration, with projection
fi : X æ A1. For each m with mL a line bundle, the multiplicities of the
Gm-module fiúOX (mL)0 satisfy

dim (fiúOX (mL)0)⁄ = dim F ⁄H0(X, mL)/F ⁄+1H0(X, mL)

for all ⁄ œ Z. In particular, the weights of fiúOX (mL)0 coincide with the
successive minima of F •H0(X, mL).

Proposition 2.15. — Assume L is ample. Then the above construc-
tion sets up a one-to-one correspondence between ample test configurations
for (X, L) and finitely generated Z-filtrations of R(X, rL) for r divisible
enough.

Proof. — When (X , L) is an ample test configuration, the Z-filtration it
defines on R(X, rL) is finitely generated in the sense of Definition 1.1, since

n

mœN

A
n

⁄œZ
t≠⁄F ⁄H0(X, mrL)

B
= R(X , rL)

is finitely generated over k[t]. Conversely, let F • be a finitely generated
Z-filtration of R(X, rL) for some r. Replacing r with a multiple, we may
assume that the graded k[t]-algebra

n

mœN

A
n

⁄œZ
t≠⁄F ⁄H0(X, mrL)

B

is generated in degree m = 1, and taking the Proj over A1 defines an
ample test configuration for (X, rL), hence also one for (X, L). Using §1.2,
it is straightforward to see that the two constructions are inverse to each
other. ⇤
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Still assuming L is ample, let (X , L) be merely semiample. The Z-
filtration it defines on R(X, rL) is still finitely generated, as

n

mœN

A
n

⁄œZ
t≠⁄F ⁄H0(X, mrL)

B
= R(X , rL)

is finitely generated over k[t].

Definition 2.16. — The ample model of a semiample test configura-
tion (X , L) is defined as the unique ample test configuration (Xamp, Lamp)
corresponding to the finitely generated Z-filtration defined by (X , L) on
R(X, rL) for r divisible enough.

Ample models admit the following alternative characterization.

Proposition 2.17. — The ample model (Xamp, Lamp) of a semiample
test configuration (X , L) is the unique ample test configuration such that:

(i) (X , L) is a pull-back of (Xamp, Lamp);
(ii) the canonical morphism µ : X æ Xamp satisfies µúOX = OXamp .

Note that (ii) implies that Xamp is normal whenever X (and hence X)
is.

Proof. — Choose r > 1 such that rL is a globally generated line bundle.
By Proposition 1.3, the vector bundle fiúOX (rL) is Gm-equivariantly trivial
over A1, and we thus get an induced Gm-equivariant morphism f : X æ
PN
A1 over A1 for some N with the property that fúO(1) = rL. The Stein

factorization of f thus yields an ample test configuration (X Õ, LÕ) satisfying
(i) and (ii). By Lemma 2.13, these properties guarantee that (X , L) and
(X Õ, LÕ) induce the same Z-filtration on R(X, rL), and hence (X Õ, LÕ) =
(Xamp, Lamp) by Proposition 2.15. ⇤

2.6. Flag ideals

In this final section, we discuss (a small variant of) the flag ideal point
of view of [61, 63]. We assume that X is normal, and use the following
terminology.

Definition 2.18. — A determination of a test configuration X for X
is a normal test configuration X Õ dominating both X and XA1 .

Note that a determination always exists: just pick X Õ to be the normal-
ization of the graph of the canonical birational map X 99K XA1 .
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Similarly, a determination of a test configuration (X , L) for (X, L) is a
normal test configuration (X Õ, LÕ) such that X Õ is a determination of X
and LÕ is the pull-back of L under the morphism X Õ æ X (i.e. (X Õ, LÕ) is a
pull-back of (X , L)). In this case, denoting by fl : X Õ æ XA1 the canonical
morphism, we have LÕ = flúLA1 + D for a unique Q-Cartier divisor D
supported on X Õ

0, by the normality of X Õ.

Definition 2.19. — Let (X , L) be test configuration for (X, L). For
each m such that mL is a line bundle, we define the flag ideal of (X , mL)
as

a(m) := flúOX Õ(mD),

viewed as a Gm-invariant, integrally closed fractional ideal of the normal
variety XA1 .

By Lemma 2.20 below, a(m) is indeed independent of the choice of a
determination. In particular, a(m) is also the flag ideal of (X Õ, mLÕ) for
every normal pull-back (X Õ, LÕ) of (X , L).

Since a(m) is a Gm-invariant fractional ideal on XA1 that is trivial outside
the central fiber, it is of the form

(2.2) a(m) =
ÿ

⁄œZ
t≠⁄a(m)

⁄

where a(m)
⁄ µ OX is a non-increasing sequence of integrally closed ideals on

X with a(m)
⁄ = 0 for ⁄ ∫ 0 and a(m)

⁄ = OX for ⁄ π 0 (see Proposition 2.21
below for the choice of sign).

Lemma 2.20. — The flag ideal a(m) is independent of the choice of a
determination (X Õ, LÕ).

Proof. — Let (X ÕÕ, LÕÕ) be another determination of (X , L) (and recall
that X Õ and X ÕÕ are normal, by definition). Since any two determinations
of (X , L) are dominated by a third one, we may assume that X ÕÕ dominates
X Õ. Denoting by µÕ : X ÕÕ æ X Õ the corresponding morphism, the fractional
ideal attached to (X ÕÕ, LÕÕ) is then given by

(fl ¶ µÕ)úOX ÕÕ(mµÕúD).

By the projection formula we have

µÕ
úOX ÕÕ(mµÕúD) = OX Õ(mD) ¢ µÕ

úOX ÕÕ ,

and we get the desired result since µÕ
úOX ÕÕ = OX Õ by normality of X Õ. ⇤
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Proposition 2.21. — Let (X , L) be a normal, semiample test config-
uration for (X, L). For each m with mL a line bundle, let F •H0(X, mL)
be the corresponding Z-filtration and a(m) the flag ideal of (X , mL). Then,
for m su�ciently divisible and ⁄ œ Z, the OX -module OX(mL) ¢ a(m)

⁄ is
globally generated and

F ⁄H0(X, mL) = H0
1

X, OX(mL) ¢ a(m)
⁄

2
.

In particular, the successive minima of F •H0(X, mL) (see §1) are ex-
actly the ⁄ œ Z with a(m)

⁄ ”= a(m)
⁄+1, with the largest one being ⁄(m)

max =
max

Ó
⁄ œ Z | a(m)

⁄ ”= 0
Ô

.

Proof. — Let (X Õ, LÕ) be a determination of (X , L), i.e. a pull-back such
that X Õ is normal and dominates XA1 . By normality of X , the morphism
µ : X Õ æ X satisfies µúOX Õ = OX , and the projection formula therefore
shows that (X Õ, LÕ) and (X , L) define the same Z-filtration of R(X, rL) for
r divisible enough. Since a(m) is also the flag ideal of (X Õ, mLÕ), we may
assume to begin with that X dominates XA1 . Denoting by fl : X æ XA1

the canonical morphism, we then have L = flúLA1 + D and
a(m) = flúOX (mD),

and hence
flúOX(mL) = OX(mLA1) ¢ a(m)

by the projection formula. As a consequence, H0(XA1 , OXA1 (mLA1) ¢
t≠⁄a(m)

⁄ ) is isomorphic to the weight-⁄ part of H0(X , mL), and the first
point follows.

For m divisible enough, mL is globally generated on X , and hence so
is flúOX (mL) on XA1 . Decomposing into weight spaces thus shows that
OX(mL) ¢ a(m)

⁄ is globally generated on X for all ⁄ œ Z. We therefore
have a(m)

⁄ ”= a(m)
⁄+1 i� F ⁄H0(X, mL) ”= F ⁄+1H0(X, mL); hence the second

point. ⇤

3. Duistermaat–Heckman measures and Donaldson–Futaki
invariants

In this section, (X, L) is a polarized(2) scheme over k. Our goal is to
provide an elementary, self-contained treatment of Duistermaat–Heckman
measures and Donaldson–Futaki invariants. Most arguments are inspired
by those in [29, 59, 62, 73, 82].
(2) As before we allow L to be an (ample) Q-line bundle on X.
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3.1. The case of a Gm-action

First assume that L is an ample line bundle (as opposed to a Q-line
bundle) and that (X, L) is given a Gm-action. For each d œ N, the principal
Gm-bundle Ad+1 \ {0} æ Pd induces a projective morphism fid : Xd æ Pd,
locally trivial in the Zariski topology and with typical fiber X, as well
as a relatively ample line bundle Ld on Xd. For d = 1, we recover the
compactified product test configuration, cf. Example 2.8.

Following [29, p. 470], we use this construction to prove the following
key result, which is often claimed to follow from ‘general theory’ in the
K-stability literature. Another proof, relying on the equivariant Riemann–
Roch theorem, is provided in Appendix B.

Theorem 3.1. — Let (X, L) be a polarized scheme with a Gm-action,
and set n = dim X. For each d, m œ N, the finite sum

ÿ

⁄œZ

⁄d

d! dim H0(X, mL)⁄

is a polynomial function of m ∫ 1, of degree at most n + d. The coe�cient
of mn+d is further equal to (Ln+d

d )/(n + d)!.

Here we write as usual (Ln+d
d ) = c1(Ld)n+d·[Xd], with [Xd] œ CHn+d(Xd)

the fundamental class.
Granting this result for the moment, we get as a first consequence:
Corollary 3.2. — Let wm œ Z be the weight of the Gm-action on the

determinant line det H0(X, mL), and Nm := h0(X, mL). Then we have an
asymptotic expansion

(3.1) wm

mNm
= F0 + m≠1F1 + m≠2F2 + . . .

with Fi œ Q.
Indeed, wm =

q
⁄œZ ⁄ dim H0(X, mL)⁄ is a polynomial of degree at most

n + 1 by Theorem 3.1, while Nm is a polynomial of degree n by Riemann–
Roch.

Definition 3.3. — The Donaldson–Futaki invariant DF(X, L) of the
polarized Gm-scheme (X, L) is defined as

DF(X, L) = ≠2F1.

The factor 2 in the definition is here just for convenience, while the
sign is chosen so that K-semistability will later correspond to DF > 0,
cf. Definition 3.11.

As a second consequence of Theorem 3.1, we will prove:
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Corollary 3.4. — The rescaled weight measures (cf. Definition 1.5)

µm := (1/m)úµH0(X,mL)

have uniformly bounded support, and converge weakly to a probability
measure DH(X,L) on R as m æ Œ. Its moments are further given by

(3.2)
⁄

R
⁄d DH(X,L)(d⁄) =

3
n + d

n

4≠1 (Ln+d
d )

(Ln)
for each d œ N.

Definition 3.5. — We call DH(X,L) the Duistermaat–Heckman mea-
sure of the polarized Gm-scheme (X, L).

For any r œ Z>0, the Gm-action on (X, L) induces an action on (X, rL).
It follows immediately from the definition that DH(X, rL) = rúDH(X, L)
and DF(X, rL) = DF(X, L). This allows us to define the Duistermaat–
Heckman measure and Donaldson–Futaki invariant for Gm-actions on po-
larized schemes (X, L), where L is an (ample) Q-line bundle.

Definition 3.6. — For any polarized scheme (X, L) with a Gm-action,
we define

DH(X, L) := (1/r)úDH(X, rL) and DF(X, L) := DF(X, rL)

for any su�ciently divisible r œ Z>0.

Proof of Theorem 3.1. — Let fid : Xd æ Pd be the fiber bundle defined
above. The key observation is that the Gm-decomposition H0(X, mL) =m

⁄œZ H0(X, mL)⁄ implies that

(fid)úOXd(mLd) =
n

⁄œZ
H0(X, mL)⁄ ¢ OPd(⁄).

By relative ampleness of Ld, the higher direct images of mLd vanish for
m ∫ 1; the Leray spectral sequence and the asymptotic Riemann–Roch
theorem (cf. [50, §1]) therefore yield

ÿ

⁄œZ
‰(Pd, OPd(⁄)) dim H0(X, mL)⁄ = ‰(Pd, (fid)úOXd(mLd))

= ‰(Xd, mLd) = (Ln+d
d )

(n + d)!m
n+d + O(mn+d≠1).

Now ‰(Pd, OPd(⁄)) = ⁄(⁄≠1)···(⁄≠d+1)
d! = ⁄d

d! + O(⁄d≠1), and we get the
result by induction on d. ⇤
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Proof of Corollary 3.4. — Since L is ample, R(X, L) is finitely gener-
ated. It follows that the weights of H0(X, mL) grow at most linearly with
m, which proves that µm has uniformly bounded support. Since µm is a
probability measure, it therefore converges to a probability measure i� the
moments

s
R ⁄dµm(d⁄) converge for each d œ N. We have, by definition,

⁄

R

⁄d

d! µm(d⁄) = 1
mdNm

ÿ

⁄œZ

⁄d

d! dim H0(X, mL)⁄

with Nm = h0(X, mL). Theorem 3.1 shows that

ÿ

⁄œZ

⁄d

d! dim H0(X, mL)⁄ = (Ln+d
d )

(n + d)!m
n+d + O(mn+d≠1),

while

Nm = (Ln)
n! mn + O(mn≠1);

hence the result. ⇤

Remark 3.7. — In order to explain the terminology, consider the case
where X is a smooth complex variety with an S1-invariant hermitian metric
on L with positive curvature form Ê. We then get a Hamiltonian function
H : X æ R for the S1-action on the symplectic manifold (X, Ê). The
Duistermaat–Heckman measure as originally defined in [31] is Hú(Ên), but
this is known to coincide (up to normalization of the mass) with DH(X,L) as
defined above (see for instance [83, Theorem 9.1] and [8, Proposition 4.1]).
See also [9, 83, 45] for an analytic approach to Duistermaat–Heckman mea-
sures via geodesic rays.

Remark 3.8. — When X is a variety, the existence part of Corollary 3.4
is a rather special case of [68], which also shows that DH(X,L) can be written
as a linear projection of the Lebesgue measure of some convex body. This
implies in particular that DH(X,L) is either absolutely continuous or a point
mass. Its density is claimed to be piecewise polynomial on [68, p. 1], but
while this is a classical result of Duistermaat and Heckman when X is a
smooth complex variety as in Remark 3.7, we were not able to locate a
proof in the literature when X is singular. In particular, the proof of [19,
Proposition 3.4] is incomplete. Piecewise polynomiality will be established
in Theorem 5.10 below.

We gather here the first few properties of Duistermaat–Heckman mea-
sures.
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Proposition 3.9. — Let (X, L) be a polarized Gm-scheme of dimension
n, and set V = (Ln).

(i) Denote by (X, L(⁄)) the result of twisting the action on L by the
character t⁄. Then DH(X,L(⁄)) = ⁄ + DH(X,L).

(ii) If X– are the irreducible components of X (with their reduced
scheme structure), then

DH(X,L) =
ÿ

–

c–DH(X–,L|X– ),

where c– = m–
c1(L)n·[X–]
c1(L)n·[X] , with m– the multiplicity of X along

X–.

Note that c– > 0 i� X– has dimension n, and that
q

– c– = 1 since
[X] =

q
– m–[X–].

Proof. — Property (i) is straightforward. Since Xd æ Pd is locally
trivial, its irreducible components are of the form X–

d , with multiplicity
m–. It follows that [Xd] œ CHn(Xd) =

m
Z[X–

d ] decomposes as [Xd] =q
– m–[X–

d ]. Assertion (ii) is now a direct consequence of (3.2). ⇤

3.2. The case of a test configuration

We still denote by (X, L) a polarized scheme (where L is allowed to be
a Q-line bundle), but now without any a priori given Gm-action.

Definition 3.10. — Let (X , L) be an ample test configuration for
(X, L). We define the Duistermaat–Heckman measure DH(X ,L) and the
Donaldson–Futaki invariant DF(X , L) of (X , L) as those of the polarized
Gm-scheme (X0, L0).

Definition 3.11. — A polarized scheme (X, L) is K-semistable if
DF(X , L) > 0 for all ample test configurations (X , L). It is K-stable if
we further have DF(X , L) = 0 only when (X , L) is almost trivial in the
sense of Definition 2.9.

Proposition 3.12. — Let (X , L) be an ample test configuration for
(X, L), with Gm-equivariant projection fi : X æ A1 and compactification
(X̄ , L̄), and set V := (Ln).

(i) For each c œ Q, we have DH(X ,L+cX0) = DH(X ,L) + c.
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(ii) Let X– be the top-dimensional irreducible components of X (with
their reduced scheme structure), and m– be the multiplicity of X
along X–. Then

DH(X ,L) =
ÿ

–

c–DH(X –,L|X – ),

where X – is the irreducible component of X corresponding to X–,
and where c– = V ≠1m–c1(L)n · [X–].

(iii) The barycenter of the Duistermaat–Heckman measure satisfies

(3.3)
⁄

R
⁄ DH(X ,L)(d⁄) = (L̄n+1)

(n + 1)V

(iv) If X (and hence X) is normal, then

(3.4) DF(X , L) =
(KX̄ /P1 · L̄n)

V
+ S̄

(L̄n+1)
(n + 1)V

with S̄ := nV ≠1(≠KX · Ln≠1).

In (iv), KX and KX̄ /P1 = KX̄ ≠ fiúKP1 are understood as Weil divisor
classes on the normal schemes X and X̄ , respectively. This intersection
theoretic expression is originally due to [82, 62], see also [59].

Remark 3.13. — When X is smooth, k = C and L is a line bundle, S̄ is
the mean value of the scalar curvature S(Ê) of any Kähler form Ê œ c1(L)
(hence the chosen notation).

Proof of Proposition 3.12. — After passing to a multiple, we may assume
that L and L are line bundles. By flatness of X æ A1, the decomposition
[X] =

q
– m–[X–] in CHn(X ) implies [X0] =

q
– m–[X –

0 ], where X –
0 de-

notes the (possibly reducible) central fiber of X –. We now get (ii) as a
consequence of Proposition 3.9, which also implies (i).

We now turn to the proof of the last two points. By relative ampleness,
fiúOX̄ (mL̄) is a vector bundle on P1 of rank Nm = h0(mL) for m ∫ 1,
with fiber at 0 isomorphic to H0(X0, mL0). As a result, wm is the weight
of det fiúOX̄ (mL)0, and hence

wm = deg det fiúOX̄ (mL̄) = deg fiúOX̄ (mL̄),

since fiúOX̄ (mL̄) is Gm-equivariantly trivial away from 0 by construction
of the compactification. By the usual Riemann–Roch theorem on P1, we
infer

wm = ‰(P1, fiúOX̄ (mL̄)) ≠ Nm.
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By relative ampleness again, the higher direct images of mL vanish for
m divisible enough, and the Leray spectral sequence and the asymptotic
Riemann–Roch theorem give, as in the proof of Theorem 3.1,

wm = ‰(X̄ , mL̄) ≠ Nm = mn+1

(n + 1)! (L̄
n+1) + O(mn),

which yields (iii) since Nm = mn

n! V + O(mn≠1).
When X (and hence X̄ ) is normal, the two-term asymptotic Riemann–

Roch theorem on a normal variety (cf. Theorem A.1 in the appendix) yields

Nm = V
mn

n!

5
1 + S̄

2 m≠1 + O(m≠2)
6

,

and

wm = ≠Nm + (L̄n+1)
(n + 1)!m

n+1 ≠ (KX̄ · L̄n)
2n! mn + O(mn≠1)

= (L̄n+1)
(n + 1)!m

n+1 ≠
(KX̄ /P1 · L̄n)

2n! mn + O(mn≠1),

using that (fiúKP1 · L̄n) = ≠2V since deg KP1 = ≠2. The formula for
DF(X , L) in (iv) now follows from a straightforward computation. ⇤

3.3. Behavior under normalization

We now study the behavior of Duistermaat–Heckman measures and
Donaldson–Futaki invariants under normalization.

Recall that the normalization of the polarized scheme (X, L) is the nor-
mal polarized scheme ( ÂX, L̃) obtained by setting L̃ = ‹úL with ‹ : ÂX æ X
the normalization morphism. Similarly, the normalization of an ample test
configuration (X , L) for (X, L) is the ample test configuration ( ÂX , L̃) for
( ÂX, L̃) obtained by L̃ = ‹úL with ‹ : ÂX æ X the normalization morphism.

We first prove that Duistermaat–Heckman measures are invariant under
normalization, in the reduced case.

Theorem 3.14. — If X is reduced, then DH(X ,L) = DH( ÂX ,L̃) for every
ample test configuration (X , L) for (X, L).

Proof. — By Proposition 3.12(ii), after twisting the Gm-action on L by
t⁄ with ⁄ ∫ 1, we may assume µ := DH(X ,L) and µ̃ := DH( ÂX ,L̃) are
supported in R+. For m divisible enough, let

µm := (1/m)úµfiúOX (mL)0
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be the scaled weight measure of the Gm-module fiúOX (mL)0. Thus µm

converges weakly to µ by Proposition 3.12(i). By Lemma 1.6, the tail dis-
tribution of µm is given by

µm{x > ⁄} = 1
Nm

dim F Ám⁄ËH0(X, mL),

where F •H0(X, mL) is the Rees filtration induced by (X , L), and Nm =
H0(X, mL) = dim H0(X0, mL0) for m ∫ 1, by flatness and Serre vanishing.

Denoting by µ̃m and F •H0( ÂX, mL̃) the scaled weight measure and fil-
tration defined by ( ÂX , L̃), we similarly have

µ̃m{x > ⁄} = 1
Ñm

dim F Ám⁄ËH0( ÂX, mL̃).

Since X is reduced by Proposition 2.6, the canonical morphism OX æ
‹úO ÂX is injective, and the projection formula yields a Gm-equivariant
inclusion H0(X , mL) Òæ H0( ÂX , mL̃). For each ⁄ œ Z, we thus have
H0(X , mL)⁄ Òæ H0( ÂX , mL̃)⁄, and hence F ⁄H0(X, mL) Òæ F ⁄H0( ÂX, mL̃),
which implies

µ̃m{x > ⁄} > Ñm

Nm
µ{x > ⁄}.

Since X is reduced, ‹úO ÂX/OX is supported on a nowhere dense Zariski
closed subset, and hence

Ñm = h0( ÂX, mL̃) = h0(X, OX(mL) ¢ ‹úO ÂX) = Nm + O(mn≠1).

Since the weak convergence of probability measures µm æ µ implies (in
fact, is equivalent to) the a.e. convergence of the tail distributions, we
conclude

(3.5) µ̃{x > ⁄} > µ{x > ⁄}

for a.e. ⁄ œ R.
By Proposition 3.12(iii) and the projection formula, µ and µ̃ have the

same barycenter ⁄̄, and hence

(3.6)
⁄

R+

µ{x > ⁄}d⁄ =
⁄

R+

⁄ dµ = ⁄̄ =
⁄

R+

⁄ dµ̃ =
⁄

R+

µ̃{x > ⁄}d⁄

since µ and µ̃ are supported in R+. By (3.5), we thus have µ̃{x > ⁄} =
µ{x > ⁄} for a.e. ⁄ œ R, and hence µ̃ = µ (by taking for instance the
distributional derivatives), which concludes the proof. ⇤

Regarding Donaldson–Futaki invariants, we prove the following explicit
version of [73, Proposition 5.1] and [1, Corollary 3.9].
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Proposition 3.15. — Let (X , L) be an ample test configuration for
a polarized scheme (X, L). Let X Õ be another test configuration for X
dominating X , such that µ : X Õ æ X is finite, and set LÕ := µúL. Then

DF(X , L) = DF(X Õ, LÕ) + 2V ≠1
ÿ

E

mE (E · Ln) ,

where E ranges over the irreducible components of X0 contained in the sin-
gular locus of X and mE œ Nú is the length of the sheaf F := (µúOX Õ) /OX
at the generic point of E.

When X is normal, the result applies to the normalization of a test
configuration; hence

Corollary 3.16. — If X is normal, then (X, L) is K-semistable i�
DF(X , L) > 0 for all normal ample test configurations.

Proof of Proposition 3.15. — Let m be su�ciently divisible. Denoting
by wm and wÕ

m the Gm-weights of det H0(X0, mL0) and det H0(X Õ
0, mLÕ

0),
the proof of Proposition 3.12 yields

wÕ
m ≠ wm = ‰(X̄ Õ, mL̄Õ) ≠ ‰(X̄ , mL̄).

Since µ is finite, we have RqµúOX̄ Õ = 0 for all q > 1, and the Leray spectral
sequence gives

‰(X̄ Õ, mL̄Õ) = ‰
!
X̄ , OX (mL̄) ¢ µúOX̄ Õ

"
.

By additivity of the Euler characteristic in exact sequences and [50, §2],
we infer

wÕ
m ≠ wm = ‰

!
X̄ , OX̄ (mL̄) ¢ F

"

= mn

n!
ÿ

E

mE (E · Ln) + O(mn≠1),

which yields the desired result in view of Definition 3.3. ⇤

3.4. The logarithmic case

Assume that X is normal, let B be a boundary on X, and write K(X,B) :=
KX + B (see §1.5). Let L be an ample Q-line bundle on X. We then
introduce a log version of the ‘mean scalar curvature’ S̄ by setting

S̄B := nV ≠1 !
≠K(X,B) · Ln≠1"

.

If X is a normal test configuration for X, denote by B (resp. B̄) the Q-Weil
divisor on X (resp. X̄ ) obtained as the (component-wise) Zariski closure in
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X (resp. X̄ ) of the Q-Weil divisor B ◊ (A1 \ {0}) with respect to the open
embedding of X ◊ (A1 \ {0}) into X (resp. X̄ ). We then set

K(X ,B) := KX + B, K(X̄ ,B̄) := KX̄ + B̄,

and

K(X ,B)/A1 := K(X ,B) ≠ fiúKA1 , K(X̄ ,B̄)/P1 := K(X̄ ,B̄) ≠ fiúKP1 .

Note that these Q-Weil divisor (classes) may not be Q-Cartier in general.
The intersection theoretic formula for DF in Proposition 3.12 suggests the

following generalization for pairs (compare [66, Theorem 3.7], see also [30,
58]).

Definition 3.17. — Let B be a boundary on X. For each normal test
configuration (X , L) for (X, L), we define the log Donaldson–Futaki invari-
ant of (X , L) as

DFB(X , L) := V ≠1(KB
X̄ /P1 · L̄n) + S̄BV ≠1 (L̄n+1)

n + 1 ,

In view of Corollary 3.16, we may then introduce the following notion:

Definition 3.18. — A polarized pair ((X, B); L) is K-semistable if
DFB(X , L) > 0 for all normal ample test configurations. It is K-stable
if we further have DFB(X , L) = 0 only when (X , L) is trivial.

Note that ((X, B); L) is K-semistable (resp. K-stable) i� ((X, B); rL) is
K-semistable (resp. K-stable) for some (or, equivalently, any) r œ Z>0.

Remark 3.19. — Let X be a deminormal scheme, i.e. reduced, of pure
dimension n, S2 and with at most normal crossing singularities in codimen-
sion one, and let ‹ : ÂX æ X be the normalization. If KX is Q-Cartier, then
‹úKX = K ÂX + ÂB, where ÂB denotes the inverse image of the conductor,
and is a reduced Weil divisor on ÂX by the deminormality assumption. By
definition, X has semi-log canonical singularities (slc for short) if ( ÂX, ÂB) is
lc. (See [52, §5] for details.)

Now let L be an ample Q-line bundle on X, and let (X , L) be an
ample test configuration for (X, L), with normalization ( ÂX , L̃). In [62,
Proposition 3.8] and [63, §5], Odaka introduces the partial normalization
ÂX æ X Õ æ X by requiring that

OX Õ = O ÂX fl OX◊(A1\{0}).

We get this way an ample test configuration (X Õ, LÕ) for (X, L), with the
extra property that ÂX æ X Õ is an isomorphism over the generic points of
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X Õ
0, cf. [62, Lemma 3.9]. Arguing as in the proof of Proposition 3.15, we

may then check that
(3.7) DFÂB( ÂX , L̃) = DF(X Õ, LÕ) 6 DF(X , L).

This shows that (X, L) is K-semistable i� DFÂB( ÂX , L̃) > 0 for the normal-
ization ( ÂX , L̃) of every ample test configuration (X , L) for (X, L).

4. Valuations and test configurations

In what follows, X denotes a normal variety of dimension n, with function
field K = k(X). The function field of any test configuration for X is then
isomorphic to K(t). We shall relate valuations on K and K(t) from both
an algebraic and geometric point of view.

4.1. Restriction and Gauss extension

First consider a valuation w on K(t). We denote by r(w) its restriction
to K.

Lemma 4.1. — If w is an Abhyankar valuation, then so is r(w). If w is
divisorial, then r(w) is either divisorial or trivial.

Proof. — The first assertion follows from Abhyankar’s inequality (1.3).
Indeed, if w is Abhyankar, then tr. deg(w)+rat. rk(w) = n+1, so (1.3) gives
tr. deg(r(w)) + rat. rk(r(w)) > n. As the opposite inequality always holds,
we must have tr. deg(r(w)) + rat. rk(r(w)) = n, i.e. r(w) is Abhyankar.

We also have tr. deg(r(w)) 6 tr. deg(w), so if w is divisorial, then
tr. deg(r(w)) = n or tr. deg(r(w)) = n ≠ 1, corresponding to r(w) being
trivial or divisorial, respectively. ⇤

The restriction map r is far from injective, but we can construct a natural
one-sided inverse by exploiting the kú-action (or Gm-action) on K(t) =
k(XA1) defined by (a · f)(t) = f(a≠1t) for a œ kú and f œ K(t). In terms
of the Laurent polynomial expansion

(4.1) f =
ÿ

⁄œZ
f⁄t⁄

with f⁄ œ K, the kú-action on K(t) reads

(4.2) a · f =
ÿ

⁄œZ
a≠⁄f⁄t⁄.
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Lemma 4.2. — A valuation w on K(t) is kú-invariant i�

(4.3) w(f) = min
⁄œZ

(r(w)(f⁄) + ⁄w(t)) .

for all f œ K(t) with Laurent polynomial expansion (4.1). In particular,
r(w) is trivial i� w is the multiple of the t-adic valuation.

Proof. — In view of (4.2), it is clear that (4.3) implies kú-invariance.
Conversely let w be a kú-invariant valuation on K(t). The valuation prop-
erty of w shows that

w(f) > min
⁄œZ

(r(w)(f⁄) + ⁄w(t))

Set � := {⁄ œ Z | f⁄ ”= 0} and pick distinct elements aµ œ kú, µ œ � (recall
that k is algebraically closed, and hence infinite). The Vandermonde matrix
(a⁄

µ)⁄,µœ� is then invertible, and each term f⁄t⁄ with ⁄ œ � may thus
be expressed as k-linear combination of (aµ · f)µœ�. Using the valuation
property of w again, we get for each ⁄ œ �

r(w)(f⁄) + ⁄w(t) = w
!
f⁄t⁄

"
> min

µœ�
w(aµ · f) = w(f),

where the right-hand equality holds by kú-invariance of w. The result fol-
lows. ⇤

Definition 4.3. — The Gauss extension of a valuation v on K is the
valuation G(v) on K(t) defined by

G(v)(f) = min
⁄œZ

(v(f⁄) + ⁄)

for all f with Laurent polynomial expansion (4.1).

Note that r(G(v)) = v for all valuations v on K, while a valuation w on
K(t) satisfies w = G(r(w)) i� it is kú-invariant and w(t) = 1, by Lemma 4.2.
Further, the Gauss extension of v is the smallest extension w with w(t) = 1.

4.2. Geometric interpretation

We now relate the previous algebraic considerations to test configura-
tions. For each test configuration X for X, the canonical birational map
X 99K XA1 yields an isomorphism k(X ) ƒ K(t). When X is normal, every
irreducible component E of X0 therefore defines a divisorial valuation ordE

on K(t).
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Definition 4.4. — Let X be a normal test configuration for X. For
each irreducible component E of X0, we set vE := b≠1

E r(ordE) with bE =
ordE(X0) = ordE(t). We say that E is nontrivial if it is not the strict
transform of X ◊ {0}.

Since E is preserved under the Gm-action on X , ordE is kú-invariant,
and we infer from Lemma 4.1 and Lemma 4.2:

Lemma 4.5. — For each irreducible component E of X0, we have
b≠1

E ordE = G(vE), i.e.

b≠1
E ordE(f) = min

⁄
(vE(f⁄) + ⁄) .

in terms of the Laurent polynomial expansion (4.1). Further, E is nontrivial
i� vE is nontrivial, and hence a divisorial valuation on X.

By construction, divisorial valuations on X of the form vE have a value
group �v = v(Kú) contained in Q. Thus they are of the form vE = c ordF

with c œ Q>0 and F a prime divisor on a normal variety Y mapping
birationally to X. Conversely, we prove:

Theorem 4.6. — A divisorial valuation v on X is of the form v = vE

for a non-trivial irreducible component E of a normal test configuration i�
�v is contained in Q. In this case, we may recover bE as the denominator
of the generator of �v.

Lemma 4.7. — A divisorial valuation w on K(t) satisfying w(t) > 0 is
kú-invariant i� w = c ordE with c > 0 and E an irreducible component of
the central fiber X0 of a normal test configuration X of X.

Proof. — If E is an irreducible component of X0, then ordE(t) > 0, and
the Gm-invariance of E easily implies that ordE is kú-invariant. Conversely,
let w be a kú-invariant divisorial valuation on K(t) satisfying w(t) > 0. The
center › on X ◊ A1 is then Gm-invariant and contained in X ◊ {0}. If we
let Y1 be the test configuration obtained by blowing-up the closure of › in
X◊A1, then the center ›1 of w on Y1 is again Gm-invariant by kú-invariance
of w, and the blow-up Y2 of the closure of ›1 is thus a test configuration.
Continuing this way, we get a tower of test configurations

X ◊ A1 Ω Y1 Ω Y2 Ω · · · Ω Yi Ω . . .

Since w is divisorial, a result of Zariski (cf. [53, Lemma 2.45]) guarantees
that the closure of the center ›i of w on Yi has codimension 1 for i ∫ 1.
We then have w = c ordE with E the closure of the center of w on the
normalization X of Yi. ⇤
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Proof of Theorem 4.6. — Let E be a non-trivial irreducible component
of X0 for a normal test configuration X of X. Since the value group of ordE

on k(X ) = K(t) is Z, the value group of vE on k(X) = K is of the form
c

bE
Z for some positive integer c. Lemma 4.5 yields Z = cZ + bEZ, so that

c and bE are coprime.
Conversely, let v be a divisorial valuation on X with �v = c

bZ for some
coprime positive integers b, c. Then w := bG(v) is a kú-invariant divisorial
valuation on K(t) with value group cZ + bZ = Z. By Lemma 4.7, we may
thus find a normal test configuration X for X and a non-trivial irreducible
component E of X0 such that ordE = w. We then have bE = w(t) = b, and
hence v = vE . ⇤

4.3. Rees valuations and deformation to the normal cone

Our goal in this section is to relate the Rees valuations of a closed sub-
scheme Z µ X to the valuations associated to the normalization of the
deformation to the normal cone of Z, see Example 2.4.

Theorem 4.8. — Let Z µ X be a closed subscheme, X the deformation
to the normal cone of Z, and ÂX its normalization, so that µ : ÂX æ XA1 is the
normalized blow-up of Z◊{0}. Then the Rees valuations of Z coincide with
the valuations vE , where E runs over the non-trivial irreducible components
of ÂX0.

In other words, the Rees valuations of Z are obtained by restricting to
k(X) µ k(X)(t) those of Z ◊ {0}.

If we denote by E0 the strict transform of X ◊ {0} in X , one can show
that X \ E0 is isomorphic to the Spec over X of the extended Rees algebra
OX [t≠1a, t], where a is the ideal of Z, cf. [42, pp. 87–88]. We thus see that
Theorem 4.8 is equivalent to the well-known fact that the Rees valuations of
a coincide with the restrictions to X of the Rees valuations of the principal
ideal (t) of the extended Rees algebra (see for instance [47, Exercise 10.5]).
We nevertheless provide a proof for the benefit of the reader.

Lemma 4.9. — Let b =
q

⁄œN b⁄t⁄ be a Gm-invariant ideal of X ◊ A1,
and let

b =
ÿ

⁄œN
(b)⁄t⁄

be its integral closure. For each ⁄ we then have b⁄ µ (b)⁄, with equality
for ⁄ = 0.
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Proof. — Each f œ b⁄ satisfies a monic equation fd +
qd

j=1 bjfd≠j = 0
with bj œ bj

⁄. Then

(t⁄f)d +
dÿ

j=1
(t⁄jbj)(t⁄f)d≠j = 0

with t⁄jbj œ (t⁄b⁄)j µ bj . It follows that t⁄f œ b, which proves the first
assertion.

Conversely, we may choose l ∫ 1 such that the Gm-invariant ideal c := bl

satisfies b · c = b · c (cf. proof of Lemma 1.8). Write c =
q

⁄>⁄0
c⁄t⁄ with

c⁄0 ”= 0. Then (b)0 ·c⁄0t⁄0 is contained in the weight ⁄0 part of b ·c, which is
equal to (b0 · c⁄0)t⁄0 . We thus have (b)0 · c⁄0 µ b0 · c⁄0 , and hence (b)0 µ b0
by the determinant trick. ⇤

Proof of Theorem 4.8. — Let a be the ideal defining Z. By Theorem 1.10,
we are to check that:

(i) am =
u

E {f œ OX | vE(f) > m} for all m œ N;
(ii) no E can be omitted in (i).

Set D := µ≠1(Z ◊ {0}). Since ordE is kú-invariant, Lemma 4.2 yields

ordE(D) = ordE(a + (t)) = min{r(ordE)(a), bE}.

We claim that we have in fact ordE(D) = bE . As recalled in Example 2.4,
the blow-up fl : X æ X ◊A1 along Z ◊{0} satisfies X0 = µ≠1(Z ◊{0})+F ,
with F the strict transform of X ◊ {0}. Denoting by ‹ : ÂX æ X the nor-
malization morphism, we infer ÂX0 = D +‹úF , and hence bE = ordE( ÂX0) =
ordE(D).

This shows in particular that the valuations b≠1
E ordE are the Rees valu-

ations of a + (t). We also get that vE(a) = b≠1
E r(ordE)(a) > 1, and hence

am µ
u

E {f œ OX | vE(f) > m}. Conversely, assume f œ OX satisfies
vE(f) > m for all E. Since the b≠1

E ordE are the Rees valuations of a+ (t),
applying Theorem 1.10 on X ◊ A1 yields f œ (a + (t))m. Since am is the
weight 0 part of (a + (t))m, Lemma 4.9 yields f œ am, and we have thus
established (i).

Finally, let S be any finite set of kú-invariant valuations w on K(t) such
that

am =
‹

wœS

{f œ OX | r(w)(f) > m}

for all m œ N. We claim that we then have

(a + (t))m =
‹

wœS

{f œ OX | w(f) > m}
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for all m > N. This will prove (ii), by the minimality of the set of Rees
valuations of a + (t). So assume that f œ OX satisfies w(f) > m for all
w œ S. In terms of the Laurent expansion (4.1), we get r(w)(f⁄)+⁄ > m for
all ⁄, w, and hence f⁄ œ am≠⁄ by assumption. By Lemma 4.9, we conclude,
as desired, that f œ (a + (t))m. ⇤

Corollary 4.10. — Let (X, L) be a normal polarized variety and Z µ
X a closed subscheme. Then there exists a normal, ample test configura-
tion (X , L) such that the Rees valuations of Z are exactly the divisorial
valuations vE on X associated to the non-trivial irreducible components
of X0.

Proof. — Let µ : X æ X ◊A1 be the normalized blow-up of Z ◊ {0}, so
that X is the normalization of the deformation to the normal cone of Z. As
recalled in Lemma 1.8, D := µ≠1(Z) is a Cartier divisor with ≠D ample.
We may thus choose 0 < c π 1 such that L := µúLA1 ≠ cD is ample, and
(X , L) is then a normal, ample test configuration. The rest follows from
Theorem 4.8. ⇤

4.4. Log discrepancies and log canonical divisors

In this section we assume that k has characteristic 0. Let B be a boundary
on X. Recall the definition of A(X,B) from §1.5.

Proposition 4.11. — For every irreducible component E of X0, the
log discrepancies of vE and ordE (with respect to the pairs (X, B) and
(XA1 , BA1), respectively) are related by

A(X,B)(vE) = A(XA1 ,BA1)
!
b≠1

E ordE

"
≠ 1

= A(XA1 ,BA1 +X◊{0})(b≠1
E ordE).

Recall that A(X,B)(vtriv) is defined to be 0, and that bE = ordE(X0) =
ordE(t).

Proof. — If E is the strict transform of X ◊ {0}, then A(X,B)(vE) =
A(X,B)(vtriv) = 0, while A(XA1 ,BA1 )(ordE) = bE = 1.

Assume now that E is non-trivial. Since vE is a divisorial valuation
on X, we may find a proper birational morphism µ : X Õ æ X with X Õ

smooth and a smooth irreducible divisor F µ X Õ such that vE = c ordF

for some rational c > 0. By Lemma 4.5, the divisorial valuation ordE is
monomial on X Õ

A1 with respect to the snc divisor X Õ ◊ {0} + FA1 , with
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weights ordE(X Õ ◊ {0}) = bE and ordE(FA1) = bEvE(F ) = bEc. It follows
(see e.g. [48, Prop. 5.1]) that

A(XA1 ,BA1 )(ordE) = bEA(XA1 ,BA1 )
!
ordX◊{0}

"
+ bEcA(XA1 ,BA1 )

!
ordFA1

"

= bE + bEcA(X,B) (ordF ) = bE

!
1 + A(X,B)(vE)

"
,

which completes the proof. ⇤
Now consider a normal test configuration X for X, with compactification

X̄ . As in §3.4, let B (resp. B̄) be the closure of B ◊ (A1 \ {0}) in X (resp.
X̄ ). The log canonical divisors on A1 and P1 are defined as

K log
A1 := KA1 + [0] and K log

P1 := KP1 + [0] + [Œ],

respectively. We now set

K log
(X ,B) := KX + B + X0,red,

K log
(X̄ ,B̄) := KX̄ + B̄ + X̄0,red + X̄Œ,red

= KX̄ + B̄ + X0,red + X̄Œ,

and call these the log canonical divisors of (X , B) and (X̄ , B̄), respectively.
Similarly,

K log
(X ,B)/A1 := K log

(X ,B) ≠ fiúK log
A1

= K(X ,B)/A1 ≠ (X0 ≠ X0,red)

and

K log
(X̄ ,B̄)/P1 := K log

(X̄ ,B̄) ≠ fiúK log
P1

= K(X̄ ,B̄)/P1 ≠ (X0 ≠ X0,red)

are the relative log canonical divisors. Again we emphasize that these Q-
Weil divisor classes may not be Q-Cartier in general.

There are two main reasons for introducing the relative log canonical
divisors. First, they connect well with the log discrepancy function on divi-
sorial valuations on X. Namely, consider normal test configurations X and
X Õ for X, with X Õ dominating X via µ : X Õ æ X . Suppose that K log

(X ,B) is
Q-Cartier. Then

(4.4)
K log

(X̄ Õ,B̄Õ)/P1 ≠ µúK log
(X̄ ,B̄)/P1 = K log

(X Õ,BÕ)/A1 ≠ µúK log
(X ,B)/A1

=
ÿ

EÕ

A(X ,B+X0,red)(ordEÕ)EÕ,

where EÕ ranges over the irreducible components of X Õ
0. Combining this

with Proposition 4.11, we infer:
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Corollary 4.12. — For any normal test configuration X dominating
XA1 via fl : X æ XA1 , we have

(4.5)
K log

(X̄ ,B̄)/P1 ≠ flúK log
(XP1 ,BP1 )/P1 = K log

(X ,B)/A1 ≠ flúK log
(XA1 ,BA1 )/A1

=
ÿ

E

bEA(X,B)(vE)E,

with E ranging over the irreducible components of X0.

Second, the relative log canonical divisors behave well under base change.
Namely, let (Xd, Ld) be the normalized base change of (X , L), and denote
by fd : P1 æ P1 and gd : X̄d æ X̄ the induced finite morphisms, both
of which have degree d. The pull-back formula for log canonical divisors
(see e.g. [52, §2.42]) then yields

(4.6) K log
(X̄d,B̄d) = gú

dK log
(X̄ ,B̄) and K log

P1 = fú
d K log

P1 ,

so that K log
(X̄d,B̄d)/P1 = gú

dK log
(X̄ ,B̄)/P1 . Note that while the (relative) log canon-

ical divisors above may not be Q-Cartier, we can pull them back under the
finite morphism gd, see [52, §2.40].

5. Duistermaat–Heckman measures and filtrations

In this section, we analyze in detail the limit measure of a filtration, a
concept closely related to Duistermaat–Heckman measures. This allows us
to establish Theorem A and Corollary B.

5.1. The limit measure of a filtration

Let X be a variety of dimension n, L an ample line bundle on X, and
set R = R(X, L). Let us we review and complement the study in [11] of a
natural measure on R associated to a general R-filtration F •R on R.

Recall that the volume of a graded subalgebra S µ R is defined as

(5.1) vol(S) := lim sup
mæŒ

n!
mn

dim Sm œ R>0.

The following result is proved using Okounkov bodies [49, 55] (see also the
first author’s appendix in [78]).
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Lemma 5.1. — Let S µ R be a graded subalgebra containing an ample
series, i.e.

(i) Sm ”= 0 for all m ∫ 1;
(ii) there exist Q-divisors A and E, ample and e�ective respectively,

such that L = A + E and H0(X, mA) µ Sm µ H0(X, mL) for all
m divisible enough.

Then vol(S) > 0, and the limsup in (5.1) is a limit. For each m ∫ 1, let
am µ OX be the base ideal of Sm, i.e. the image of the evaluation map
Sm ¢ OX(≠mL) æ OX , and let µm : Xm æ X be the normalized blow-up
of X along am, so that OXm ·am = OXm(≠Fm) with Fm an e�ective Cartier
divisor. Then we also have

vol(S) = lim
mæŒ

!
µú

mL ≠ 1
m Fm

"n
.

Now let F •R be an R-filtration of the graded ring R, as defined in §1.1.
We denote by

⁄(m)
max = ⁄(m)

1 > · · · > ⁄(m)
Nm

= ⁄(m)
min

the successive minima of F •H0(X, mL). As R is an integral domain, the
sequence (⁄(m)

max)mœN is superadditive in the sense that ⁄(m+mÕ)
max > ⁄(m)

max +
⁄(mÕ)

max , and this implies that

⁄max = ⁄max(F •R) := lim
mæŒ

⁄(m)
max

m
= sup

m>1

⁄(m)
max

m
œ (≠Œ, +Œ].

By definition, we have ⁄max < +Œ i� there exists C > 0 such that
F ⁄H0(X, mL) = 0 for any ⁄, m such that ⁄ > Cm, and we then say
that F •R has linear growth.

For example, it follows from [72, Lemma 3.1] that the filtration associated
to a test configuration (see §2.5) has linear growth.

Remark 5.2. — In contrast, there always exists C > 0 such that
F ⁄H0(X, mL) = H0(X, mL) for any ⁄, m such that ⁄ 6 ≠Cm. This is
a simple consequence of the finite generation of R, cf. [11, Lemma 1.5].

For each ⁄ œ R, we define a graded subalgebra of R by setting

(5.2) R(⁄) :=
n

mœN
F m⁄H0(X, mL).

The main result of [11] may be summarized as follows.
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Theorem 5.3. — Let F •R be a filtration with linear growth.
(i) For each ⁄ < ⁄max, R(⁄) contains an ample series.
(ii) The function ⁄ ‘æ vol(R(⁄))1/n is concave on (≠Œ, ⁄max), and

vanishes on (⁄max, +Œ).
(iii) If we introduce, for each m, the probability measure

(5.3) ‹m := 1
Nm

ÿ

j

”
m≠1⁄

(m)
j

= ≠ d

d⁄

dim F m⁄H0(X, mL)
Nm

on R, then ‹m has uniformly bounded support and converges
weakly as m æ Œ to the probability measure

(5.4) ‹ := ≠ d

d⁄
V ≠1 vol(R(⁄)).

We call ‹ the limit measure of the filtration F •R. The log concavity
property of vol(R(⁄)) immediately yields:

Corollary 5.4. — The support of the limit measure ‹ is given by
supp ‹ = [⁄min, ⁄max] with

⁄min := inf
Ó

⁄ œ R | vol(R(⁄)) < V
Ô

.

Further, ‹ is absolutely continuous with respect to the Lebesgue measure,
except perhaps for a point mass at ⁄max.

More precisely, the mass of ‹ on {⁄max} is equal to lim⁄æ(⁄max)≠ vol(R(⁄)).

Remark 5.5. — While we trivially have ⁄min > lim supmæŒ m≠1⁄(m)
min,

the inequality can be strict in general. It will, however, be an equality for
the filtrations considered in §5.3 and §5.4.

Remark 5.6. — Let F •R(X, L) be a filtration of linear growth and limit
measure ‹. For any r œ Z>0, we obtain a filtration F •R(X, rL) by restric-
tion. This filtration also has linear growth and its limit measure is given
by rú‹.

5.2. Limit measures and Duistermaat–Heckman measures

Now suppose L is an ample Q-line bundle on X. To simplify the termi-
nology, we introduce

Definition 5.7. — We define the Duistermaat–Heckman measure of
any semiample test configuration of (X, L) as DH(X ,L) := DH(Xamp,Lamp),
where (Xamp, Lamp) is the ample model of (X , L) as in Proposition 2.17.
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With this definition, Duistermaat–Heckman measures are invariant un-
der normalization:

Corollary 5.8. — If (X , L) is a semiample test configuration for
(X, L), and ( ÂX , L̃) is its normalization, then DH(X ,L) = DH( ÂX ,L̃).

Proof. — Let (Xamp, Lamp) be the ample model of (X , L) and ( ÂXamp,

L̃amp) its normalization. The composition ÂX æ Xamp lifts to a map
ÂX æ ÂXamp, under which L̃ is the pullback of Lamp. By the uniqueness

statement of Proposition 2.17, ( ÂXamp, L̃amp) is the ample model of
( ÂX , L̃). By definition, we thus have DH(X ,L) = DH(Xamp,Lamp) and
DH( ÂX ,L̃) = DH( ÂXamp,L̃amp), whereas Theorem 3.14 yields DH( ÂXamp,L̃amp) =
DH(Xamp,Lamp), concluding the proof. ⇤

We now relate Duistermaat–Heckman measures and limit measures. Re-
call from §2.5 that any test configuration for (X, L) induces a filtration of
R(X, rL) for r su�ciently divisible.

Proposition 5.9. — If (X , L) is semiample, then, for r su�ciently di-
visible, the limit measure of the filtration on R(X, rL) induced by (X , L)
is equal to rúDH(X , L).

Proof of Proposition 5.9. — Using homogeneity (see Definition 3.6 and
Remark 5.6), we may assume r = 1. Further, (X , L) and (Xamp, Lamp)
induce the same filtration on (X, L), so we may assume (X , L) is ample.

By the projection formula and the ampleness of L, it then follows that
the fiber at 0 of the vector bundle fiúOX (mL) can be identified with
H0((X )0, m(L)0), and Lemma 2.14 therefore shows that the weight mea-
sure of the latter Gm-module is given by

µH0((Xamp)0,m(Lamp)0) = 1
Nm

ÿ

⁄œZ
dim

!
F ⁄H0(X, mL)/F ⁄+1H0(X, mL)

"
”⁄.

As a result, µm := (1/m)úµH0((X )0,m(L)0) satisfies

µm = ≠ d

d⁄

dim F m⁄H0(X, mL)
Nm

,

and hence converges to the limit measure measure of F •R by Theorem 5.3.
⇤

5.3. Piecewise polynomiality in the normal case

Theorem 5.10. — Let X be an n-dimensional normal variety, L an
ample line bundle on X, and F •R a finitely generated Z-filtration of R =
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R(X, L). Then F •R has linear growth, and the density of its limit measure
‹ is a piecewise polynomial function, of degree at most n ≠ 1.

By the density of ‹ we mean the density of the absolutely continuous
part, see Corollary 5.4.

Since a semiample test configuration of a polarized variety (X, L) induces
a finitely generated filtration of R(X, rL) for r su�ciently divisible, we get:

Corollary 5.11. — Let (X, L) be a polarized normal variety. Then the
Duistermaat measure DH(X ,L) of any semiample test configuration (X , L)
for (X, L) is the sum of a point mass and an absolutely continuous measure
with piecewise polynomial density.

The general case where (X, L) is an arbitrary polarized scheme will be
treated in Theorem 5.19, by reducing to the normal case studied here.

Proof of Theorem 5.10. — The following argument is inspired by the
proof of [35, Proposition 4.13].(3) For · = (m, ⁄) œ N ◊ Z, let a· be
the base ideal of F ⁄H0(X, mL), i.e. the image of the evaluation map
F ⁄H0(X, mL) ¢ OX(≠mL) æ OX . Let µ· : X· æ X be the normalized
blow-up of a· , which is also the normalized blow-up of its integral closure
a· . Then

OX· · a· = OX· · a· = OX· (≠F· ),
with F· a Cartier divisor, and we set

V· :=
!
µú

· L ≠ 1
m F·

"n
.

Since R(⁄) contains an ample series for ⁄ œ (≠Œ, ⁄max), Lemma 5.1 yields

vol(R(⁄)) = lim
mæŒ V(m,Ám⁄Ë).

Now, we use the finite generation of F •R, which implies that the N ◊
Z-graded OX -algebra

m
·œN◊Z a· is finitely generated. By [35, Proposi-

tion 4.7], we may thus find a positive integer d and finitely many vectors
ei = (mi, ⁄i) œ N ◊ Z, 1 6 i 6 r, with the following properties:

(i) e1 = (0, ≠1), er = (0, 1), and the slopes ai := ⁄i/mi are strictly
increasing with i;

(ii) Every · œ N ◊ Z may be written as · = piei + pi+1ei+1 with i,
pi, pi+1 œ N uniquely determined, and the integral closures of ad·

and api

dei
· api+1

dei+1
coincide.

(3) While the base field in loc. cit. is C, the results we use are valid over an arbitrary
algebraically closed field.
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Choose a projective birational morphism µ : X Õ æ X with X Õ normal and
dominating the blow-up of each adei , so that there is a Cartier divisor Ei

with OXÕ · adei = OXÕ(≠Ei). For all · = (m, ⁄) œ N ◊ Z written as in (ii)
as · = piei + pi+1ei+1, we get

OXÕ · api

dei
· api+1

dei+1
= OXÕ(≠(piEi + pi+1Ei+1)),

and the universal property of normalized blow-ups therefore shows that µ
factors through the normalized blow-up of api

dei
· api+1

dei+1
. By Lemma 1.8, the

latter is also the normalized blow-up of

api

dei
· api+1

dei+1
= ad· ,

so we infer that

ad· · OXÕ = OXÕ (≠(piEi + pi+1Ei+1)) ,

with piEi + pi+1Ei+1 the pull-back of Fd· . As a result, we get

Vd· =
!
µúL ≠ 1

dm (piEi + pi+1Ei+1)
"n

.

Pick ⁄ œ (0, ⁄max), so that ⁄ œ [ai, ai+1) for some i. We infer from the
previous discussion that

vol(R(⁄)) = lim
mæŒ V(m,Ám⁄Ë) = (µúL ≠ (fi(⁄)Ei + fi+1(⁄)Ei+1))n

for some a�ne functions fi, fi+1, and we conclude that vol(R(⁄)) is a piece-
wise polynomial function of ⁄ œ (≠Œ, ⁄max), of degree at most n. The result
follows by (5.4). ⇤

Remark 5.12. — For a finitely generated Z-filtration F •R, the graded
subalgebra R(⁄) is finitely generated for each ⁄ œ Q [35, Lemma 4.8]. In
particular, vol(R(⁄)) œ Q for all ⁄ œ Q fl (≠Œ, ⁄max).

5.4. The filtration defined by a divisorial valuation

Let X be a normal projective variety and L an ample line bundle on X.
Any valuation v on X defines a filtration F •

v R by setting

F ⁄
v H0(X, mL) :=

)
s œ H0(X, mL) | v(s) > ⁄

*
.

As a special case of [18, Proposition 2.12], F •
v R has linear growth for any

divisorial valuation v. The following result will be needed later on.
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Lemma 5.13. — Let v be a divisorial valuation on X, and let ‹ be the
limit measure of the corresponding filtration F •

v R. Then supp ‹ = [0, ⁄max].
In other words, we have

lim
mæŒ

dim
)

s œ H0(X, mL) | v(s) > ⁄m
*

Nm
< 1

for any ⁄ > 0.

The equivalence between the two statements follows from Corollary 5.4
above.

Proof. — Let Z µ X be the closure of the center cX(v) of v on X, and
w a Rees valuation of Z. Since the center of w on X belongs to Z = cX(v),
the general version of Izumi’s theorem in [46] yields a constant C > 0 such
that v(f) 6 Cw(f) for all f œ OX,cX (w).

Let µ : X Õ æ X be the normalized blow-up of Z and set E := µ≠1(Z). By
definition, the Rees valuations of Z are given, up to scaling, by vanishing
order along the irreducible components of E. Given ⁄ > 0, we infer

{v > ⁄m} µ µúOXÕ(≠m”E)

for all 0 < ” π 1 and all m > 1. It follows that
)

s œ H0(X, mL) | v(s) > Á⁄m
*

Òæ H0 (X Õ, m (µúL ≠ ”E)) ,

so that vol(R(⁄)) 6 (µúL ≠ ”E)n. But since ≠E is µ-ample, µúL ≠ ”E is
ample on X Õ for 0 < ” π 1, so that

d

d⁄
(µúL ≠ ”E)n = ≠n

!
E · (µúL ≠ ”E)n≠1"

< 0.

It follows that

vol(R(⁄)) 6 (µúL ≠ ”E)n < (µúL)n = V

for 0 < ” π 1; hence the result. ⇤

Remark 5.14. — At least in characteristic zero, the continuity of the
volume function shows that vol(R(⁄)) æ 0 as ⁄ æ ⁄max from below, so
that ‹ has no atom at ⁄max, and is thus absolutely continuous on R (cf. [18,
Proposition 2.25]).

On the other hand, F •R is not finitely generated in general. Indeed, well-
known examples of irrational volume show that vol(R(1)) can sometimes
be irrational (compare Remark 5.12).

Remark 5.15. — The filtration defined by a valuation and its relation
to K-stability has been recently studied by Fujita [38, 39, 40], Li [57, 56]
and Liu [60].
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5.5. The support of a Duistermaat–Heckman measure

The following precise description of the support of a Duistermaat–
Heckman measure is the key to the characterization of almost trivial ample
test configurations to be given below.

Theorem 5.16. — Let (X , L) be a normal, semiample test configura-
tion dominating XA1 , and write L = flúLA1 + D with fl : X æ XA1 the
canonical morphism. Then the support [⁄min, ⁄max] of its Duistermaat–
Heckman measure satisfies

⁄min = min
E

b≠1
E ordE(D) and ⁄max = max

E
b≠1

E ordE(D) = ordE0(D),

where E runs over the irreducible components of X0, bE := ordE(X0) =
ordE(t), and E0 is the strict transform of X ◊ {0} (which has bE0 = 1).

Lemma 5.17. — In the notation of Theorem 5.16, the induced filtration
of R satisfies, for all m divisible enough and all ⁄ œ Z,

F ⁄H0(X, mL) =
‹

E

)
s œ H0(X, mL) | vE(s) + m b≠1

E ordE(D) > ⁄
*

,

where E runs over the irreducible components of X0.

According to Lemma 4.5, vE is a divisorial valuation on X for E ”= E0,
while vE0 is the trivial valuation (so that vE0(s) is either 0 for s ”= 0, or
+Œ for s = 0).

Proof. — Pick any m such that mL is a line bundle. By (2.1), a section
s œ H0(X, mL) is in F ⁄

(X ,L)H
0(X, mL) i� s̄t≠⁄ œ H0(X , mL), with s̄ the

Gm-invariant rational section of mL induced by s. By normality of X , this
amounts, in turn, to ordE

!
s̄t≠⁄

"
> 0 for all E, i.e. ordE(s̄) > ⁄bE for all

E. The result follows since mL = flú(mLA1) + mD implies that

ordE(s̄) = r(ordE)(s) + m ordE(D) = bEvE(s) + m ordE(D). ⇤

Lemma 5.18. — In the notation of Theorem 5.16, the filtration
F •H0(X, mL) satisfies

⁄(m)
min
m

= min
E

b≠1
E ordE(D) and ⁄(m)

max

m
= ordE0(D) = max

E
b≠1

E ordE(D)

for all m divisible enough.

Proof. — Set c := minE b≠1
E ordE(D), and pick m divisible enough (so

that mc is in particular an integer). The condition vE(s) + m ordE(D) >
mcbE automatically holds for all s œ H0(X, mL), since vE(s) > 0. By
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Lemma 5.17, we thus have F mcH0(X, mL) = H0(X, mL), and hence
mc 6 ⁄(m)

min.
We may assume mL is globally generated, so for every E we may find a

section
s œ H0(X, mL) = F ⁄

(m)
min H0(X, mL)

that does not vanish at the center of vE on X, i.e. vE(s)= 0. By Lemma 5.17,
it follows that m ordE(D) > ⁄(m)

minbE . Since this holds for every E, we con-
clude that mc > ⁄(m)

min.
We next use that mL = flú(mLA1) + mD is globally generated. This

implies in particular that OX (mD) is fl-globally generated, which reads

OX (mD) = flúOX (mD) · OX

as fractional ideals. But we trivially have flúOX (mD) µ OXA1 (mflúD), and
we infer

D 6 flúflúD.

Now flúD = ordE0(D)X ◊ {0}, hence flúflúD = ordE0 X Õ
0, which yields

ordE(D) 6 ordE0(D)bE , hence ordE0(D) = maxE b≠1
E ordE(D).

Since flúOX (mD) is the flag ideal a(m) of Definition 2.19, we also see that

m max
E

b≠1
E ordE(D) = min {⁄ œ Z | mD 6 ⁄X0}

= min
Ó

⁄ œ Z | t≠⁄ œ a(m)
Ô

= max
Ó

⁄ œ Z | a(m)
⁄ ”= 0

Ô
,

and we conclude thanks to Proposition 2.21. ⇤
Proof of Theorem 5.16. — In view of Corollary 5.4, the description of the

supremum of the support of ‹ = DH(X ,L) follows directly from Lemma 5.18.
We now turn to the infimum. The subtle point of the argument is that

it is not a priori obvious that the stationary value

⁄(m)
min
m

= min
E

b≠1
E ordE(D)

given by Lemma 5.18, which is of course the infimum of the support of ‹m

as in (5.3), should also be the infimum of the support of their weak limit
‹ = limm ‹m. What is trivially true is the inequality

min
E

b≠1
E ordE(D) = inf supp ‹m 6 inf supp ‹.

Now pick ⁄ > minE b≠1
E ordE(D). According to Corollary 5.4, it remains to

show that

(5.5) lim
mæŒ

dim F m⁄H0(X, mL)
Nm

< 1.
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Note that Á := ⁄bE ≠ ordE(D) > 0 for at least one irreducible component
E. By Lemma 5.17, it follows that

(5.6) F m⁄H0(X, mL) µ
)

s œ H0(X, mL) | vE(s) > mÁ
*

.

By Lemma 4.5, vE is either the trivial valuation or a divisorial valuation.
In the former case, the right-hand side of (5.6) consists of the zero section
only, while in the latter case we get (5.5), thanks to Lemma 5.13. ⇤

5.6. Proof of Theorem A

Now let (X, L) be an arbitrary polarized scheme, and (X , L) an ample
test configuration for (X, L). Theorem A and Corollary B in the introduc-
tion are consequences of the following two results.

Theorem 5.19. — The density of the absolutely continuous part of the
Duistermaat–Heckman measure DH(X ,L) is a piecewise polynomial func-
tion, while the singular part is a finite sum of point masses.

Theorem 5.20. — The measure DH(X ,L) is a finite sum of point masses
i� (X , L) is almost trivial. In this case, DH(X ,L) is a Dirac mass when X
is irreducible.

Recall that almost trivial but nontrivial test configurations always exist
when X is, say, a normal variety (cf. [59, §3.1] and Proposition 2.12).

Proof of Theorem 5.19. — Since DH(X ,L) is defined as the Duistermaat–
Heckman measure of some polarized Gm-scheme by Definition 3.10, it is
enough to show the result for the Duistermaat–Heckman measure DH(X,L)
of a polarized Gm-scheme (X, L) (i.e. the special case of Theorem 5.19
where (X , L) is a product test configuration). By (ii) in Proposition 3.9,
we may further assume that X is a variety, i.e. reduced and irreducible. By
the invariance property of Theorem 3.14, we are even reduced to the case
where X is a normal variety, which is treated in Corollary 5.11. ⇤

Proof of Theorem 5.20. — Using again (ii) in Proposition 3.9 and The-
orem 3.14, we may assume that X (and hence X) is a normal variety.
By Lemma 2.10, our goal is then to show that the support of DH(X ,L) is
reduced to a point i� (X , L + cX0) = (XA1 , LA1) for some c œ Q.

In order to deduce this from Theorem 5.16, let (X Õ, LÕ) be a pull-back
of (X , L) with X Õ normal and dominating XA1 . Since (X , L) is the ample
model of (X Õ, LÕ), we have DH(X ,L) = DH(X Õ,LÕ). In the notation of Theo-
rem 5.16, this measure is a Dirac mass i� b≠1

E ordE(D) = c is independent
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of E, i.e. D = cX Õ
0. But this means that (XA1 , LA1) is the ample model of

(X Õ, LÕ ≠ cX Õ
0), i.e. (X , L ≠ cX0) = (XA1 , LA1) by uniqueness of the ample

model. ⇤

6. Non-Archimedean metrics

From now on, X will always denote a normal projective variety, unless
otherwise specified, and L will be a Q-line bundle on X.

6.1. Test configurations as non-Archimedean metrics

Motivated by Berkovich space considerations (see §6.8 below) we intro-
duce the following notion.

Definition 6.1. — Two test configurations (X1, L1), (X2, L2) for (X, L)
are equivalent if there exists a test configuration (X3, L3) that is a pull-
back of both (X1, L1) and (X2, L2). An equivalence class is called a non-
Archimedean metric on L, and is denoted by „. We denote by „triv the
equivalence class of (XA1 , LA1).

A non-Archimedean metric „ on the trivial line bundle OX can be viewed
as a function „ : Xdiv æ Q on the set of divisorial valuations on X.
Indeed, by Theorem 4.6, every divisorial valuation on X is of the form vE =
b≠1

E r(ordE), where E is an irreducible component of X0 for some normal
test configuration X of X. We may assume „ is represented by OX(D) for
some Q-Cartier divisor D supported on X0, and then „(vE) = b≠1

E ordE(D).
When D = X0, we get the constant function „ © 1. In general, there exists
C > 0 such that D ± CX0 is e�ective; hence |„| 6 C, so „ is a bounded
function. To the trivial metric on OX corresponds the zero function.

6.2. Operations on non-Archimedean metrics

If „i is a non-Archimedean metric on a Q-line bundle Li on X and
ri œ Q for i = 1, 2, then we get a naturally defined non-Archimedean
metric r1„1 + r2„2 on L := r1L1 + r2L2 as follows: if „i is represented
by a test configuration (X , Li) with the same X , then „ is represented by
(X , r1L1 + r2L2).
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In particular, if „, „Õ are non-Archimedean metrics on the same line bun-
dle L, then „ ≠ „Õ is a non-Archimedean metric on OX , which will thus be
viewed as a function on Xdiv. If we choose a normal representative (X , L)
of „ that dominates XA1 and write as before L = flúLA1 + D with D a
Q-Cartier divisor supported on X0, then
(6.1) („ ≠ „triv)(vE) = b≠1

E ordE(D)
for each component E of X0.

If f : Y æ X is a surjective morphism, with Y normal and projective,
then any non-Archimedean metric „ on L induces a non-Archimedean met-
ric fú„ on fúL. Indeed, suppose „ is represented by a test configuration
(X , L). We can find a test configuration Y of Y and a projective Gm-
equivariant morphism Y æ X compatible with f via the identifications
X1 ƒ X, Y1 ƒ Y . Define fú„ as the metric represented by the pullback of
L to Y. The pullback of the trivial metric on L is the trivial metric on fúL.

6.3. Translation and scaling

The operations above give rise to two natural actions on the space of
non-Archimedean metrics on a fixed line bundle.

First, if „ is a non-Archimedean metric on a line bundle L, then so is
„ + c, for any c œ Q. Thus we obtain a translation action by (Q, +) on the
set of non-Archimedean metrics.

Second, we have a scaling action by the semigroup Nú which to a non-
Archimedean metric „ on L associates a new non-Archimedean metric „d

on L for every d œ Nú. If „ is represented by a test configuration (X , L),
then „d is represented by the base change of (X , L) under the base change
t æ td. This scaling action is quite useful and a particular feature of working
over a trivially valued ground field. Note that „triv is fixed by the scaling
action.

Viewing, as above, a metric „ on the trivial line bundle OX as a function
on divisorial valuations, we have
(6.2) „d(dv) = d„(v)
for any divisorial valuation v on X.

6.4. Positivity

Next we introduce positivity notions for metrics.
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Definition 6.2. — Assume L is ample. Then a non-Archimedean met-
ric „ on L is called positive if some representative (X , L) of „ is semiample.

We denote by HNA(L) the set of all non-Archimedean positive metrics
on L, i.e. the quotient of the set of semiample test configurations by the
above equivalence relation.

We sometimes write HNA when no confusion is possible. The notation
mimics H = H(L) for the space of smooth, positively curved Hermitian
metrics on L when working over C.

Lemma 6.3. — When L is ample, every metric „ œ HNA(L) is repre-
sented by a unique normal, ample test configuration (X , L). Every normal
representative of „ is a pull-back of (X , L).

Proof. — We first prove uniqueness. Let (Xi, Li), i = 1, 2, be equivalent
normal ample test configurations, so that there exists (X3, L3) as in Def-
inition 6.1. For i = 1, 2, the birational morphism µi : X3 æ Xi satisfies
(µi)úOX3 = OXi , by normality of Xi. It follows that (X1, L1) and (X2, L2)
are both ample models of (X3, L3), and hence (X1, L1) = (X2, L2) by the
uniqueness part of Proposition 2.17.

Now pick a normal representative (X , L) of „. By Proposition 2.17, its
ample model (Xamp, Lamp) is a normal, ample representative, and (X , L) is
a pull-back of (Xamp, Lamp). This proves the existence part, as well as the
final assertion. ⇤

It is sometimes convenient to work with a weaker positivity notion.

Definition 6.4. — Assume L is nef. Then a non-Archimedean metric
„ on L is semipositive if some (or, equivalently, any) representative (X , L)
of „ is relatively nef with respect to X æ A1.

In this case, L̄ is relatively nef for X̄ æ P1, where (X̄ , L̄) is the compact-
ification of (X , L).

When L is nef (resp. ample), the translation and scaling actions preserve
the subset of semipositive (resp. positive) non-Archimedean metrics on L.
Positivity of metrics is also preserved under pull-back, as follows. If f :
Y æ X is a surjective morphism with Y normal and projective, then fúL
is nef for any nef line bundle L on X, and fú„ is semipositive for any
semipositive metric „ on L. If L and fúL are further ample (which implies
that f is finite), then fú„ is positive for any positive metric „ on L.(4)

(4) This seemingly inconsistent property is explained by the fact that the (analytifica-
tion of the) ramification locus of f does not meet the Berkovich skeleton where „ is
determined.
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6.5. Duistermaat–Heckman measures and Lp-norms

In this section, L is ample.

Definition 6.5. — Let „ œ HNA(L) be a positive non-Archimedean
metric on L.

(i) The Duistermaat–Heckman measure of „ is defined by setting
DH„ := DH(X ,L) for any semiample representative of „.

(ii) The Lp-norm of „ is defined as the Lp(‹)-norm of ⁄ ≠ ⁄̄, with
⁄̄ :=

s
R ⁄ d‹ the barycenter of ‹ = DH„.

This is indeed well-defined, thanks to the following result.

Lemma 6.6. — For any two equivalent semiample test configurations
(X1, L1), (X2, L2), we have DH(X1,L1) = DH(X2,L2).

Proof. — By Corollary 5.8 we may also assume that Xi is normal for i =
1, 2. Since any two normal test configurations is dominated by a third, we
may also assume that X1 dominates X2. In this case, (X1, L1) and (X2, L2)
have the same ample model, and hence the same Duistermaat–Heckman
measure. ⇤

In view of (6.1), Theorem 5.16 can be reformulated as follows.

Theorem 6.7. — If „ is a positive metric on L, then
sup
Xdiv

(„ ≠ „triv) = („ ≠ „triv)(vtriv) = sup supp DH„.

The key property of Lp-norms is to characterize triviality, as follows.

Theorem 6.8. — Let „ œ HNA(L) be a positive non-Archimedean met-
ric on L. Then the following conditions are equivalent:

(i) the Duistermaat–Heckman measure DH„ is a Dirac mass;
(ii) for some (or, equivalently, any) p œ [1, Œ], Î„Îp = 0;
(iii) „ = „triv + c for some c œ Q.

Lemma 6.9. — Let „ œ HNA(L) be a positive non-Archimedean metric
on L. For c œ Q and d œ Nú, we have

(i) DH„+c and DH„d are the pushforwards of DH„ by ⁄ ‘æ ⁄ + c and
⁄ ‘æ d⁄, respectively.

(ii) Î„ + cÎp = Î„Îp and Î„dÎp = dÎ„Îp.

Proof of Lemma 6.9. — The first property in (i) follows from Propo-
sition 3.12(i). Let (X , L) be the unique normal, ample representative of
„, and denote by (X Õ, LÕ) the base change of (X , L) by t ‘æ td. Then
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(X Õ
0, LÕ

0) ƒ (X0, L0), but with the Gm-action composed with t ‘æ td. As a
result, the Gm-weights of H0(X Õ

0, mLÕ
0) are obtained by multiplying those

of H0(X0, mL0) by d, and the second property in (i) follows. Part (ii) is a
formal consequence of (i). ⇤

Proof of Theorem 6.8. — The equivalence between (i) and (ii) is imme-
diate, and (iii) =∆ (ii) follows from Lemma 6.9. Conversely, assume that
DH„ is a Dirac mass. By Theorem 5.20, the unique normal ample repre-
sentative (X , L) of „ is (almost) trivial. By Lemma 2.10, this means that
(X , L + cX0) = (XA1 , LA1), i.e. „ + c = „triv. ⇤

Remark 6.10. — For each ample representative (X , L) of „, we have, by
definition,

Î„Îp
p = lim

mæŒ
1

Nm

ÿ

⁄œZ
|m≠1⁄ ≠ ⁄̄|p dim H0(X0, mL0)⁄

with
⁄̄ = lim

mæŒ
1

mNm

ÿ

⁄œZ
⁄ dim H0(X0, mL0)⁄.

This shows that the present definition generalizes the Lp-norm of an ample
test configuration introduced in [28] for p an even integer.

6.6. Intersection numbers

Various operations on test configurations descend to non-Archimedean
metrics. As a first example, we discuss intersection numbers.

Every finite set of test configurations Xi for X is dominated by some
test configuration X . Given finitely many non-Archimedean metrics „i on
Q-line bundles Li, we may thus find representatives (Xi, Li) for „i with
Xi = X independent of i.

Definition 6.11. — Let „i be a non-Archimedean metric on Li for
0 6 i 6 n. We define the intersection number of the „i as
(6.3) („0 · . . . · „n) := (L̄0 · . . . · L̄n),
where (Xi, Li) is any representative of „i with Xi = X independent of i,
and where (X̄ , L̄i) is the compactification of (X , Li).

By the projection formula, the right hand side of (6.3) is independent of
the choice of representatives. Note that the intersection number („0 ·. . .·„n)
may be negative even when the Li are ample and the „i are positive, since
in this case the L̄i are only relatively semiample with respect to X̄ æ P1.
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Remark 6.12. — When L0 = OX , we can compute the intersection
number in (6.3) without passing to the compactification. Indeed, if we
write L0 = OX (D) and D =

q
E rEE, then

(„0 · . . . · „n) =
ÿ

E

rE(L1|E · . . . · Ln|E).

If „0 © 1, that is, D = X0, then („0 · . . . · „n) = (L1 · . . . · Ln) by flatness
of X̄ æ P1.

The intersection paring („0, . . . , „n) ‘æ („0 · . . . · „n) is Q-multilinear in
its arguments in the sense of §6.2. By the projection formula, it is invariant
under pullbacks: if Y is a projective normal variety of dimension n and
f : Y æ X is a surjective morphism of degree d, then (fú„0 · . . . · fú„n) =
d(„0 · . . . · „n).

Lemma 6.13. — For non-Archimedean metrics „0, . . . , „n on Q-line
bundles L0, . . . , Ln we have

((„0 + c) · „1 · . . . · „n) = („0 · . . . · „n) + c(L1 · . . . · Ln)

and

((„0)d · . . . · („n)d) = d(„0 · . . . · „n)

for all d œ Nú and c œ Q.

Proof. — The first equality is a consequence of the the discussion above,
and the second formula follows from the projection formula. ⇤

The following inequality is crucial. See [84] for far-reaching generaliza-
tions.

Lemma 6.14. — Let L2, . . . , Ln be nef Q-line bundles on X, „ a non-
Archimedean metric on OX , and „i a semipositive non-Archimedean metric
on Li for 2 6 i 6 n. Then

(6.4) („ · „ · „2 · . . . · „n) 6 0.

Proof. — Choose normal representatives (X , L), (X , Li) for „, with the
same test configuration X for X. We have L = OX (D) for a Q-Cartier di-
visor D supported on X0. Then (6.4) amounts to

!
D · D · L̄2 · . . . · L̄n

"
6 0,

which follows from a standard Hodge Index Theorem argument; see e.g. [59,
Lemma 1]. ⇤
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6.7. The non-Archimedean Monge–Ampère measure

Let L be a big and nef Q-line bundle on X, and set V := (Ln). Then
any n-tuple („1, . . . , „n) of non-Archimedean metrics on L induces a signed
finite atomic mixed Monge–Ampère measure on Xdiv as follows. Pick rep-
resentatives (X , Li) of „i, 1 6 i 6 n, with the same test configuration X
for X and set

MANA(„1, . . . , „n) = V ≠1
ÿ

E

bE(L1|E · . . . · Ln|E)”vE ,

where E ranges over irreducible components of X0 =
q

E bEE, and vE =
r(b≠1

E ordE) œ Xdiv. Note that
⁄

Xdiv
MANA(„1, . . . , „n) = V ≠1(X0 · L1 · . . . · Ln)

= V ≠1(X1 · L1 · . . . · Ln) = V ≠1(Ln) = 1,

where the second equality follows from the flatness of X æ A1. When
the „i are semipositive, the mixed Monge–Ampère measure is therefore a
probability measure.

As in the complex case, we also write MANA(„) for MANA(„, . . . , „).
Note that MANA(„ + c) = MANA(„) for any c œ Q.

6.8. Berkovich space interpretation

Let us now briefly explain the term “non-Archimedean metric”. See [12,
14, 17] for more details.

Equip the base field k with the trivial absolute value | · |0, i.e. |a|0 = 1
for a œ kú. Also equip the field K := k((t)) of Laurent series with the
non-Archimedean norm in which |t| = e≠1 and |a| = 1 for a œ kú.

The Berkovich analytification Xan is a compact Hausdor� space equipped
with a structure sheaf [3]. It contains the set of valuations v : k(X)ú æ R
on the function field of X as a dense subset. Similarly, any line bundle
L on X has an analytification Lan. The valued field extension K/k fur-
ther gives rise to analytifications Xan

K and Lan
K , together with a natural

morphism Xan
K æ Xan under which Lan pulls pack to Lan

K . The Gauss ex-
tension in §4 gives a section Xan æ Xan

K , whose image exactly consists of
the kú-invariant points.

After the base change k[t] æ k[[t]], any test configuration (X , L) defines
a model of (XK , LK) over the valuation ring k[[t]] of K = k((t)). When X
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is normal, this further induces a continuous metric on Lan
K , i.e. a function

on the total space satisfying certain natural conditions. Using the Gauss
extension, we obtain a metric also on Lan.

Replacing a normal test configuration (X , L) by a pullback does not
change the induced metric on Lan, and one may in fact show that two
normal test configurations induce the same metric i� they are equivalent in
the Definition 6.1. This justifies the name non-Archimedean metric for an
equivalence class of test configurations. Further, in the analysis of [13, 14],
positive metrics play the role of Kähler potentials in complex geometry.

However, we abuse terminology a little since there are natural metrics on
Lan that do not come from test configurations. For example, any filtration
on R(X, L) defines a metric on Lan. Metrics arising from test configurations
can be viewed as analogues of smooth metrics on a holomorphic line bundle.
For some purposes it is important to work with a more flexible notion of
metrics, but we shall not do so here.

7. Non-Archimedean functionals

The aim of this section is to introduce non-Archimedean analogues of
several classical functionals in Kähler geometry; as indicated in the intro-
duction, the analogy will be turned into a precise connection in [16].

Throughout this section, X is a normal projective variety and L a Q-line
bundle on X. We shall assume that L is big and nef, so that V := (Ln) > 0.
The most important case is of course when L is ample.

Definition 7.1. — Let V be a set of non-Archimedean metrics on L
that is closed under translation and scaling. Then a functional F : V æ R
is homogeneous if F („d) = dF („) for „ œ V and d œ Nú, and translation
invariant if F („ + c) = F („) for „ œ V and c œ Q.

For example, Lemma 6.9 shows that when L is ample, the Lp-norm is a
homogeneous and translation invariant functional on HNA(L).

7.1. The non-Archimedean Monge–Ampère energy

Definition 7.2. — The non-Archimedean Monge–Ampère energy func-
tional is defined by

ENA(„) :=
!
„n+1"

(n + 1)V
for any non-Archimedean metric „ on L.
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Here („n+1) denotes the intersection number defined in §6.6. Note that
ENA(„triv) = 0 since („n+1

triv ) = (Ln+1
P1 ) = 0. Lemma 6.13 and Proposi-

tion 3.12 imply:

Lemma 7.3. — The functional ENA is homogeneous and satisfies
(7.1) ENA(„ + c) = ENA(„) + c

for any non-Archimedean metric „ on L and any c œ Q. We further have

ENA(„) =
⁄

R
⁄ DH„(d⁄).

when L is ample and „ œ HNA(L) is positive.

Lemma 7.4. — For every non-Archimedean metric „ on L we have

ENA(„) = 1
(n + 1)V

nÿ

j=0

1
(„ ≠ „triv) · „j · „n≠j

triv

2
.

Further, when „ is semipositive, we have, for j = 0, . . . , n ≠ 1,

(7.2)
1

(„ ≠ „triv) · „j · „n≠j
triv

2
>

1
(„ ≠ „triv) · „j+1 · „n≠j≠1

triv

2
.

Proof. — Since („n+1
triv ) = 0, we get

(n + 1)V ENA(„) = („n+1) ≠ („n+1
triv ) =

nÿ

j=0

1
(„ ≠ „triv) · „j · „n≠j

triv

2
.

The inequality (7.2) is now a consequence of Lemma 6.14. ⇤
Remark 7.5. — In view of Remark 6.12 we can write the energy func-

tional as
ENA(„) = 1

n + 1

nÿ

j=0

1
V

⁄

Xdiv
(„ ≠ „triv)µj ,

where µj = MANA(„, . . . , „, „triv, . . . , „triv) is a mixed Monge–Ampère
measure with j copies of „. Note that this formula is identical to its coun-
terpart in Kähler geometry.

7.2. The non-Archimedean I and J-functionals

Definition 7.6. — The non-Archimedean I and J-functionals are de-
fined by

INA(„) := V ≠1 („ · „n
triv) ≠ V ≠1 ((„ ≠ „triv) · „n)

and
JNA(„) := V ≠1(„ · „n

triv) ≠ ENA(„)
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for any non-Archimedean metric „ on L.

Lemma 7.7. — When L is ample, we have

V ≠1(„ · „n
triv) = („ ≠ „triv)(vtriv) = sup

Xdiv
(„ ≠ „triv) = sup supp DH„

for every positive metric „ œ HNA(L).

Proof. — Choose a normal, semiample test configuration (X , L) repre-
senting „ and such that X dominates XA1 . Denote by fl : X æ XA1 the
canonical morphism, so that L = flúLA1 + D for a unique Q-Cartier divisor
D supported on X0. Then

(„ · „n
triv) = ((„ ≠ „triv) · „n

triv) = (D · flúLn
A1) = (flúD · Ln

A1) = V ordE0(D),

with E0 the strict transform of X ◊ {0} on X . Theorem 6.7 yields the
desired conclusion. ⇤

Proposition 7.8. — The non-Archimedean functionals INA and JNA

are translation invariant and homogeneous. On the space of semipositive
metrics, they are nonnegative and satisfy

(7.3) 1
n JNA 6 INA ≠ JNA 6 nJNA.

When L is ample, we further have

JNA(„) = sup supp DH„ ≠
⁄

R
⁄ DH„(d⁄)

for all positive metrics „ œ HNA(L).

Proof. — Translation invariance and homogeneity follow directly from
Lemma 6.13. Now assume „ is semipositive. Then (7.2) shows that INA(„)>
0, JNA(„) > 0, and

V ≠1 ((„ ≠ „triv) · „n
triv) + nV ≠1 ((„ ≠ „triv) · „n)

6 (n + 1)ENA(„) 6 nV ≠1 ((„ ≠ „triv) · „n
triv) + V ≠1 ((„ ≠ „triv) · „n) .

This implies

n
!
INA(„) ≠ JNA(„)

"
= n

!
ENA(„) ≠ V ≠1 ((„ ≠ „triv) · „n)

"

> V ≠1 ((„ ≠ „triv) · „n
triv) ≠ ENA(„) = JNA(„),

and similarly for the second inequality in (7.3).
The final assertion is a consequence of Lemma 7.3 and Lemma 7.7. ⇤
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The above result shows that the functionals JNA and INA are equivalent
on the space of semipositive metrics, in the following sense:

n + 1
n

JNA 6 INA 6 (n + 1)JNA.

We next show that they are also equivalent to the L1-norm Î ·Î1 on positive
metrics.

Theorem 7.9. — Assume L is ample. Then, for every positive metric
„ œ HNA(L), we have

cnJNA(„) 6 Î„Î1 6 2JNA(„)

with cn := 2nn/(n + 1)n+1. In particular, JNA(„) = 0 i� „ = „triv + c for
some c œ Q.

Proof. — The final assertion follows from Theorem 6.8. By translation
invariance, we may assume, after replacing „ with „ + c, that ‹ := DH„

has barycenter ⁄̄ = 0. By Proposition 7.8 and Definition 6.5, we then have

JNA(„) = ⁄max = sup supp ‹

and Î„Î1 =
s
R |⁄|d‹. By Theorem 5.3, f(⁄) = ‹{x > ⁄}1/n is further

concave on (≠Œ, ⁄max). Theorem 7.9 is now a consequence of Lemma 7.10
below. ⇤

Lemma 7.10. — Let ‹ be a probability measure on R with compact
support and such that

s
R ⁄ d‹ = 0. Assume also that f(⁄) := ‹{x > ⁄}1/n

is concave on (≠Œ, ⁄max), with ⁄max = max supp ‹. Then

(7.4) cn⁄max 6
⁄

|⁄|d‹ 6 2⁄max,

with cn as above.

Proof. — Since
s
R ⁄ d‹ = 0, we have

⁄

R
|⁄|d‹ = 2

⁄ ⁄max

0
⁄ d‹,

giving the right-hand inequality in (7.4). Our goal is to show that
⁄ ⁄max

0
⁄ d‹ > nn

(n + 1)n+1 ⁄max.

After scaling, we may and do assume for simplicity that ⁄max = 1. Since ‹
is the distributional derivative of ≠f(⁄)n, it is easy to check that

⁄ 1

0
⁄ d‹ =

⁄ 1

0
f(⁄)nd⁄ =

⁄ 0

≠Œ
(1 ≠ f(⁄)n)d⁄.
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Set a := f Õ(0+) < 0 and b := f(0) œ (0, 1). By concavity of f on (≠Œ, 1),
we have f(⁄) 6 a⁄ + b on (≠Œ, 1) and

f(⁄) > b(1 ≠ ⁄) + f(1+) > b(1 ≠ ⁄)

on (0, 1). This last inequality yields

(7.5)
⁄ 1

0
⁄ d‹ =

⁄ 1

0
f(⁄)nd⁄ > bn

⁄ 1

0
(1 ≠ ⁄)nd⁄ = bn

n + 1 .

The first one shows that
⁄ 1

0
(a⁄ + b)n d⁄ >

⁄ 1

0
f(⁄)nd⁄ =

⁄ 0

≠Œ
(1 ≠ f(⁄)n) d⁄

>
⁄ 0

⁄0

(1 ≠ (a⁄ + b)n) d⁄,

with ⁄0 < 0 defined by a⁄0 + b = 1. Computing the integrals, we infer
1

a(n + 1)
!
(a + b)n+1 ≠ bn+1"

> ≠⁄0 + 1
a(n + 1)

!
1 ≠ bn+1"

,

i.e.
(a + b)n+1 ≠ bn+1 6 ≠a⁄0(n + 1) + 1 ≠ bn+1.

Since ≠a⁄0 = b ≠ 1 and a + b > f(1≠) > 0, this shows that 0 6 (b ≠ 1) ·
(n+1)+1, i.e. b > n

n+1 . Plugging this into (7.5) yields the desired result. ⇤

Remark 7.11. — The inequalities in Theorem 7.9 can be viewed as non-
Archimedean analogues of [22, (61)] and [23, Proposition 5.5].

Remark 7.12. — In our notation, the expression for the minimum norm
Î(X , L)Îm given in [25, Remark 3.11] reads Î(X , L)Îm = 1

n+1 („n+1) ≠
((„ ≠ „triv) · „n), i.e.

V ≠1Î(X , L)Îm = INA(„) ≠ JNA(„),

where „ œ HNA(L) denotes the metric induced by (X , L). It therefore
follows from our results that the minimum norm is equivalent to the L1-
norm on positive metrics.

7.3. The non-Archimedean Mabuchi functional

From now on we assume that the base field k has characteristic 0. We
still assume that X is a normal projective variety and L a nef and big Q-
line bundle on X. Fix a boundary B on X. Recall the notation introduced
in §4.4 for the relative canonical and log canonical divisors.
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When L is ample, we can rewrite the definition of the Donaldson–Futaki
invariant with respect to ((X, B); L) of a normal test configuration (X , L)
(see Definition 3.17) as

(7.6) DFB(X , L) = V ≠1(K(X̄ ,B)/P1 · L̄n) + S̄BENA(X , L).

This formula also makes sense when L is not ample. Since canonical
divisor classes are compatible under push-forward, the projection formula
shows that DFB is invariant under pull-back, hence descends to a func-
tional, also denoted DFB , on non-Archimedean metrics on L. While it is
straightforward to see that DFB is translation invariant, it is, however, not
homogeneous, and we therefore introduce an ‘error term’ to recover this
property.

Definition 7.13. — The non-Archimedean Mabuchi functional with
respect to ((X, B); L) is

MNA
B („) : = DFB(„) + V ≠1 ((X0,red ≠ X0) · Ln)(7.7)

= V ≠1
1

K log
(X̄ ,B̄)/P1 · L̄n

2
+ S̄BENA(X , L),(7.8)

for any normal test configuration (X , L) representing „.

Proposition 7.14. — The non-Archimedean Mabuchi functional MNA
B

is translation invariant and homogeneous.

Proof. — Translation invariance is straightforward to verify. As for ho-
mogeneity, it is enough to prove it for

(X , L) ‘æ
1

K log
(X̄ ,B)/P1 · L̄n

2
.

As in [59, §3], this, in turn, is a consequence of the pull-back formula
for log canonical divisors. More precisely, let (Xd, Ld) be the normalized
base change of (X , L), and denote by fd : P1 æ P1 and gd : X̄d æ X̄ the
induced finite morphisms, both of which have degree d. By (4.6) we have
K log

(X̄d,B̄d)/P1 = gú
dK log

(X̄ ,B̄)/P1 . Hence we get

(7.9)
1

K log
(X̄d,B̄d)/P1 · L̄n

d

2
= d

1
K log

(X̄ ,B̄)/P1 · L̄n
2

by the projection formula. ⇤

Proposition 7.15. — We have MNA
B („) 6 DFB(„) when „ is semipos-

itive. Further, equality holds if „ is represented by a normal test configu-
ration (X , L) with X0 reduced.
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Indeed, the ‘error term’ in (7.7) is nonpositive since L̄ is relatively semi-
ample. While equality does not always hold in Proposition 7.15, we have
the following useful result.

Proposition 7.16. — For every non-Archimedean metric „ on L there
exists d0 = d0(„) œ Z>0 such that DFB(„d) = MB(„d) = dMNA

B („) for all
d divisible by d0.

Proof. — Let (X , L) be any normal representative of „. Then a normal
representative (Xd, Ld) of „d is given by the normalization of the base
change of (X , L) by t ‘æ td. It is well-known (see e.g. [79, Tag 09IJ]) that the
central fiber of Xd is reduced for d su�ciently divisible. Then DFB(„d) =
MB(„d), whereas MB(„d) = dMB(„) by Proposition 7.14. ⇤

7.4. Entropy and Ricci energy

Next we define non-Archimedean analogues of the entropy and Ricci
energy functionals, and prove that the Chen–Tian formula holds.

Definition 7.17. — We define the non-Archimedean entropy HNA
B („)

of a non-Archimedean metric „ on L by
⁄

Xdiv
A(X,B)(v) MANA(„),

where MANA(„) is the non-Archimedean Monge–Ampère measure of „,
defined in §6.7.

Concretely, pick a normal test configuration (X , L) for (X, L) represent-
ing „, and write X0 =

q
E bEE and vE = b≠1

E r(ordE). Then

(7.10) HNA
B („) := V ≠1

ÿ

E

A(X,B)(vE)bE(E · Ln).

Note that HNA
B („) > 0 whenever (X, B) is lc and „ is semipositive. Indeed,

in this case we have A(X,B)(vE) > 0 and (E · Ln) > 0 for all E. See §9.1
for much more precise results.

As an immediate consequence of (7.10) and Corollary 4.12, we have

Corollary 7.18. — If (X , L) is a normal representative of „, with X
dominating XA1 , then

(7.11) HNA
B („) = V ≠1

1
K log

(X̄ ,B̄)/P1 · L̄n
2

≠ V ≠1
1

flúK log
(XP1 ,BP1 )/P1 · L̄n

2
,

where fl : X̄ æ XP1 is the canonical morphism.
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Corollary 7.19. — The non-Archimedean entropy functional HNA
B is

translation invariant and homogeneous.

Proof. — Translation invariance is clear from the definition, since
MANA(„+c) = MA(„), and homogeneity follows from (7.9) and (7.11). ⇤

Definition 7.20. — The non-Archimedean Ricci energy RNA
B („) of a

non-Archimedean metric „ on L is

RNA
B („) := V ≠1 (Âtriv · „n) ,

with Âtriv the trivial non-Archimedean metric on K(X,B).

More concretely, if (X , L) is a normal representative of „, with X domi-
nating XA1 , then

(7.12) RNA
B („) = V ≠1

1
flúK log

(XP1 ,BP1 )/P1 · L̄n
2

= V ≠1 !
púK(X,B) · L̄n

"
,

with p : X̄ æ X the composition of fl : X̄ æ XP1 with XP1 æ X.

Proposition 7.21. — The non-Archimedean Ricci energy functional
RNA

B is homogenous and satisfies RNA
B („ + c) = RNA

B („) ≠ S̄Bc for any
c œ Q.

Proof. — Homogeneity follows from (7.9) and (7.12). The formula for
RNA

B („ + c) also follows from (7.12). Indeed, set M̄ := flúK log
(XP1 ,BP1 )/P1 .

Then

RNA
B („ + c) ≠ RNA(„) = V ≠1(M̄ · (L̄ + cX0)n) ≠ V ≠1(M̄ · L̄n)

= cnV ≠1(M̄ · L̄n≠1 · X0) = cnV ≠1(KX · Ln) = ≠S̄Bc.

by flatness of X̄ æ P1, since M̄|X1 ƒ K(X,B), L̄|X1 ƒ L, and X0·X0 = 0. ⇤
As an immediate consequence of (7.8), (7.11) and (7.12) we get

Proposition 7.22. — The following version of the Chen–Tian formula
holds:

MNA
B = HNA

B + RNA
B + S̄BENA.

Remark 7.23. — In the terminology of [61], HNA
B („) + V ≠1 ·

((X0 ≠ X0,red) · Ln) coincides (up to a multiplicative constant) with the
‘discrepancy term’ of the Donaldson–Futaki invariant, while S̄B ENA(„) +
RNA

B („) corresponds to the ‘canonical divisor part’.
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7.5. Functoriality

Consider a birational morphism µ : X Õ æ X, with X Õ a normal
projective variety. Set LÕ := µúL and define a boundary BÕ on X Õ by
K(XÕ,BÕ) = µúK(X,B) and µúBÕ = B. For any non-Archimedean met-
ric „ on L, let „Õ = µú„ be the pullback, see §6.2. Note that LÕ is big
and nef. By the projection formula, we have V Õ := ((LÕ)n) = V and
S̄BÕ := n(V Õ)≠1 !

≠K(XÕ,BÕ) · (LÕ)n≠1"
= S̄B .

Let us say that a functional F = FX,B on non-Archimedean metrics
is pull-back invariant if FXÕ,BÕ(„Õ) = FX,B(„) for every non-Archimedean
metric „ on L.

Proposition 7.24. — The functionals ENA, INA, JNA, DFNA
B , MNA

B ,
HNA

B and RNA
B are all pullback invariant.

Proof. — Let (X , L) be a normal representative of „ such that X dom-
inates XA1 . Pick a normal test configuration X Õ that dominates X Õ

A1 and
such that unique Gm-equivariant birational map X Õ æ X extending µ is a
morphism. Then „Õ is represented by (X Õ, LÕ), where LÕ is the pullback of
L. The pullback-invariance of the all the functionals now follows from the
projection formula for the induced map X̄ Õ æ X̄ . ⇤

Recall from §6.2 that if „ is a non-Archimedean metric on L, then r„
is a non-Archimedean metric on rL for any r œ Q>0. One directly verifies
that the functionals ENA, INA and JNA are homogeneous of degree 1 in
the sense that ENA(r„) = rENA(„) etc, whereas the functionals DFB , MB ,
HB and RB are homogeneous of degree 0, that is, DFB(r„) = DFB(„) etc.

7.6. The log Kähler–Einstein case

In the log Kähler–Einstein case, i.e. when K(X,B) is proportional to L,
the formula for MNA

B takes the following alternative form.

Lemma 7.25. — Assume that K(X,B) © ⁄L for some ⁄ œ Q. Then

MNA
B = HNA

B + ⁄
!
INA ≠ JNA"

.

Proof. — Let Âtriv and „triv be the trivial non-Archimedean metrics on
K(X,B) and L, respectively. Since K(XP1 ,BP1 ) © ⁄LP1 we get

RNA
B („) = V ≠1(Âtriv · „n) = ⁄V ≠1 („triv · „n) .
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Further, S̄B = ≠n⁄, so we infer

RNA
B („) + S̄BENA(„) = ⁄V ≠1

5
(„triv · „n) ≠ n

n + 1(„n+1)
6

= ⁄V ≠1
5

1
n + 1(„n+1) ≠ ((„ ≠ „triv) · „n)

6

= ⁄
#
ENA(„) ≠ V ≠1 ((„ ≠ „triv) · „n)

$

= ⁄
!
INA(„) ≠ JNA(„)

"
,

which completes the proof in view of the Chen–Tian formula. ⇤

7.7. The non-Archimedean Ding functional

In this section, (X, B) denotes a weak log Fano pair, i.e. X is a normal,
projective variety and B is a Q-Weil divisor such that (X, B) is subklt with
L := ≠K(X,B) big and nef. For example, X could be smooth, with ≠KX

ample (and B = 0).
The following non-Archimedean version of the Ding functional first ap-

peared in [4].(5) It plays a crucial role in the variational approach to the
Yau–Tian–Donaldson conjecture in [7]; see also [39, 40]. The usual Ding
functional was introduced in [26].

Definition 7.26. — The non-Archimedean Ding functional is defined
by

DNA
B := LNA

B ≠ ENA,

with
LNA

B („) := inf
v

(A(X,B)(v) + („ ≠ „triv)(v)),

the infinimum taken over all valuations v on X that are divisorial or trivial.

Recall that „ ≠ „triv is a non-Archimedean metric on OX , which we
identify with a bounded function on divisorial valuations.

Proposition 7.27. — The non-Archimedean Ding functional DNA
B is

translation invariant, homogenous, and pullback invariant.

Proof. — By the corresponding properties of the functional ENA, it suf-
fices to prove that LNA

B is homogenous, pullback invariant, and satisfies
LNA

B („ + c) = LNA
B („) + c for c œ Q.

(5) This appears in [4, Proposition 3.8]. See also Proposition 7.29 below.
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The latter equality is clear from the definition, and the homogeneity of
DNA

B follows from (6.2) applied to the metric „ ≠ „triv on OX , together
with the fact that A(X,B)(tv) = tA(X,B)(v) for t œ Q+. Functoriality is
also clear. Indeed, with notation as in §7.5, and with the identification of
divisorial (or trivial) valuations on X and X Õ, we have, by construction,
„Õ ≠ „Õ

triv = „ ≠ „triv and A(X,B) = A(XÕ,BÕ). Thus LNA
BÕ („Õ) = LNA

B („). ⇤

Proposition 7.28. — For every non-Archimedean metric „ on L, we
have DNA

B („) 6 JNA(„).

Proof. — The trivial valuation vtriv on X satisfies A(X,B)(vtriv) = 0 and
ENA(„) + JNA(„) = („ ≠ „triv)(vtriv). Hence

LNA
B („) 6 A(X,B)(vtriv) + („ ≠ „triv)(vtriv) = ENA(„) + JNA(„),

which yields DNA
B („) 6 JNA(„). ⇤

In the definition of the Ding functional, we take the infimum over all
divisorial valuations on X. As the next result shows, this is neither practical
nor necessary.

Proposition 7.29. — Let „ be a non-Archimedean metric on L =
≠K(X,B) determined on a normal test configuration (X , L) for (X, L), such
that (X , B + X0,red) is a sublc pair. Write

L + K log
(X ,B)/A1 = OX (D),

for a Q-Cartier divisor D on X supported on X0. Then

LNA
B („) = lct(X ,B+X0,red≠D)(X0)

= min
E

!
A(X,B)(vE) + („ ≠ „triv)(vE)

"
,

where E ranges over the irreducible components of X0.

Note that the assumption that (X , B + X0,red) be sublc is satisfied when
(X , B + X0) is log smooth (even when X0 is not necessarily reduced).

Proposition 7.29 shows in particular that the definition of DNA
B given

above is compatible with [4, 39]. By [4, Proposition 3.8], the non-Archi-
medean Ding functional is thus the limit of the usual Ding functional in
the sense of (0.2); hence the name.

Lemma 7.30. — Let w be a divisorial valuation w on X centered on X0
and normalized by w(X0) = 1, and let v = r(w) be the associated divisorial
(or trivial) valuation on X. Then

(7.13) A(X ,B+X0,red)(w) + w(D) = A(X,B)(v) + („ ≠ „triv)(v).
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In particular, ordE(D) = bE(A(X,B)(vE) + („ ≠ „triv)(vE)) for every irre-
ducible component E of X0.

Proof. — Pick any normal test configuration X Õ for X dominating both
X and XA1 via µ : X Õ æ X and fl : X Õ æ XA1 , respectively, such that
w = b≠1

EÕ ordEÕ for an irreducible component EÕ of X Õ
0. By (4.4) and (4.5)

we have

K log
(X Õ,BÕ)/A1 ≠ µúK log

(X ,B)/A1 =
ÿ

EÕ

A(X ,B+X0,red)(ordEÕ)EÕ,

and
K log

(X Õ,BÕ)/A1 ≠ flúK log
(XA1 ,BA1 )/A1 =

ÿ

EÕ

bEÕA(X,B)(vEÕ)EÕ,

respectively. We also have

µúL = ≠flúK log
(XA1 ,BA1 )/A1 +

ÿ

EÕ

bEÕ(„ ≠ „triv)(vEÕ)EÕ

Putting this together, and using D = L + K log
(X ,B)/A1 , we get

µúD +
ÿ

EÕ

A(X ,B+X0,red)(ordEÕ)EÕ

=
ÿ

EÕ

bEÕ(A(X,B)(‹EÕ) + („ ≠ „triv)(vEÕ))EÕ,

and taking the coe�cient along EÕ yields (7.13). Finally, the last assertion
follows since A(X ,B+X0,red)(w) = 0 when w = b≠1

E ordE for any irreducible
component E of X0. ⇤

Proof of Proposition 7.29. — Recall that lct(X ,B+X0,red≠D)(X0) is the
supremum of c œ R such that

0 6 A(X ,B+X0,red≠D+cX0)(w) = A(X ,B+X0,red)(w) + w(D) ≠ cw(X0)

for all divisorial valuations w on X . Here it su�ces to consider w cen-
tered on X0. Indeed, otherwise w(D) = w(X0) = 0 and A(X ,B+X0,red)(w) =
A(XA1 ,BA1 )(w) > 0, since (XA1 , BA1) is sublc. If w is centered on X0, then
we may after scaling assume that w(X0) = 1. In this case, (7.13) applies,
and shows that lct(X ,B+X0,red≠D)(X0) = LNA(„).

It remains to prove that LNA(„)=¸ :=minE(A(X,B)(vE)+(„≠„triv)(vE)),
where E ranges over irreducible components of X0. The inequality LNA(„)6
¸ is obvious. For the reverse inequality, note that Lemma 7.30 implies
D > ¸X0. We now use the assumption that (X , B+X0,red) is sublc. Consider
w and v as above. On the one hand, (X , B + X0,red) being sublc implies
A(X ,B+X0,red)(w) > 0. On the other hand, we have w(D) > ¸ since D > ¸X0.
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Thus (7.13) yields A(X,B)(v) + („ ≠ „triv)(v) > ¸. Since this is true for all
divisorial or trivial valuations on X, we get LNA(„) > ¸, which completes
the proof. ⇤

7.8. Ding vs Mabuchi

We continue to assume that (X, B) is a weak log Fano pair. By
Lemma 7.25, the non-Archimedean Mabuchi functional is given by

(7.14) MNA
B = HNA

B ≠ (INA ≠ JNA).

For any normal test configuration (X , L) representing a non-Archimedean
metric „ on L, we can write this as

MNA
B („) = V ≠1((K log

(X ,B)/A1 + L) · Ln) ≠ ENA(„)(7.15)

=
ÿ

E

cE(A(X,B)(vE) + („ ≠ „triv)(vE)) ≠ ENA(„),(7.16)

where E ranges over the irreducible components of X0 and cE :=
V ≠1bE(Ln · E). Note that

q
E cE = 1 and that cE > 0 if „ is semipos-

itive.

Definition 7.31. — A non-Archimedean metric „ on L = ≠K(X,B)
is anticanonical if it is represented by a normal test configuration (X , L)
for (X, ≠K(X,B)) such that (X , B + X0,red) is sublc and such that L =
≠K log

(X ,B)/A1 + cX0 for some c œ Q.

Note that if „ is anticanonical, then so is „ + c for any c œ Q.

Proposition 7.32. — For every semipositive non-Archimedean metric
„ on L, we have

DNA
B („) 6 MNA

B („),

with equality if „ is anticanonical.

Remark 7.33. — In Kähler geometry, the inequality DB(„) 6 MB(„) is
well-known, and equality holds i� „ is a Kähler–Einstein metric, see e.g. [6,
Lemma 4.4]. Proposition 7.32 therefore suggests that semipositive anti-
canonical non-Archimedean metrics on ≠K(X,B) play the role of (weak)
non-Archimedean Kähler–Einstein metrics.
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Proof. — Consider the expression (7.16) for MNA(„). Since „ is semi-
positive, we have cE > 0 and

q
E cE = 1. This implies

MNA
B („) > min

E
(A(X,B)(vE) + („ ≠ „triv)(vE)) ≠ ENA(„)

> inf
v

(A(X,B)(v) + („ ≠ „triv)(v)) ≠ ENA(„) = DNA
B („).

Now suppose „ is anticanonical and let (X , L) be a test configuration for
(X, L) such that (X , B+X0,red) is sublc and such that L = ≠K log

(X ,B)/A1 +cX0
for some c œ Q.

On the one hand, (7.15) gives MNA
B („) = c ≠ ENA(„). On the other

hand, Lemma 7.30 yields A(vE) + („ ≠ „triv)(vE) = c for all irreducible
components E of X0. Thus Proposition 7.29 implies that DNA

B („) = c ≠
ENA(„), which completes the proof. ⇤

8. Uniform K-stability

We continue working with a pair (X, B), where X is a normal projective
variety over a algebraically closed field k of characteristic zero. In this
section, we further assume that the Q-line bundle L is ample.

8.1. Uniform K-stability

In the present language, Definition 3.18 says that ((X, B); L) is K-semi-
stable i� DFB(„) > 0 for all positive metrics „ œ HNA(L), while K-stability
further requires that DFB(„) = 0 only when „ = „triv + c for some c œ Q.
In line with the point of view of [78], we introduce:

Definition 8.1. — The polarized pair ((X, B); L) is Lp-uniformly K-
stable if DFB > ”Î · Îp on HNA(L) for some uniform constant ” > 0. For
p = 1, we simply speak of uniform K-stability.

Since Î · Îp > Î · Î1, Lp-uniform K-stability implies (L1-)uniform K-
stability for any p > 1. Note also that uniform K-stability implies (as it
should!) K-stability, thanks to Theorem 6.8.

Proposition 8.2. — The polarized pair ((X, B); L) is K-semistable i�
MNA

B > 0 on HNA(L). It is Lp-uniformly K-stable i� MNA
B > ”Î · Îp on

HNA(L) for some ” > 0. For p = 1, this is also equivalent to MNA
B > ”JNA

for some ” > 0.
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Proof. — We prove the second point, the first one being similar (and
easier). The if part is clear, since MNA

B 6 DFB . For the reverse implica-
tion, let „ œ HNA(L). By Proposition 7.15 we can pick d > 1 such that
MNA

B („d) = DFB(„d). By assumption, DFB(„d) > ”Î„dÎp, and we con-
clude by homogeneity of MNA

B and Î · Îp.
The final assertion is now a consequence of the equivalence between JNA

and Î · Î1 proved in Theorem 7.9. ⇤
Remark 8.3. — By Remark 7.12, our notion of uniform K-stability is

also equivalent to uniform K-stability with respect to the minimum norm
in the sense of [25].

Remark 8.4. — It is clear that, for any r œ Q>0 and p > 1, ((X, B); L) is
K-semistable (resp. Lp-uniformly K-stable) i� ((X, B); rL) is K-semistable
(resp. Lp-uniformly K-stable).

The next result confirms G. Székelyhidi’s expectation that p = n
n≠1 is a

threshold value for Lp-uniform K-stability, cf. [77, §3.1.1].

Proposition 8.5. — A polarized pair ((X, B) ; L) cannot be Lp-
uniformly K-stable unless p 6 n

n≠1 . More precisely, any polarized pair
((X, B); L) admits a sequence „Á œ HNA(L), parametrized by 0 < Á π 1
rational, such that MNA

B („Á) ≥ Án, Î„ÁÎp ≥ Á1+ n
p for each p > 1.

Proof. — We shall construct „Á as a small perturbation of the trivial
metric. By Remark 8.4 we may assume that L is an actual line bundle. Let
x œ X \ supp B be a regular closed point, and fl : X æ XA1 be the blow-up
of (x, 0) (i.e. the deformation to the normal cone), with exceptional divisor
E. For each rational Á > 0 small enough, LÁ := flúLA1 ≠ ÁE is relatively
ample, and hence defines a normal, ample test configuration (X , LÁ) for
(X, L), with associated non-Archimedean metric „Á œ HNA(L).

Lemma 5.17 gives the following description of the filtration F •
Á R attached

to (X , LÁ):
F m⁄

Á H0(X, mL) =
)

s œ H0(X, mL) | vE(s) > m(⁄ + Á)
*

for ⁄ 6 0, and F m⁄
Á H0(X, mL) = 0 for ⁄ > 0. If we denote by F the

exceptional divisor of the blow-up X Õ æ X at x, then vE = ordF , and the
Duistermaat–Heckman measure DHÁ is thus given by

DHÁ{x > ⁄} = V ≠1 (flúL ≠ (⁄ + Á)F )n = 1 ≠ V ≠1(⁄ + Á)n

for ⁄ œ (≠Á, 0), DHÁ{x > ⁄} = 1 for ⁄ 6 ≠Á, and DHÁ{x > ⁄} = 0 for
⁄ > 0. Hence

DHÁ = nV ≠11[≠Á,0](⁄ + Á)n≠1d⁄ + (1 ≠ V ≠1Án)”0.
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We see from this that ⁄max = 0,

JNA(„Á) = ≠ENA(„Á) = ≠
⁄

R
⁄ DHÁ(d⁄)

= ≠ n

V

⁄ 0

≠Á

⁄(⁄ + Á)n≠1 d⁄ = O(Án+1),

and

Î„ÁÎp
p =

⁄

R

--⁄ ≠ ENA(„Á)
--p DHÁ(d⁄)

= nV ≠1
⁄ 0

≠Á

--⁄ + O(Án+1)
--p (⁄ + Á)n≠1d⁄ + (1 ≠ V ≠1Án)O(Áp(n+1))

= Áp+n

5
nV ≠1

⁄ 1

0
|t + O(Án)|p (1 ≠ t)n≠1dt + O(Án(p≠1)) + o(1)

6

= Áp+n(c + o(1))

for some c > 0. The estimate for MNA
B („Á) is a special case of Proposi-

tion 9.12 below, but let us give a direct proof. By (7.8) it su�ces to prove
that (K log

(X̄ ,B̄)/P1 ·L̄n
Á ) ≥ Án. Here K log

(X̄ ,B̄)/P1 = flúK log
(XP1 ,BP1 ) +(n+1)E. Since

flúEj = 0 for 0 6 j 6 n and ((≠E)n+1) = ≠1, the projection formula yields
(K log

(X̄ ,B̄)/P1 · L̄n
Á ) = (n + 1)Án. ⇤

8.2. Uniform Ding stability

Now consider the log Fano case, that is, (X, B) is klt and L := ≠K(X,B) is
ample. We can then consider stability with respect to the non-Archimedean
Ding functional DNA

B on HNA defined in §7.7.
Namely, following [7] (see also [39, 40]) we say that (X, B) is Ding

semistable if DNA
B > 0, and uniformly Ding stable if DNA

B > ”JNA for
some ” > 0.

A proof of the following result in the case when X is smooth and B = 0
appears in [7]. The general case is treated in [40].

Theorem 8.6. — Let X be a normal projective variety and B an e�ec-
tive boundary on X such that (X, B) is klt and L := ≠K(X,B) is ample.
Then, for any ” œ [0, 1], we have MNA

B > ”JNA on HNA i� DNA
B > ”JNA on

HNA. In particular, ((X, B); L) is K-semistable (resp. uniformly K-stable)
i� (X, B) is Ding-semistable (resp. uniformly Ding-stable).
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9. Uniform K-stability and singularities of pairs

In this section, the base field k is assumed to have characteristic 0. We
still assume X is a normal variety, unless otherwise stated.

9.1. Odaka-type results for pairs

Let B be an e�ective boundary on X. Recall that the pair (X, B) is lc
(log canonical) if A(X,B)(v) > 0 for all divisorial valuations v on X, while
(X, B) is klt if A(X,B)(v) > 0 for all such v.

Theorem 9.1. — Let (X, L) be a normal polarized variety, and B an
e�ective boundary on X. Then

(X, B) lc ≈∆ HNA
B > 0 on HNA(L)

and
((X, B); L) K-semistable =∆ (X, B) lc.

The proof of this result, given in §9.3, follows rather closely the line of
argument of [63]. The second implication is also observed in [66, Theo-
rem 6.1]. The general result of [63], dealing with the non-normal case, is
discussed in §9.4.

Theorem 9.2. — Let (X, L) be a normal polarized variety and B an
e�ective boundary on X. Then the following assertions are equivalent:

(i) (X, B) is klt;
(ii) there exists ” > 0 such that HNA

B > ”JNA on HNA(L);
(iii) HNA

B („) > 0 for every „ œ HNA(L) that is not a translate of „triv.

We prove this in §9.5. The proof of (iii) =∆ (i) is similar to that of [63,
Theorem 1.3] (which deals with the Fano case), while that of (i) =∆ (ii)
relies on an Izumi-type estimate (Theorem 9.14). As we shall see, (ii) holds
with ” equal to the global log canonical threshold of ((X, B); L) (cf. Propo-
sition 9.16 below).

The above results have the following consequences in the ‘log Kähler–
Einstein case’, i.e. when K(X,B) © ⁄L for some ⁄ œ Q. After scaling L, we
may assume ⁄ = 0 or ⁄ = ±1.

First, we have a uniform version of [66, Theorem 4.1(i)]. Closely related
results were independently obtained in [25, §3.4].
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Corollary 9.3. — Let X be a normal projective variety and B an
e�ective boundary on X such that L := K(X,B) is ample. Then the following
assertions are equivalent:

(i) (X, B) is lc;
(ii) ((X, B); L) is uniformly K-stable, with MNA

B > 1
n JNA on HNA(L);

(iii) ((X, B); L) is K-semistable.

Next, in the log Calabi–Yau case we get a uniform version of [66, Theo-
rem 4.1(ii)]:

Corollary 9.4. — Let (X, L) be normal polarized variety, B an ef-
fective boundary on X, and assume that K(X,B) © 0. Then ((X, B); L) is
K-semistable i� (X, B) is lc. Further, the following assertions are equiva-
lent:

(i) (X, B) is klt;
(ii) ((X, B); L) is uniformly K-stable;
(iii) ((X, B); L) is K-stable.

Remark 9.5. — By [61, Corollary 3.3], there exist polarized K-stable
Calabi–Yau orbifolds (which have log terminal singularities) (X, L) that are
not asymptotically Chow (or, equivalently, Hilbert) semistable. In view of
Corollary 9.4, it follows that uniform K-stability does not imply asymptotic
Chow stability in general.

Finally, in the log Fano case we obtain:

Corollary 9.6. — Let X be a normal projective variety and B an
e�ective boundary on X such that L := ≠K(X,B) is ample. If ((X, B); L) is
K-semistable, then HNA

B > 1
n JNA on HNA(L); in particular, (X, B) is klt.

A partial result in the reverse direction can be found in Proposition 9.17.
See also [66, Theorem 6.1] and [25, Theorem 3.39] for closely related results.
Corollaries 9.3, 9.4 and 9.6 are proved in §9.6.

9.2. Lc and klt blow-ups

The following result, due to Y. Odaka and C. Xu, deals with lc blow-ups.
The proof is based on an ingenious application of the MMP.
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Theorem 9.7 ([67, Theorem 1.1]). — Let B be an e�ective boundary
on X with coe�cients at most 1. Then there exists a unique projective
birational morphism µ : X Õ æ X such that the strict transform BÕ of B on
Y satisfies:

(i) the exceptional locus of µ is a (reduced) divisor E;
(ii) (X Õ, E + BÕ) is lc and KXÕ + E + BÕ is µ-ample.

Corollary 9.8. — Let B be an e�ective boundary on X, and assume
that (X, B) is not lc. Then there exists a closed subscheme Z µ X whose
Rees valuations v all satisfy A(X,B)(v) < 0.

Proof. — If B has an irreducible component F with coe�cient > 1, then
A(X,B)(ordF ) < 0, and Z := F has the desired property, since ordF is its
unique Rees valuation (cf. Example 1.11).

If not, Theorem 9.7 applies. Denoting by Ai := A(X,B)(ordEi) the log
discrepancies of the irreducible component Ei of E, we have

(9.1) KXÕ + E + BÕ = fiúK(X,B) +
ÿ

i

AiEi,

which proves that
q

i AiEi is µ-ample, and hence Ai < 0 by the nega-
tivity lemma (or Lemma 1.13). Proposition 1.12 now yields the desired
subscheme. ⇤

We next prove an analogous result for klt pairs, using a well-known and
easy consequence of the MMP as in [10].

Proposition 9.9. — Let B be an e�ective boundary, and assume that
(X, B) is not klt. Then there exists a closed subscheme Z µ X whose Rees
valuations v all satisfy A(X,B)(v) 6 0.

Proof. — If B has an irreducible component F with coe�cient at least
1, then A(X,B)(ordF ) 6 0, and we may again take Z = F .

Assume now that B has coe�cients < 1. Let fi : X Õ æ X be a log
resolution of (X, B). This means X Õ is smooth, the exceptional locus E of
fi is a (reduced) divisor, and E + BÕ has snc support, with BÕ the strict
transform of B. If we denote by Ai := A(X,B)(ordEi) the log discrepancies
of the irreducible component Ei of E, then (9.1) holds, and hence

(9.2) KXÕ + (1 ≠ Á)E + BÕ = fiú(KX + B) +
ÿ

i

(Ai ≠ Á)Ei

for any 0 < Á < 1. If we pick Á smaller than minAi>0 Ai, then the Q-
divisor D :=

q
i(Ai ≠ Á)Fi is fi-big (since the generic fiber of fi is a point),

and fi-numerically equivalent to the log canonical divisor of the klt pair
(X Õ, (1 ≠ Á)E + BÕ) by (9.2).
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Picking any m0 > 1 such that m0D is a Cartier divisor, [10, Theorem 1.2]
shows that the OX -algebra of relative sections

R(X Õ/X, m0D) :=
n

mœN
µúOXÕ(mm0D)

is finitely generated. Its relative Proj over X yields a projective birational
morphism µ : Y æ X, with Y normal, such that the induced birational map
„ : X Õ 99K Y is surjective in codimension one (i.e. „≠1 does not contract
any divisor) and „úD =

q
i(Ai ≠ Á)„úEi is µ-ample.

Since D is µ-exceptional and „ is surjective in codimension 1, „úD is also
µ-exceptional. By Lemma 1.13, ≠„úD is e�ective and its support coincides
the exceptional locus of µ. Hence that the µ-exceptional prime divisors are
exactly the strict transforms of those Ei’s with Ai ≠ Á < 0, i.e. Ai 6 0 by
the definition of Á. As before, we conclude using Proposition 1.12. ⇤

9.3. Proof of Theorem 9.1

If (X, B) is lc, then it is clear from the definition of the non-Archimedean
entropy functional that HNA

B > 0 on HNA(L).
Now assume that (X, B) is not lc. By Corollary 9.8, there exists a closed

subscheme Z µ X whose Rees valuations v all satisfy A(X,B)(v) < 0.
Corollary 4.10 then yields a normal, ample test configuration (X , L) of
(X, L) such that

{vE | E a nontrivial irreducible component of X0}
coincides with the (nonempty) set of Rees valuations of Z. Thus AX(vE) <
0 for all nontrivial irreducible components E of X0.

Denote by „ œ HNA the non-Archimedean metric defined by (X , L). We
directly get HNA

B („) < 0, so HNA
B ”> 0 on HNA. Further, Proposition 9.12

implies that the positive metric „Á := Á„+(1≠Á)„triv satisfies MNA
B („Á) < 0

for 0 < Á π 1. Hence ((X, B); L) cannot be K-semistable. This completes
the proof.

Definition 9.10. — Let (X , L) be a normal, semiample test config-
uration for (X, L) representing a positive metric „ œ HNA(L). For each
irreducible component E of X0, let ZE µ X be the closure of the center
of vE on X, and set rE := codimX ZE . Then the canonical birational map
X 99K XA1 maps E onto ZE ◊ {0}. Let FE be the generic fiber of the
induced map E 99K ZE , and define the local degree degE(„) of „ at E as

degE(„) := (FE · LrE ).
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Since L is semiample on E µ X0, we have degE(„) > 0, and degE(„) > 0
i� E is not contracted on the ample model of (X , L). The significance
of these invariants is illustrated by the following estimate, whose proof is
straightforward.

Lemma 9.11. — With the above notation, assume that X dominates
XA1 via fl : X æ XA1 . Given 0 6 j 6 n and line bundles M1, . . . , Mn≠j on
X, we have, for 0 < Á π 1 rational:
1

E · (flúLA1 + ÁD)j · flú !
M1,A1 · . . . · Mn≠j,A1

"2

=

Y
]

[
ÁrE

Ë
degE(„)

!
j

rE

"!
ZE ·Lj≠rE ·M1 · . . . ·Mn≠j

"È
+ O(ÁrE+1) for j>rE

0 for j <rE .

Proposition 9.12. — Pick „ œ HNA(L) that is not a translate of „triv,
and let (X , L) be its unique normal ample representative. Set r := minE rE ,
with rE = codimX ZE and E running over all non-trivial irreducible com-
ponents of the ample model (X , L) of „ (and hence r > 1).

Let further B be a boundary on X. Then „Á := Á„ + (1 ≠ Á)„triv satisfies

JNA(„Á) = O(Ár+1), RNA
B („Á) = O(Ár+1),

and

MNA
B („Á) = HNA

B („Á) + O(Ár+1)

= Ár

C
V ≠1

ÿ

rE=r

degE(„)bE

!
ZE · Ln≠r

"
A(X,B)(vE)

D
+ O(Ár+1).

Proof. — Let (X Õ, LÕ) be a normal test configuration dominating (X , L)
and (XA1 , LA1). Write LÕ = flúLA1 + D, where fl : X Õ æ XA1 is the mor-
phism. Note that (X Õ, LÕ

Á), with LÕ
Á = flúLA1 +ÁD, is a representative of „Á.

By translation invariance of JNA and MNA, we may assume („ · „n
triv) = 0,

i.e. ordE0(D) = 0 for the strict transform E0 of X ◊ {0} to X Õ, by Theo-
rem 5.16. Then („Á·„n

triv) = 0, and hence JNA(„Á) = ≠ENA(„Á). Lemma 7.4
yields

(n + 1)V ENA(„Á) =
nÿ

j=0

1
ÁD · (flúLA1 + ÁD)j · flúLn≠j

A1

2
.

Since we have normalized D by ordE0(D) = 0, Lemma 9.11 implies
ENA(„Á) = O(Ár+1), and hence JNA(„Á) = O(Ár+1).
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Similarly,

V RNA
B („Á) =

1
flúK log

(XP1 ,BP1 )/P1 · (L̄Õ
Á)n

2

=
1

flúK log
(XP1 ,BP1 )/P1 · (L̄Õ

Á)n
2

≠
1

flúK log
(XP1 ,BP1 )/P1 · flúLn

P1

2

=
n≠1ÿ

j=0

1
ÁD · (flúLA1 + ÁD)j · flúLn≠j≠1

A1 · flúK log
(XP1 ,BP1 )/P1

2

= O(Ár+1).

The expression for MNA
B now follows from the Chen–Tian formula (see

Proposition 7.22) and Lemma 9.11 applied to

HNA
B („Á) = V ≠1

ÿ

E

A(X,B)(vE)bE (E · (flúLA1 + ÁD)n)

where E runs over the non-trivial irreducible components of X Õ
0. ⇤

9.4. The non-normal case

In this section we briefly sketch the proof of the following general result,
due to Odaka [63, Theorem 1.2].

Theorem 9.13. — Let X be deminormal scheme with KX Q-Cartier.
Let L be an ample line bundle on X, and assume that (X, L) is K-semi-
stable. Then X is slc.

Recall from Remark 3.19 that (X, L) is K-semistable i� DFÂB( ÂX , L̃) > 0
for all ample test configurations (X , L) for (X, L). Here ( ÂX, L̃) and ( ÂX , L̃)
denote the normalizations of (X, L) and (X , L), respectively, and ÂB is the
conductor, viewed as a reduced Weil divisor on ÂX. On the other hand, X
is slc i� ( ÂX, ÂB) is lc, by definition.

Assuming that X is not slc, i.e. ( ÂX, ÂB) not lc, our goal is thus to produce
an ample test configuration (X , L) for (X, L) such that DFÂB( ÂX , L̃) < 0.
By Theorem 9.7, the non-lc pair ( ÂX, ÂB) admits an lc blow-up µ : ÂX Õ æ ÂX.
As explained on [67, p. 332], Kollár’s gluing theorem implies that ÂX Õ is the
normalization of a reduced scheme X Õ, with a morphism X Õ æ X. As a
consequence, we can find a closed subscheme Z µ X whose inverse image
ÂZ µ ÂX is such that A( ÂX,ÂB)(v) < 0 for each Rees valuation v of ÂZ.

Let µ : X æ X ◊ A1 be the deformation to the normal cone of Z, with
exceptional divisor E, and set LÁ = µúLA1 ≠ ÁE with 0 < Á π 1. Since
the normalization ÂX of X is also the normalization of the deformation
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to the normal cone of ÂZ, we have A( ÂX,ÂB)(vE) < 0 for each irreducible
component E of ÂX0, and Proposition 9.12 gives, as desired, DFÂB( ÂX , L̃Á) < 0
for 0 < Á π 1.

9.5. The global log canonical threshold and proof of
Theorem 9.2

Recall from §1.5 the definition of the log canonical threshold of an e�ec-
tive Q-Cartier divisor D with respect to a subklt pair (X, B):

lct(X,B)(D) = inf
v

A(X,B)(v)
v(D) .

Similarly, given an ideal a and c œ Q+, we set

lct(X,B)(ac) := inf
v

A(X,B)(v)
v(ac) ,

with v(ac) := cv(a).
The main ingredient in the proof of (i) =∆ (ii) of Theorem 9.2 is the

following result.

Theorem 9.14. — If ((X, B); L) is a polarized subklt pair, then

(9.3) inf
D

lct(X,B)(D) = inf
a,c

lct(X,B)(ac),

where the left-hand infimum is taken over all e�ective Q-Cartier divisors
D on X that are Q-linearly equivalent to L, and the right-hand one is over
all non-zero ideals a µ OX and all c œ Q+ such that L ¢ ac is nef. Further,
these two infima are strictly positive.

Here we say that L ¢ ac is nef if µúL ≠ cE is nef on the normalized
blow-up µ : X Õ æ X of a, with E the e�ective Cartier divisor such that
a · OXÕ = OXÕ(≠E).

Definition 9.15. — The global log canonical threshold lct((X, B); L)
of a polarized subklt pair ((X, B); L) is the common value of the two infima
in Theorem 9.14.

Proof of Theorem 9.14. — Let us first prove that the two infima coincide.
Let D be an e�ective Q-Cartier divisor Q-linearly equivalent to L. Pick
m > 1 such that mD is Cartier, and set a := OX(≠mD) and c := 1/m.
Then v(ac) = v(D) for all v, and L ¢ ac is nef since L ≠ cmD is even
numerically trivial. Hence inf lct(X,B)(D) 6 inf lct(X,B)(ac).
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Conversely, assume that L ¢ac is nef. Let µ : X Õ æ X be the normalized
blow-up of X along a and E the e�ective Cartier divisor on X Õ such that
OXÕ(≠E) = a · OXÕ , so that µúL ≠ cE is nef. Since ≠E is µ-ample, we can
find 0 < cÕ π 1 such that µúL ≠ cÕE is ample. Setting cÁ := (1 ≠ Á)c + ÁcÕ,
we then have µúL ≠ cÁE is ample for all 0 < Á < 1.

Let also BÕ the unique Q-Weil divisor on X Õ such that µúK(X,B) =
K(XÕ,BÕ) and µúBÕ = B, so that (X Õ, BÕ) is a pair with A(X,B) = A(XÕ,BÕ).

If we choose a log resolution fi : X ÕÕ æ X Õ of (X Õ, BÕ + E) and let F =q
i Fi be the sum of all fi-exceptional primes and of the strict transform of

BÕ
red + Ered, then

lct(X,B)(acÁ) = lct(XÕ,BÕ)(cÁE) = min
i

A(XÕ,BÕ)(ordFi)
ordFi(cÁD)

Given 0 < Á < 1, pick m ∫ 1 such that
(i) mcÁ œ N;
(ii) m(µúL ≠ cÁE) is very ample;
(iii) m > lct(X,B)(acÁ).

Let H œ |m(µúL ≠ cÁE)| be a general element, and set D := µú(cÁE +
m≠1H), so that D is Q-Cartier, Q-linearly equivalent to L, and µúD =
cÁE + m≠1H.

By Bertini’s theorem, fi is also a log resolution of (X Õ, BÕ + E + H), and
hence

lct(X,B)(D) = lct(XÕ,BÕ)(cÁE + m≠1H)

= min
;

A(XÕ,BÕ)(v)
v(cÁE + m≠1H)

---- v = vi or v = ordH

<
.

But H, being general, does not contain the center of ordDi on X Õ and is not
contained in supp E, i.e. ordDi(H) = 0 and ordH(E) = 0, and (iii) above
shows that

lct(X,B)(D) = min
)

lct(X,B)(acÁ), m
*

= lct(X,B)(acÁ).

Since we have lct(X,B)(acÁ) = c
cÁ

lct(X,B)(ac) with cÁ/c arbitrarily close
to 1, we conclude that the two infima in (9.3) are indeed equal.

We next show that the left-hand infimum in (9.3) is strictly positive, in
two steps.

Step 1. — We first treat the case where X is smooth and B = 0. By
Skoda’s theorem (see for instance [48, Proposition 5.10]), we then have

v(D) 6 ordp(D)AX(v)
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for every e�ective Q-Cartier divisor D on X, every divisorial valuation v,
and every closed point p in the closure of the center of v on X. It is thus
enough to show that ordp(D) is uniformly bounded when D ≥Q L.

Let µ : X Õ æ X be the blow-up at p, with exceptional divisor E. Since
L is ample, there exists Á > 0 independent of p such that LÁ := µúL ≠ ÁE
is ample, by Seshadri’s theorem.

Since D is e�ective, we have µúD > ordp(D)E, and hence

(Ln) =
!
µúL · Ln≠1

Á

"
> ordp(D)(E · Ln≠1

Á ) = Án≠1 ordp(D),

which yields the desired bound on ordp(D).

Step 2. — Suppose now that (X, B) is a subklt pair. Pick a log resolution
µ : X Õ æ X, and let BÕ be the unique Q-divisor such that µúK(X,B) =
K(XÕ,BÕ) and µúBÕ = B, so that

A(X,B)(v) = A(XÕ,BÕ)(v) = AXÕ(v) ≠ v(BÕ)

for all divisorial valuations v. Since (X, B) is subklt, BÕ has coe�cients less
than 1, so there exists 0 < Á π 1 such that BÕ 6 (1 ≠ Á)BÕ

red. Since BÕ
red is

a reduced snc divisor, the pair (X Õ, BÕ
red) is lc, and hence v(BÕ) 6 AXÕ(v)

for all divisorial valuations v. It follows that v(B) 6 (1 ≠ Á)AXÕ(v), i.e.

ÁAXÕ(v) 6 A(X,B)(v)

for all v. Pick any very ample e�ective divisor H on X Õ such that LÕ :=
µúL + H is ample. For each e�ective Q-Cartier divisor D ≥Q L, DÕ :=
µúD + H is an e�ective Q-Cartier divisor on X Õ with DÕ ≥Q LÕ. By Step 1,
we conclude that

v(D) 6 v(DÕ) 6 CAXÕ(v) 6 CÁ≠1A(X,B)(v),

which completes the proof. ⇤

Proposition 9.16. — For each polarized subklt pair ((X, B); L), we
have

HNA > ”INA > ”

n
JNA

on HNA with ” := lct((X, B); L) > 0.

Proof. — Pick „ œ HNA, and let (X , L) be a normal representative such
that X dominates XA1 via fl : X æ XA1 , and write L = flúLA1 + D.

Choose m > 1 such that mL is a globally generated line bundle, and let

flúOX (mD) = a(m) =
ÿ

⁄œZ
a(m)

⁄ t≠⁄
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be the corresponding flag ideal. By Proposition 2.21, OX(mL) ¢ a(m)
⁄ is

globally generated on X for all ⁄ œ Z. In particular, L ¢ (a(m)
⁄ )1/m is nef,

and hence
v(a(m)

⁄ ) 6 m”≠1A(X,B)(v)

whenever a(m)
⁄ is non-zero.

Now let E be a non-trivial irreducible component of X0. By Lemma 4.5,
we have

ordE(a(m)) = min
⁄

1
vE(a(m)

⁄ ) ≠ ⁄bE

2

with bE = ordE(X0), and hence

ordE(a(m)) 6 m”≠1A(X,B)(vE) ≠ bE max
Ó

⁄ œ Z | a(m)
⁄ ”= 0

Ô
.

By Proposition 2.21, we have

max
Ó

⁄ œ Z | a(m)
⁄ ”= 0

Ô
= ⁄(m)

max,

which is bounded above by

m⁄max = m(„ · „n
triv),

by Lemma 7.7. We have thus proved that

(9.4) m≠1 ordE(a(m)) 6 ”≠1A(X,B)(vE) ≠ bEV ≠1(„ · „n
triv).

But since mD is fl-globally generated, we have OX (mD) = OX · a(m), and
hence

m≠1 ordE(a(m)) = ≠ ordE(D).

Using (9.4) and
q

E bE(E · Ln) = (X0 · Ln) = V , we infer

≠V ≠1((„ ≠ „triv) · „n) = ≠V ≠1 (D · Ln) 6 ”≠1HNA(„) ≠ V ≠1(„ · „n
triv),

and the result follows by the definition of INA and by Proposition 7.8. ⇤
Proof of Theorem 9.2. — The implication (i) =∆ (ii) follows from

Proposition 9.16, and (ii) =∆ (iii) is trivial. Now assume that (iii) holds.
If (X, B) is not klt, Proposition 9.9 yields a closed subscheme Z µ X with
A(X,B)(v) 6 0 for all Rees valuations v of Z. By Corollary 4.10, we can thus
find a normal, ample test configuration (X , L) such that A(X,B)(vE) 6 0
for each non-trivial irreducible component E of X0. The corresponding
non-Archimedean metric „ œ HNA therefore satisfies HNA

B („) 6 0, which
contradicts (iii). ⇤
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9.6. The Kähler–Einstein case

Proof of Corollary 9.3. — The implication (iii) =∆ (i) follows from
Theorem 9.1, and (ii) =∆ (iii) is trivial. Now assume (i), so that HNA

B >
0 on HNA by Theorem 9.1. By Lemma 7.25, we have MNA

B = HNA
B +!

INA ≠ JNA"
, while INA ≠ JNA > 1

n JNA by Proposition 7.8. We thus get
MNA

B > 1
n JNA, which proves (iii). ⇤

Proof of Corollary 9.4. — If K(X,B) is numerically trivial, then
Lemma 7.25 gives MNA

B = HNA
B . The result is thus a direct consequence of

Theorem 9.1 and Theorem 9.2. ⇤
Proof of Corollary 9.6. — Lemma 7.25 yields MNA

B = HNA
B ≠ (INA ≠

JNA). The K-semistability of (X, B) thus means that HNA
B > INA ≠ JNA,

and hence HNA
B > 1

n JNA by Proposition 7.8. By Theorem 9.2, this implies
that (X, B) is klt. ⇤

The following result gives a slightly more precise version of the compu-
tations of [65, Theorem 1.4] and [25, Theorem 3.24].

Proposition 9.17. — Let B be an e�ective boundary on X such
that (X, B) is klt and L := ≠K(X,B) is ample. Assume also that Á :=
lct((X, B); L) ≠ n

n+1 > 0. Then we have

MNA
B > ÁINA > n + 1

n
ÁJNA.

In particular, the polarized pair ((X, B); L) is uniformly K-stable.

Proof. — By Proposition 9.16 we have HNA >
1

n
n+1 + Á

2
INA, and

hence
MNA

B > ÁINA +
3

JNA ≠ 1
n + 1INA

4
.

The result follows since we have
1

n + 1INA 6 JNA 6 n

n + 1INA

by Proposition 7.8. ⇤

Appendix A. Asymptotic Riemann–Roch on a normal
variety

The following result is of course well-known, but we provide a proof
for lack of suitable reference. In particular, the sketch provided in [62,
Lemma 3.5] assumes that the line bundle in question is ample, which is
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not enough for the application to the intersection theoretic formula for the
Donaldson–Futaki invariant (cf. (iv) in Proposition 3.12).

Theorem A.1. — If Z is a proper normal variety of dimension d, de-
fined over an algebraically closed field k, and L is a line bundle on Z,
then

‰(Z, mL) = (Ld)md

d! ≠ (KZ · Ld≠1) md≠1

2(d ≠ 1)! + O(md≠2).

A proof in characteristic 0. — When Z is smooth, the result follows
from the Riemann–Roch formula, which reads

‰(Z, mL) =
⁄ 3

1 + c1(mL) + · · · + c1(mL)d

d!

4 3
1 + c1(Z)

2 + . . .

4
.

Assume now that Z is normal, pick a resolution of singularities µ : Z Õ æ Z
and set LÕ := µúL. The Leray spectral sequence and the projection formula
imply that

‰(Z Õ, mLÕ) =
ÿ

j

(≠1)j‰
!
Z, OZ(mL) ¢ RjµúOZÕ

"
.

Since Z is normal, µ is an isomorphism outside a set of codimension at least
2. As a result, for each j > 1 the support of the coherent sheaf RjµúOZÕ has
codimension at least 2, and hence ‰

!
Z, OZ(mL) ¢ RjµúOZÕ

"
= O(md≠2)

(cf. [50, §1]). We thus get

‰(Z, mL) = ‰(Z Õ, mLÕ) + O(md≠2)

= (LÕd)md

d! ≠ (KZÕ · LÕd≠1) md≠1

2(d ≠ 1)! + O(md≠2),

and the projection formula yields the desired result, since µúKZÕ = KZ as
cycle classes. ⇤

The general case. — By Chow’s lemma, there exists a birational mor-
phism Z Õ æ Z with Z Õ projective and normal. By the same argument as
above, it is enough to prove the result for Z Õ, and we may thus assume that
Z is projective to begin with.

We argue by induction on d. The case d = 0 is clear, so assume d > 1
and let H be a very ample line bundle on Z such that L + H is also very
ample. By the Bertini type theorem for normality of [37, Satz 5.2], general
elements B œ |H| and A œ |L + H| are also normal, with L = A ≠ B. The
short exact sequence

0 æ OZ((m + 1)L ≠ A) æ OZ(mL) æ OB(mL) æ 0
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shows that

‰(Z, (m + 1)L ≠ A) = ‰(Z, mL) ≠ ‰(B, mL).

We similarly find

‰(Z, (m + 1)L) = ‰(Z, (m + 1)L ≠ A) + ‰(A, (m + 1)L),

and hence

‰(Z, (m + 1)L) ≠ ‰(Z, mL) = ‰(A, (m + 1)L) ≠ ‰(B, mL).

Since A and B are normal Cartier divisors on X, the adjunction formulae
KA = (KZ + A)|A and KB = (KZ + B)|B hold, as they are equalities
between Weil divisor classes on a normal variety that hold outside a closed
subset of codimension at least 2. By the induction hypothesis, we thus get

‰(Z, (m + 1)L) ≠ ‰(Z, mL)

= (Ld≠1 · A)
3

md≠1

(d ≠ 1)! + md≠2

(d ≠ 2)!

4
≠

!
(KZ + A) · A · Ld≠2" md≠2

2(d ≠ 2)!

≠ (Ld≠1 · B) md≠1

(d ≠ 1)! +
!
(KZ + B) · B · Ld≠2" md≠2

2(d ≠ 2)! + O(md≠3)

= (Ld) md≠1

(d ≠ 1)! +
#
(Ld) ≠ 1

2 (KZ · Ld≠1)
$ md≠2

(d ≠ 2)! + O(md≠3)

= P (m + 1) ≠ P (m) + O(md≠3),

with
P (m) := (Ld)md

d! ≠ (KZ · Ld≠1) md≠1

2(d ≠ 1)! .

The result follows. ⇤

Appendix B. The equivariant Riemann–Roch theorem for
schemes

We summarize the general equivariant Riemann–Roch theorem for
schemes, which extends to the equivariant setting the results of [42,
Chap. 18], and is due to Edidin–Graham [33, 34]. We then use the case
G = Gm to provide an alternative proof of Theorem 3.1.

Let G be a linear algebraic group, and X be a scheme with a G-action.
The Grothendieck group K0

G(X) of virtual G-linearized vector bundles
forms a commutative ring with respect to tensor products, and is functo-
rial under pull-back by G-equivariant morphisms. On the other hand, the
Grothendieck group KG

0 (X) of virtual G-linearized coherent sheaves on X
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is a K0
G(X)-module with respect to tensor products, and every proper G-

equivariant morphism f : X æ Y induces a push-forward homomorphism
f! : KG

0 (X) æ KG
0 (Y ) defined by

f![F ] :=
ÿ

qœN
(≠1)q[RqfúF ].

Note that K0
G(Spec k) = KG

0 (Spec k) can be identified with the represen-
tation ring R(G), so that all the above abelian groups are in particular
R(G)-modules.

Equivariant Chow homology and cohomology groups are constructed
in [33], building on an idea of Totaro. The G-equivariant Chow cohomology
ring

CH•
G(X) =

n

dœN
CHd

G(X)

can have CHd
G(X) ”= 0 for infinitely many d œ N, and we set

‰CH
•
G(X) =

Ÿ

dœN
CHd

G(X).

The G-equivariant first Chern class defines a morphism cG
1 : PicG(X) æ

CH1
G(X), which is an isomorphism when X is smooth [33, Corollary 1]. In

particular, we have natural isomorphisms

Hom(G,Gm) ƒ PicG(Spec k) ƒ CH1
G(Spec k).

The G-equivariant Chern character is a ring homomorphism

chG : K0
G(X) æ ‰CH

•
G(X)Q,

functorial with respect to pull-back and such that

chG(L) = ecG
1 (L) =

3
cG

1 (L)d

d!

4

dœN

for a G-linearized line bundle L.
On the other hand, the G-equivariant Chow homology group

CHG
• (X) =

n

pœZ
CHG

p (X)

is a CH•
G(X)-module, with CHd

G(X) · CHG
p (X) µ CHp≠d(X). While

CHG
p (X) = 0 for p > dim X, it is in general non-zero for infinitely many

(negative) p in general, and we set again

‰CH
G

• (X) =
Ÿ

pœZ
CHG

p (X),
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a ‰CH
•
G(X)-module.

By definition, we have an isomorphism

CHG
dim X(X) ƒ CHdim X(X) =

n

i

Z[Xi]

with Xi the top-dimensional irreducible components of X. When X is
smooth and pure dimensional, the action of CHd

G(X) on the equivariant
fundamental class [X]G œ CHG

dim X(X) defines a ‘Poincaré duality’ isomor-
phism

CHd
G(X) ƒ CHG

dim X≠d(X).

Via the Chern character, both KG
0 (X) and ‰CH

G

• (X)Q become K0
G(X)-

modules, and the general Riemann–Roch theorem of [34, Theorem 3.1]
constructs a K0

G(X)-module homomorphism

·G : KG
0 (X) æ ‰CH

G

• (X)Q =
Ÿ

p6dim X

CHG
p (X)Q,

functorial with respect to push-forward under proper equivariant mor-
phisms, and normalized by ·(1) = 1 on K0

G(Spec k), so that ·G = chG

on R(G). The equivariant Todd class of X is defined TdG(X) := ·G(OX),
with top-dimensional part TdG(X)dim X = [X]G œ CHG

dim X(X)Q.
When X is proper, the equivariant Euler characteristic of a G-linearized

coherent sheaf F on X is defined as

‰G(X, F) := chG(fi![F ]) œ ‰CH
•
G(Spec k)Q ƒ

Ÿ

dœN
CHG

≠d(Spec k)Q

with fi : X æ Spec k the structure morphism. The functionality of ·G with
respect to push-forward by fi then yields the equivariant Riemann–Roch
formula, which reads

(B.1) ‰G(X, E) = fiú
1

chG(E) · TdG(X)
2

for every G-linearized vector bundle E on X.
Alternative proof of Theorem 3.1. — Let (X, L) be a polarized scheme

with a Gm-action. The argument consists in unraveling the above general
results when G = Gm. By [32, Lemma 2], we have a canonical identification

CHGm
≠d (Spec k) ƒ Z

for all d œ N, with respect to which the equivariant Chern character

chGm : R(Gm) æ
Ÿ

dœN
CHGm

≠d (Spec k)Q ƒ QN

sends a Gm-module V =
m

⁄œZ V⁄ to the sequence
1q

⁄œZ
⁄d

d! dim V⁄

2

dœN
.
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Since Hq(X, mL) = 0 for q > 0 and m ∫ 1, the equivariant Euler
characteristic of a Gm-linearized coherent sheaf F on X is given by

(B.2) ‰Gm(X, F) =
A

ÿ

⁄œZ

⁄d

d! dim H0(X, mL)⁄

B

dœN

,

and the equivariant Riemann–Roch formula (B.1) therefore shows that
ÿ

⁄œZ

⁄d

d! dim H0(X, mL)⁄ =
1

fiú
1

emcGm
1 (L) · TdGm(X)

22

≠d

in CHGm
≠d (Spec k)Q ƒ Q, with fi : X æ Spec k is the structure morphism.

Since the top-dimensional part of TdGm(X) is the equivariant fundamental
cycle [X]Gm œ CHGm

n (X), we get a polynomial expansion

(B.3)
ÿ

⁄œZ

⁄d

d! dim H0(X, mL)⁄ = mn+d

(n + d)!fiú
1

cGm
1 (L)n+d · [X]Gm

2
+ O(mn+d≠1)

with fiú
1

cGm
1 (L)n+d · [X]Gm

2
œ CHGm

≠d (Spec k) ƒ Z. ⇤

Remark B.1. — Comparing the two proofs of Theorem 3.1, we see in
particular that

fiú
1

cGm
1 (L)n+d · [X]Gm

2
= c1(Ld)n+d · [Xd].

This equality probably follows directly from the construction of equivariant
cohomology, since [33, §3.1] implies that

CHGm
i (X) ƒ CHi+d(Xd)

for i > n ≠ d.
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