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Abstract

We prove that a holomorphic line bundle on a projective manifold is
pseudo-effective if and only if its degree on any member of a covering
family of curves is non-negative. This is a consequence of a duality
statement between the cone of pseudo-effective divisors and the cone of
“movable curves”, which is obtained from a general theory of movable
intersections and approximate Zariski decomposition for closed posi-
tive (1, 1)-currents. As a corollary, a projective manifold has a pseudo-
effective canonical bundle if and only if it is not uniruled. We also prove
that a 4-fold with a canonical bundle which is pseudo-effective and of
numerical class zero in restriction to curves of a good covering family,
has non-negative Kodaira dimension.

0. Introduction

One of the major open problems in the classification theory of projective or

compact Kähler manifolds is the following geometric description of varieties

of negative Kodaira dimension.

0.1. Conjecture. A projective (or compact Kähler) manifold X has Ko-

daira dimension κ(X) = −∞ if and only if X is uniruled.
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One direction is trivial, namely X uniruled implies κ(X) = −∞. Also, the

conjecture is known to be true for projective threefolds by [Mo88] and for non-

algebraic Kähler threefolds by [Pe01], with the possible exception of simple

threefolds (recall that a variety is said to be simple if there is no compact

positive dimensional subvariety through a very general point of X). In the

case of projective manifolds, the problem can be split into more tractable

parts:

(A) If the canonical bundle KX is not pseudo-effective, i.e. not contained

in the closure of the cone spanned by classes of effective divisors, then

X is uniruled.

(B) If KX is pseudo-effective, then κ(X) ≥ 0.

In the Kähler case, the statements should be essentially the same, except

that effective divisors have to be replaced by closed positive (1, 1)-currents.

Part B again splits into two pieces:

(B1) If KX is pseudo-effective but not big, i.e. on the boundary of the

pseudo-effective cone, then there exists a covering family of curves

(Ct) such that KX · Ct = 0.

(B2) If KX is pseudo-effective and there exists a covering family (Ct) of

curves with KX · Ct = 0, then κ(X) ≥ 0.

In this paper we give a positive answer to (A) for projective manifolds of

any dimension, and deal with (B2), mostly in dimension 4. Part (A) follows

in fact from a much more general fact which describes the geometry of the

pseudo-effective cone.

0.2. Theorem. A line bundle L on a projective manifold X is pseudo-

effective if and only if L · C ≥ 0 for all irreducible curves C which move in a

family covering X.

In other words, the dual cone to the pseudo-effective cone is the closure

of the cone of “movable” curves. This should be compared with the duality

between the nef cone and the cone of effective curves.

0.3. Corollary (Solution of (A)). Let X be a projective manifold. If KX

is not pseudo-effective, then X is covered by rational curves.

In fact, if KX is not pseudo-effective, then by Theorem 0.2 there exists a

covering family (Ct) of curves with KX ·Ct < 0, so that Corollary 0.3 follows

by a well-known characteristic p argument of Miyaoka and Mori [MM86] (the

so called bend-and-break lemma essentially amounts to deform the Ct so that

they break into pieces, one of which is a rational curve).
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In the Kähler case both a suitable analogue to Theorem 0.2 and the theo-

rem of Miyaoka-Mori are unknown. It should also be mentioned that the du-

ality statement following Theorem 0.2 is actually Theorem 0.2 for R-divisors.

The proof is based on a use of “approximate Zariski decompositions” and

an estimate for an intersection number related to this decomposition. A

major tool is the volume of an R-divisor which distinguishes big divisors

(positive volume) from divisors on the boundary of the pseudo-effective cone

(volume 0).

Concerning (B2), we need to distinguish between covering, but not con-

necting, families (Ct) on one side and connecting families on the other side.

This latter term “connecting” means that any two points can be joined by a

chain of curves Ct. However, for technical purposes it is better to consider

strongly connecting families, i.e., any two sufficiently general points can be

joined by a chain of irreducible C ′
ts. If X has a good minimal model via

contractions and flips, then X clearly admits a covering non-connecting or a

strongly connecting family (Ct) such that KX ·Ct = 0; moreover, if X simply

has a good minimal model, then at least after blowing up this will be the

case. Let us say that (Ct) is a good covering family, if (Ct) is a covering,

non-connecting family or a strongly connecting family. Then our remarks jus-

tify the division of problem B into the two parts (B1) and (B2), possibly by

replacing “covering families” by “good covering families”.

0.4. Theorem. Let X be a smooth projective 4-fold. Assume that KX is

pseudo-effective and there is a good covering family (Ct) of curves such that

KX · Ct = 0. Then κ(X) ≥ 0.

One important ingredient of the proof of Theorem 0.4 is the quotient de-

fined by the family (Ct). The reason for the restriction to dimension 4 is that

we use Cn,m and the log minimal model program on the base of the quotient

of the family (Ct). In one circumstance, however, we have a general result:

0.5. Theorem. Let X be a projective manifold and (Ct) a strongly con-

necting family of curves. Let L be a pseudo-effective R-divisor with L ·Ct = 0.

Then the numerical dimension nd(L) = 0. If L is Cartier, then L is numeri-

cally equivalent to a line bundle L′ with κ(L′) = 0.

If L = KX , then in connection with [CP09] we obtain κ(X) = 0. In order to

obtain the answer to problem (B1) (e.g. in dimension 4), we would still need

to prove that KX is effective if KX is positive on all good covering families

of curves. In fact, in that case, KX should be big, i.e. of maximal Kodaira

dimension.
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1. Positive cones in the spaces of divisors and of curves

In this section we introduce the relevant cones, both in the projective and

Kähler contexts – in the latter case, divisors and curves should simply be

replaced by positive currents of bidimension (n− 1, n− 1) and (1, 1), respec-

tively. We implicitly use that all (De Rham, respectively Dolbeault) cohomol-

ogy groups under consideration can be computed in terms of smooth forms

or currents, since in both cases we get resolutions of the same sheaf of locally

constant functions (respectively of holomorphic sections).

1.1. Definition. Let X be a compact Kähler manifold.

(i) The Kähler cone is the set K ⊂ H1,1
R

(X) of classes {ω} of Kähler

forms (this is an open convex cone).

(ii) The pseudo-effective cone is the set E ⊂ H1,1
R

(X) of classes {T} of

closed positive currents of type (1, 1) (this is a closed convex cone).

Clearly E ⊃ K.

(iii) The Neron-Severi space is defined by

NSR(X) :=
(
H1,1

R
(X) ∩H2(X,Z)/tors

)
⊗Z R.

(iv) We set

KNS = K ∩ NSR(X), ENS = E ∩ NSR(X).

Algebraic geometers tend to restrict themselves to the algebraic cones gen-

erated by ample divisors and effective divisors, respectively. Using L2 es-

timates for ∂, one can show the following expected relations between the

algebraic and transcendental cones (see [Dem90] and [Dem92]).

1.2. Proposition. In a projective manifold X, ENS is the closure of the

convex cone generated by effective divisors, and KNS is the closure of the cone

generated by nef R-divisors.

By extension, we will say that K is the cone of nef (1, 1)-cohomology classes

(even though they are not necessarily integral). We now turn ourselves to

cones in cohomology of bidegree (n− 1, n− 1).

1.3. Definition. Let X be a compact Kähler manifold.

(i) We define N to be the (closed) convex cone in Hn−1,n−1
R

(X) gene-

rated by classes of positive currents T of type (n− 1, n− 1) (i.e., of

bidimension (1, 1)).

(ii) We define the cone M ⊂ Hn−1,n−1
R

(X) of movable classes to be the

closure of the convex cone generated by classes of currents of the form

μ�(ω̃1 ∧ . . . ∧ ω̃n−1)
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where μ : X̃ → X is an arbitrary modification (one could just restrict

oneself to compositions of blow-ups with smooth centers), and the ω̃j

are Kähler forms on X̃. Clearly M ⊂ N .

(iii) Correspondingly, we introduce the intersections

NNS = N ∩N1(X), MNS = M∩N1(X),

in the space of integral bidimension (1, 1)-classes

N1(X) := (Hn−1,n−1
R

(X) ∩H2n−2(X,Z)/tors)⊗Z R.

(iv) If X is projective, we define NE(X) to be the convex cone generated

by all effective curves. Clearly NE(X) ⊂ NNS.

(v) If X is projective, we say that C is a strongly movable curve if

C = μ�(Ã1 ∩ . . . ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where μ : X̃ → X is a

modification. We let SME(X) to be the convex cone generated by all

strongly movable (effective) curves. Clearly SME(X) ⊂ MNS.

(vi) We say that C is a movable curve if C = Ct0 is a member of

an analytic family (Ct)t∈S such that
⋃

t∈S Ct = X and, as such, is

a reduced irreducible 1-cycle. We let ME(X) to be the convex cone

generated by all movable (effective) curves.

The upshot of this definition lies in the following easy observation.

1.4. Proposition. Let X be a compact Kähler manifold. Consider the

Poincaré duality pairing

H1,1
R

(X)×Hn−1,n−1
R

(X) −→ R, (α, β) 
−→
∫
X

α ∧ β.

Then the duality pairing takes non-negative values

(i) for all pairs (α, β) ∈ K ×N ;

(ii) for all pairs (α, β) ∈ E ×M.

(iii) for all pairs (α, β) where α ∈ E and β = [Ct] ∈ ME(X) is the class of

a movable curve.

Proof. (i) is obvious. In order to prove (ii), we may assume that β =

μ�(ω̃1 ∧ . . . ∧ ω̃n−1) for some modification μ : X̃ → X, where α = {T} is the

class of a positive (1, 1)-current on X and ω̃j are Kähler forms on X̃. Then∫
X

α ∧ β =

∫
X

T ∧ μ�(ω̃1 ∧ . . . ∧ ω̃n−1) =

∫
X

μ∗T ∧ ω̃1 ∧ . . . ∧ ω̃n−1 ≥ 0.

Here, we have used the fact that a closed positive (1, 1)-current T always has

a pull-back μ�T , which follows from the fact that if T = i∂∂ϕ locally for some
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plurisubharmonic function in X, we can set μ�T = i∂∂(ϕ ◦ μ). For (iii), we

suppose α = {T} and β = {[Ct]}. Then we take an open covering (Uj) on X

such that T = i∂∂ϕj with suitable plurisubharmonic functions ϕj on Uj . If

we select a smooth partition of unity
∑

θj = 1 subordinate to (Uj), we then

get ∫
X

α ∧ β =

∫
Ct

T|Ct
=

∑
j

∫
Ct∩Uj

θji∂∂ϕj|Ct
≥ 0.

For this to make sense, it should be noticed that T|Ct
is a well-defined closed

positive (1, 1)-current (i.e. measure) on Ct for almost every t ∈ S, in the

sense of Lebesgue measure. This is true only because (Ct) covers X, thus

ϕj|Ct
is not identically −∞ for almost every t ∈ S. The equality in the

last formula is then shown by a regularization argument for T , writing T =

limTk with Tk = α + i∂∂ψk and a decreasing sequence of smooth almost

plurisubharmonic potentials ψk ↓ ψ such that the Levi forms have a uniform

lower bound i∂∂ψk ≥ −Cω (such a sequence exists by [Dem92]). Then,

writing α = i∂∂vj for some smooth potential vj on Uj , we have T = i∂∂ϕj

on Uj with ϕj = vj + ψ, and this is the decreasing limit of the smooth

approximations ϕj,k = vj + ψk on Uj . Hence Tk|Ct
→ T|Ct

for the weak

topology of measures on Ct. �
If C is a convex cone in a finite dimensional vector space E, we denote by

C∨ the dual cone, i.e. the set of linear forms u ∈ E� which take nonnegative

values on all elements of C. By the Hahn-Banach theorem, we always have

C∨∨ = C.
Proposition 1.4 leads to the natural question whether the cones (K,N ) and

(E ,M) are dual under Poincaré duality. This question is addressed in the next

section. Before doing so, we observe that the algebraic and transcendental

cones of (n−1, n−1) cohomology classes are related by the following equalities

(similar to what we already noticed for (1, 1)-classes; see Proposition 1.2).

1.5. Theorem. Let X be a projective manifold. Then

(i) NE(X) = NNS.

(ii) SME(X) = ME(X) = MNS.

Proof. (i) It is a standard result of algebraic geometry (see e.g. [Ha70]),

that the cone of effective cone NE(X) is dual to the cone KNS of nef divisors,

hence

NNS ⊃ NE(X) = K∨.

On the other hand, Proposition 1.4(i) implies that NNS ⊂ K∨, so we must

have equality and (i) follows.
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Similarly, (ii) requires a duality statement which will be established only

in the next sections, so we postpone the proof. �

2. Main results and conjectures

First, the already mentioned duality between nef divisors and effective

curves extends to the Kähler case and to transcendental classes. More pre-

cisely, [DPa04] gives

2.1. Theorem (Demailly-Păun, 2001). If X is Kähler, then the cones

K ⊂ H1,1
R

(X) and N ⊂ Hn−1,n−1
R

(X) are dual by Poincaré duality, and N is

the closed convex cone generated by classes [Y ] ∧ ωp−1 where Y ⊂ X ranges

over p-dimensional analytic subsets, p = 1, 2, . . . , n, and ω ranges over Kähler

forms.

Proof. Indeed, Proposition 1.4 shows that the dual cone K∨ contains N
which itself contains the cone N ′ of all classes of the form {[Y ]∧ ωp−1}. The
main result of [DPa04] conversely shows that the dual of (N ′)∨ is equal to K,

so we must have

K∨ = N ′ = N . �
The main new result of this paper is the following characterization of

pseudo-effective classes (in which the “only if” part already follows from

Proposition 1.4(iii)).

2.2. Theorem. If X is projective, then a class α ∈ NSR(X) is pseudo-

effective if (and only if ) it is in the dual cone of the cone SME(X) of strongly

movable curves.

In other words, a line bundle L is pseudo-effective if (and only if) L ·C ≥ 0

for all movable curves, i.e., L · C ≥ 0 for every very generic curve C (not

contained in a countable union of algebraic subvarieties). In fact, by definition

of SME(X), it is enough to consider only those curves C which are images of

generic complete intersection of very ample divisors on some variety X̃, under

a modification μ : X̃ → X.

By a standard blowing-up argument, it also follows that a line bundle L

on a normal Moishezon variety is pseudo-effective if and only if L · C ≥ 0 for

every movable curve C.

The Kähler analogue should be:

2.3. Conjecture. For an arbitrary compact Kähler manifold X, the cones

E and M are dual.
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The relation between the various cones of movable curves and currents in

Theorem 1.5 is now a rather direct consequence of Theorem 2.2. In fact, using

ideas hinted in [DPS96], we can say a little bit more. Given an irreducible

curve C ⊂ X, we consider its normal “bundle” NC = Hom(I/I2,OC), where

I is the ideal sheaf of C. If C is a general member of a covering family (Ct),

then NC is nef. Now [DPS96] says that the dual cone of the pseudo-effective

cone of X contains the closed cone spanned by curves with nef normal bundle,

which in turn contains the cone of movable curves. In this way we get:

2.4. Theorem. Let X be a projective manifold. Then the following cones

coincide:

(i) the cone MNS = M∩N1(X);

(ii) the closed cone SME(X) of strongly movable curves;

(iii) the closed cone ME(X) of movable curves;

(iv) the closed cone MEnef(X) of curves with nef normal bundle.

Proof. We have already seen that

SME(X) ⊂ ME(X) ⊂ MEnef(X) ⊂ (ENS)
∨

and

SME(X) ⊂ ME(X) ⊂ MNS ⊂ (ENS)
∨

by Proposition 1.4(iii). Now Theorem 2.2 implies (MNS)
∨ = SME(X), and

Theorem 2.4 follows. �
2.5. Corollary. Let X be a projective manifold and L a line bundle on

X.

(i) L is pseudo-effective if and only if L ·C ≥ 0 for all curves C with nef

normal sheaf NC .

(ii) If L is big, then L ·C > 0 for all curves C with nef normal sheaf NC .

Corollary 2.5(i) strengthens results from [PSS99]. It is, however, not yet

clear whether MNS = M∩N1(X) is equal to the closed cone of curves with

ample normal bundle (although we certainly expect this to be true).

The most important special case of Theorem 2.2 is the following.

2.6. Theorem. If X is a projective manifold and is not uniruled, then

KX is pseudo-effective, i.e. KX ∈ ENS.

Proof. This is merely a restatement of Corollary 0.3, which was proved in

the introduction (as a consequence of the results of [MM86]).

Theorem 2.6 can be generalized as follows.

2.7. Theorem. Let X be a projective manifold (or a normal projective

variety ). Let F ⊂ TX be a coherent subsheaf. If detF∗ is not pseudo-effective,
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THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 9

then X is uniruled. In other words, if X is not uniruled and Ω1
X → G is

generically surjective, then detG is pseudo-effective.

Proof. In fact, since detF∗ is not pseudo-effective, there exists by Theo-

rem 2.2 a covering family (Ct) such that c1(F) ·Ct > 0. Hence, X is uniruled

by [Mi87] and [SB92]. �
2.8. Remark.

(1) In [CP09], Theorem 2.7 is generalized to subsheaves F ⊂ T⊗m
X .

(2) Suppose in Theorem 2.7 that only κ(detF∗) = −∞. Is X still unir-

uled? What can be said if c1(F∗) is on the boundary of the pseudo-

effective cone?

Turning to varieties with pseudo-effective canonical bundles, we have the

following.

2.9. Conjecture (part of the “abundance conjecture”). If KX is pseudo-

effective, then κ(X) ≥ 0.

This problem splits into two parts:

(1) If KX is pseudo-effective but not big, i.e. on the boundary of the

pseudo-effective cone, then there exists a (good) covering family of

curve (Ct) such that KX · Ct = 0.

(2) If KX is pseudo-effective and there exists a good covering family (Ct)

of curves with KX · Ct = 0, then κ(X) ≥ 0.

In the last section we will prove (2) in dimension 4 and even parts of it in

any dimension.

3. Zariski decomposition and movable intersections

Let X be compact Kähler and let α ∈ E◦ be in the interior of the pseudo-

effective cone. In analogy with the algebraic context such a class α is called

“big”, and it can then be represented by a Kähler current T , i.e. a closed

positive (1, 1)-current T such that T ≥ δω for some smooth Hermitian metric

ω and a constant δ � 1.

3.1. Theorem [Demailly [Dem92], [Bou02b], and 3.1.24]. If T is a Kähler

current, then one can write T = limTm for a sequence of Kähler currents Tm

which have logarithmic poles with coefficients in 1
mZ, i.e. there are modifica-

tions μm : Xm → X such that

μ�
mTm = [Em] + βm
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10 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

where Em is an effective Q-divisor on Xm with coefficients in 1
mZ (the “fixed

part”) and βm is a closed semi-positive form (the “movable part”).

Proof. Since this result has already been studied extensively, we just recall

the main idea. Locally we can write T = i∂∂ϕ for some strictly plurisubhar-

monic potential ϕ. By a Bergman kernel trick and the Ohsawa-Takegoshi L2

extension theorem, we get local approximations

ϕ = limϕm, ϕm(z) =
1

2m
log

∑
�

|g�,m(z)|2

where (g�,m) is a Hilbert basis of the space of holomorphic functions which

are L2 with respect to the weight e−2mϕ. This Hilbert basis is also a family of

local generators of the globally defined multiplier ideal sheaf I(mT ) = I(mϕ).

Then μm : Xm → X is obtained by blowing-up this ideal sheaf, so that

μ�
mI(mT ) = O(−mEm).

We should notice that by approximating T − 1
mω instead of T , we can replace

βm by βm+ 1
mμ�ω which is a big class on Xm ; by playing with the multiplic-

ities of the components of the exceptional divisor, we could even achieve that

βm is a Kähler class on Xm, but this will not be needed here. �
The more familiar algebraic analogue would be to take α = c1(L) with a

big line bundle L and to blow-up the base locus of |mL|, m � 1, to get a

Q-divisor decomposition

μ�
mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system

|mL|, and we say that Em + Dm is an approximate Zariski decomposition

of L. We will also use this terminology for Kähler currents with logarithmic

poles.

3.2. Definition. We define the volume, or movable self-intersection

of a big class α ∈ E◦ to be

Vol(α) = sup
T∈α

∫
˜X

βn > 0

where the supremum is taken over all Kähler currents T ∈ α with logarithmic

poles, and μ�T = [E] + β with respect to some modification μ : X̃ → X.

By Fujita [Fuj94] and Demailly-Ein-Lazarsfeld [DEL00], if L is a big line

bundle, we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞

n!

mn
h0(X,mL),

and in these terms, we get the following statement.
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THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 11

3.3. Proposition. Let L be a big line bundle on the projective manifold X.

Let ε > 0. Then there exists a modification μ : Xε → X and a decomposition

μ∗(L) = E + β with E an effective Q-divisor and β a big and nef Q-divisor

such that

Vol(L)− ε ≤ Vol(β) ≤ Vol(L).

It is very useful to observe that the supremum in Definition 3.2 can actually

be computed by a collection of currents whose singularities satisfy a filtering

property. Namely, if T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler

currents with logarithmic poles in the class of α, then

(3.4) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could

define as well

(3.4′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1,m2) is the lowest common multiple of the denominators

occuring in T1, T2. Now, take a simultaneous log-resolution μm : Xm → X

for which the singularities of T1 and T2 are resolved as Q-divisors E1 and E2.

Then clearly the associated divisor in the decomposition μ�
mT = [E] + β is

given by E = min(E1, E2). By doing so, the volume
∫
Xm

βn gets increased,

as we shall see in the proof of Theorem 3.5 below.

3.5. Theorem [Boucksom [Bou02b]]. Let X be a compact Kähler manifold.

We denote here by Hk,k
≥0 (X) the cone of cohomology classes of type (k, k) which

have non-negative intersection with all closed semi-positive smooth forms of

bidegree (n− k, n− k).

(i) For each integer k = 1, 2, . . . , n, there exists a canonical “movable

intersection product”

E × · · · × E → Hk,k
≥0 (X), (α1, . . . , αk) 
→ 〈α1 · α2 · · ·αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(ii) The product is increasing, homogeneous of degree 1 and superadditive

in each argument, i.e.

〈α1 · · · (α′
j + α′′

j ) · · ·αk〉 ≥ 〈α1 · · ·α′
j · · ·αk〉+ 〈α1 · · ·α′′

j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K
are nef classes.

(iii) The movable intersection product satisfies the Teissier-Hovanskii in-

equalities

〈α1 · α2 · · ·αn〉 ≥ (〈αn
1 〉)1/n . . . (〈αn

n〉)1/n (with 〈αn
j 〉 = Vol(αj) ).
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12 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

(iv) For k = 1, the above “product” reduces to a (non-linear) projection

operator

E → E1, α → 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E . More-

over, there is a “divisorial Zariski decomposition”

α = {N(α)}+ 〈α〉

where N(α) is a uniquely defined effective divisor which is called the

“negative divisorial part” of α. The map α 
→ N(α) is homogeneous

and subadditive, and N(α) = 0 if and only if α ∈ E1.
(v) The components of N(α) always consist of divisors whose cohomology

classes are linearly independent, especially N(α) has at most ρ =

rankZ NS(X) components.

Proof. We essentially repeat the arguments developed in [Bou02b], with

some simplifications arising from the fact that X is supposed to be Kähler

from the start.

(i) First assume that all classes αj are big, i.e. αj ∈ E◦. Fix a smooth

closed (n − k, n − k) semi-positive form u on X. We select Kähler currents

Tj ∈ αj with logarithmic poles, and a simultaneous log-resolution μ : X̃ → X

such that

μ�Tj = [Ej ] + βj .

We consider the direct image current μ�(β1 ∧ . . . ∧ βk) (which is a closed

positive current of bidegree (k, k) on X) and the corresponding integrals∫
˜X

β1 ∧ . . . ∧ βk ∧ μ�u ≥ 0.

If we change the representative Tj with another current T ′
j , we may always

take a simultaneous log-resolution such that μ�T ′
j = [E′

j ] + β′
j , and by using

(3.4′) we can always assume that E′
j ≤ Ej . Then Dj = Ej −E′

j is an effective

divisor and we find [Ej ]+βj ≡ [E′
j ]+β′

j , hence β
′
j ≡ βj+[Dj ]. A substitution

in the integral implies∫
˜X

β′
1 ∧ β2 ∧ . . . ∧ βk ∧ μ�u

=

∫
˜X

β1 ∧ β2 ∧ . . . ∧ βk ∧ μ�u+

∫
˜X

[D1] ∧ β2 ∧ . . . ∧ βk ∧ μ�u

≥
∫

˜X

β1 ∧ β2 ∧ . . . ∧ βk ∧ μ�u.
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THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 13

Similarly, we can replace successively all forms βj by the β′
j , and by doing so,

we find ∫
˜X

β′
1 ∧ β′

2 ∧ . . . ∧ β′
k ∧ μ�u ≥

∫
˜X

β1 ∧ β2 ∧ . . . ∧ βk ∧ μ�u.

We claim that the closed positive currents μ�(β1 ∧ . . . ∧ βk) are uniformly

bounded in mass. In fact, if ω is a Kähler metric in X, there exists a constant

Cj ≥ 0 such that Cj{ω}−αj is a Kähler class. Hence Cjω−Tj ≡ γj for some

Kähler form γj on X. By pulling back with μ, we find Cjμ
�ω− ([Ej ] + βj) ≡

μ�γj , hence

βj ≡ Cjμ
�ω − ([Ej ] + μ�γj).

By performing again a substitution in the integrals, we find∫
˜X

β1 ∧ . . . ∧ βk ∧ μ�u ≤ C1 . . . Ck

∫
˜X

μ�ωk ∧ μ�u = C1 . . . Ck

∫
X

ωk ∧ u

and this is true especially for u = ωn−k. We can now arrange that for each of

the integrals associated with a countable dense family of forms u, the supre-

mum is achieved by a sequence of currents (μm)�(β1,m ∧ . . .∧ βk,m) obtained

as direct images by a suitable sequence of modifications μm : X̃m → X. By

extracting a subsequence, we can achieve that this sequence is weakly conver-

gent and we set

〈α1 · α2 · · ·αk〉 = lim ↑
m→+∞

{(μm)�(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of

the integrals obtained when we evaluate against a smooth closed semi-positive

form u). By evaluating against a basis of positive classes {u} ∈ Hn−k,n−k(X),

we infer by Poincaré duality that the class of 〈α1 ·α2 · · ·αk〉 is uniquely defined

(although, in general, the representing current is not unique).

(ii) It is indeed clear from the definition that the movable intersection

product is homogeneous, increasing and superadditive in each argument, at

least when the αj ’s are in E◦. However, we can extend the product to the

closed cone E by monotonicity, by setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω) · · · (αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evalu-

ate against closed semi-positive forms u). By weak compactness, the movable

intersection product can always be represented by a closed positive current of

bidegree (k, k).
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14 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

(iii) The Teissier-Hovanskii inequalities are a direct consequence of the fact

that they hold true for nef classes, so we just have to apply them to the classes

βj,m on X̃m and pass to the limit.

(iv) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(μm)�Tm} = lim
m→+∞

(μm)�[Em] + {(μm)�βm}

and 〈α〉 = limm→+∞{(μm)�βm} by definition. However, the images Fm =

(μm)�Em are effective Q-divisors in X, and the filtering property implies

that Fm is a decreasing sequence. It must therefore converge to a (uniquely

defined) limit F = limFm := N(α) which is an effective R-divisor, and we get

the asserted decomposition in the limit.

Since N(α) = α − 〈α〉 we easily see that N(α) is subadditive and that

N(α) = 0 if α is the class of a smooth semi-positive form. When α is no

longer a big class, we define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α+(δ+ ε)ω) ≤ N(α+ δω)). The divisorial

Zariski decomposition follows except maybe for the fact that N(α) might be

a convergent countable sum of divisors. However, this will be ruled out when

(v) is proved. As N(•) is subadditive and homogeneous, the set E1 = {α ∈
E ; N(α) = 0} is a closed convex cone, and we find that α 
→ 〈α〉 is a

projection of E onto E1 (according to [Bou02b], E1 consists of those pseudo-

effective classes which are “nef in codimension 1”).

(v) Let α ∈ E◦, and assume that N(α) contains linearly dependent compo-

nents Fj . Then already all currents T ∈ α should be such that μ�T = [E] +β

where F = μ�E contains those linearly dependent components. Write F =∑
λjFj , λj > 0 and assume that∑

j∈J

cjFj ≡ 0

for a certain non-trivial linear combination. Then some of the coefficients cj
must be negative (and some other positive). Then E is numerically equivalent

to

E′ ≡ E + tμ�
( ∑

λjFj

)
,

and by choosing t > 0 appropriate, we obtain an effective divisor E′ which

has a zero coefficient on one of the components μ�Fj0 . By replacing E with

min(E,E′) via (3.4′), we eliminate the component μ�Fj0 . This is a contradic-

tion since N(α) was supposed to contain Fj0 . �
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3.6. Definition. For a class α ∈ H1,1
R

(X), we define the numerical di-

mension nd(α) to be nd(α) = −∞ if α is not pseudo-effective, and

nd(α) = max{p ∈ N ; 〈αp〉 �= 0}, nd(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.

By the results of [DPa04], a class is big (α ∈ E◦) if and only if nd(α) = n.

Classes of numerical dimension 0 can be described much more precisely, again

following Boucksom [Bou02b].

3.7. Theorem. Let X be a compact Kähler manifold. Then the subset D0

of irreducible divisors D in X such that nd(D) = 0 is countable, and these

divisors are rigid as well as their multiples. If α ∈ E is a pseudo-effective class

of numerical dimension 0, then α is numerically equivalent to an effective R-

divisor D =
∑

j∈J λjDj , for some finite subset (Dj)j∈J ⊂ D0 such that the

cohomology classes {Dj} are linearly independent and some λj > 0. If such

a linear combination is of numerical dimension 0, then so is any other linear

combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is

of numerical dimension 0 if and only if 〈α〉 = 0; in other words, if α = N(α).

Thus α ≡
∑

λjDj as described in Theorem 3.7, and since λj〈Dj〉 ≤ 〈α〉, the
divisors Dj must themselves have numerical dimension 0. There is, at most,

one such divisor D in any given cohomology class in NS(X)∩E ⊂ H2(X,Z);

otherwise, two such divisors D ≡ D′ would yield a blow-up μ : X̃ → X

resolving the intersection, and by taking min(μ�D,μ�D′) via (3.4′), we would

find μ�D ≡ E + β, β �= 0, so that {D} would not be of numerical dimension

0. This implies that there are at most countably many divisors of numerical

dimension 0, and that these divisors are rigid as well as their multiples. �
The above general concept of numerical dimension leads to a very natural

formulation of the abundance conjecture for non-minimal (Kähler) varieties.

3.8. Generalized abundance conjecture. For an arbitrary compact

Kähler manifold X, the Kodaira dimension should be equal to the numeri-

cal dimension:

κ(X) = nd(X) := nd(c1(KX)).

This appears to be a fairly strong statement. In fact, it is not difficult

to show that the generalized abundance conjecture would contain the Cn,m

conjectures.

3.9. Remark. Using the Iitaka fibration, it is immediate to see that

κ(X) ≤ nd(X).
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16 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

3.10. Remark. It is known that abundance holds in case nd(X) = −∞
(if KX is not pseudo-effective, no multiple of KX can have sections), or

in case nd(X) = n. The latter follows from the solution of the Grauert-

Riemenschneider conjecture in the form proven in [Dem85] (see also [DPa04]).

In the remaining cases, the most tractable situation is the case when

nd(X) = 0. In fact, Theorem 3.7 then gives KX ≡
∑

λjDj for some effective

divisor with numerically independent components, nd(Dj) = 0. It follows

that the λj are rational and therefore

(∗) KX ≡
∑

λjDj + F where λj ∈ Q+, nd(Dj) = 0 and F ∈ Pic0(X).

By [CP09] it now follows that κ(X) ≥ 0. Thus we obtain:

3.11. Proposition. Let X be a smooth projective manifold with KX pseudo-

effective. If nd(X) = 0, then κ(X) = 0.

We will come back to abundance on 4-folds in section 9.

The arguments given in Remark 3.10 are actually not restricted to the

canonical bundle and show the following.

3.12. Proposition. Let X be a projective manifold and L a pseudo-effective

R-divisor on X.

(i) If nd(L) = 0, then L ≡
∑

λjDj with λj positive real numbers and Dj

irreducible divisors. If L is Cartier, the λj are rational.

(ii) If L is moreover nef in codimension 1 and if nd(L) = 0, then L ≡ 0.

4. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approxi-

mate Zariski decompositions are almost orthogonal.

4.1. Theorem. Let X be a projective manifold, and let α = {T} ∈ E◦
NS

be a big class represented by a Kähler current T . Consider an approximate

Zariski decomposition

μ�
mTm = [Em] + [Dm].

Then

(Dn−1
m · Em)2 ≤ 20 (Cω)n

(
Vol(α)−Dn

m

)
,

where ω = c1(H) is a Kähler form and C ≥ 0 is a constant such that ±α is

dominated by Cω (i.e., Cω ± α is nef ).
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THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 17

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) ≥ Vol(tEm +Dm).

Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = μ�α−Dm = μ�
m(α+ Cω)− (Dm + Cμ�

mω).

4.2. Lemma. For all nef R-divisors A, B we have

Vol(A−B) ≥ An − nAn−1 ·B

as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence

of the holomorphic Morse inequalities, [Dem01, 8.5]. If A and B are Q-

Cartier, we conclude by the homogeneity of the volume. The general case of

R-divisors follows by approximation using the upper semi-continuity of the

volume [Bou02b, 3.1.26]. �
4.3. Remark. We hope that Lemma 4.2 also holds true on an arbitrary

Kähler manifold for arbitrary nef (non-necessarily integral) classes. This

would follow from a generalization of holomorphic Morse inequalities to non-

integral classes. However, the proof of such a result seems technically much

more involved than in the case of integral classes.

4.4. Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact

Kähler manifold X̃ such that each difference β′
j −βj is pseudo-effective. Then

the n-th intersection products satisfy

β1 · · ·βn ≤ β′
1 · · ·β′

n.

Proof. We can proceed step-by-step and replace just one βj by β′
j ≡ βj+Tj

where Tj is a closed positive (1, 1)-current and the other classes β′
k = βk, k �= j

are limits of Kähler forms. The inequality is then obvious. �
End of proof of Theorem 4.1. In order to exploit the lower bound of the

volume, we write

tEm +Dm = A−B, A = Dm + tμ�
m(α+ Cω), B = t(Dm + Cμ�

mω).
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18 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

By our choice of the constant C, both A and B are nef. Lemma 4.2 and the

binomial formula imply

Vol(tEm +Dm)

≥ An − nAn−1 ·B

= Dn
m + ntDn−1

m · μ�
m(α+ Cω) +

n∑
k=2

tk
(
n

k

)
Dn−k

m · μ�
m(α+ Cω)k

− ntDn−1
m · (Dm + Cμ�

mω)

− nt2
n−1∑
k=1

tk−1

(
n−1

k

)
Dn−1−k

m · μ�
m(α+Cω)k · (Dm+Cμ�

mω).

Now, we use the obvious inequalities

Dm ≤ μ�
m(Cω), μ�

m(α+ Cω) ≤ 2μ�
m(Cω), Dm + Cμ�

mω ≤ 2μ�
m(Cω)

in which all members are nef (and where the inequality ≤ means that the

difference of classes is pseudo-effective). We use Lemma 4.4 to bound the last

summation in the estimate of the volume, and in this way we get

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m · Em − nt2
n−1∑
k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is

bounded by 4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (D

n−1
m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2

(Cω)n
≤ Vol(Em +Dm)−Dn

m ≤ Vol(α)−Dn
m

(and we have indeed t ≤ 1
10n by Lemma 4.4), whence Theorem 4.1. Of course,

the constant 20 is certainly not optimal. �
4.5. Corollary. If α ∈ ENS, then the divisorial Zariski decomposition

α = N(α) + 〈α〉 is such that

〈αn−1〉 ·N(α) = 0.

Proof. By replacing α by α+δc1(H), one sees that it is sufficient to consider

the case where α is big. Then the orthogonality estimate implies

(μm)�(D
n−1
m ) · (μm)�Em = Dn−1

m · (μm)�(μm)�Em ≤ Dn−1
m · Em

≤ C(Vol(α)−Dn
m)1/2.
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THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 19

Since 〈αn−1〉 = lim(μm)�(D
n−1
m ), N(α) = lim(μm)�Em and limDn

m = Vol(α),

we get the desired conclusion in the limit. �

5. Proof of the duality theorem

We want to prove that ENS and SME(X) are dual (Theorem 2.2). By

Proposition 1.4(iii) we have in any case

ENS ⊂ (SME(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS

which is in the interior of SME(X)∨.

Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α+δω is big for

every δ > 0, and since α ∈ ((SME(X))∨)◦ we still have α− εω ∈ (SME(X))∨

for ε > 0 small. Therefore

(5.1) α · Γ ≥ εω · Γ

for every movable curve Γ. We are going to contradict (5.1). Since α + δω is

big, we have an approximate Zariski decomposition

μ�
δ(α+ δω) = Eδ +Dδ.

We pick Γ = (μδ)�(D
n−1
δ ). By the Hovanskii-Teissier concavity inequality

ω · Γ ≥ (ωn)1/n(Dn
δ )

(n−1)/n.

On the other hand

α · Γ = α · (μδ)�(D
n−1
δ )

= μ�
δα ·Dn−1

δ ≤ μ�
δ(α+ δω) ·Dn−1

δ

= (Eδ +Dδ) ·Dn−1
δ = Dn

δ +Dn−1
δ · Eδ.

By the orthogonality estimate, we find

α · Γ
ω · Γ ≤

Dn
δ +

(
20(Cω)n(Vol(α+ δω)−Dn

δ )
)1/2

(ωn)1/n(Dn
δ )

(n−1)/n

≤ C ′(Dn
δ )

1/n + C ′′ (Vol(α+ δω)−Dn
δ )

1/2

(Dn
δ )

(n−1)/n
.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.
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We can also take Dδ to approximate Vol(α + δω) in such a way that

(Vol(α+ δω)−Dn
δ )

1/2 tends to 0 much faster than Dn
δ . Notice that Dn

δ ≥
δnωn, so in fact it is enough to take

Vol(α+ δω)−Dn
δ ≤ δ2n.

This is the desired contradiction by (5.1). �
5.2. Remark. If holomorphic Morse inequalities were known also in the

Kähler case, we would infer by the same proof that “α not pseudo-effective”

implies the existence of a blow-up μ : X̃ → X and a Kähler metric ω̃ on X̃

such that α · μ�(ω̃)
n−1 < 0. In the special case when α = KX is not pseudo-

effective, we would expect the Kähler manifold X to be covered by rational

curves. The main trouble is that characteristic p techniques are no longer

available. On the other hand it is tempting to approach the question via

techniques of symplectic geometry:

5.3. Question. Let (M,ω) be a compact real symplectic manifold. Fix an

almost complex structure J compatible with ω, and for this structure, assume

that c1(M) ·ωn−1 > 0. Does it follow that M is covered by rational J-pseudo-

holomorphic curves?

6. Non-nef loci

Following [Bou02b], we introduce the concept of non-nef locus of an ar-

bitrary pseudo-effective class. The details differ a little bit here (and are

substantially simpler) because the scope is limited to compact Kähler mani-

folds.

6.1. Definition. Let X be a compact Kähler manifold, ω a Kähler metric,

and α ∈ E a pseudo-effective class. We define the non-nef locus of α to be

Lnonnef(α) =
⋃
δ>0

⋂
T

μ(|E|)

for all log resolutions μ�T = [E] + β of positive currents T ∈ {α + δω} with

logarithmic singularities, μ : X̃ → X, and μ(|E|) is the set-theoretic image of

the support of E.

It should be noticed that the union in the above definition can be restricted

to any sequence δk converging to 0, hence Lnonnef(α) is either an analytic set

or a countable union of analytic sets. The results of [Dem92] and [Bou02b]
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show that

(6.1′) Lnonnef(α) =
⋃
δ>0

⋂
T

E+(T )

where T runs over the set α[−δω] of all d-closed real (1, 1)-currents T ∈ α such

that T ≥ −δω, and E+(T ) denotes the locus where the Lelong numbers of T

are strictly positive. The latter definition (6.1′) works even in the non-Kähler

case, taking ω an arbitrary positive Hermitian form on X. By [Bou02b], there

is always a current Tmin which achieves minimum singularities and minimum

Lelong numbers among all members of α[−δω], hence
⋂

T E+(T ) = E+(Tmin).

6.2. Theorem. Let α ∈ E be a pseudo-effective class. Then Lnonnef(α)

contains the union of all irreducible algebraic curves C such that α · C < 0.

Proof. If C is an irreducible curve not contained in Lnonnef(α), the definition

implies that for every δ > 0 we can choose a positive current T ∈ {α + δω}
and a log-resolution μ�T = [E] + β such that C �⊂ μ(|E|). Let C̃ be the strict

transform of C in X̃, so that C = μ�C̃. We then find

(α+ δω) · C = ([E] + β) · C̃ ≥ 0

since β ≥ 0 and C̃ �⊂ |E|. This is true for all δ > 0 and the claim follows.

6.3. Remark.One may wonder, at least whenX is projective and α ∈ ENS,

whether Lnonnef(α) is actually equal to the union of curves C such that L·C <

0 (or the “countable Zariski closure” of such a union). Unfortunately, this is

not true, even on surfaces. The following simple example was shown to us by

E. Viehweg. Let Y be a complex algebraic surface possessing a big line bundle

F with a curve C such that F ·C < 0 as its base locus (e.g. F = π�O(1) +E

for the blow-up π : Y → P2 of P2 in one point, and C = E = exceptional

divisor). Then take finitely many points pj ∈ C, 1 ≤ j ≤ N , and blow-up

these points to get a modification μ : X → Y . We select

L = μ�F + Ĉ + 2
∑

Ej = μ�(F + C) +
∑

Ej

where Ĉ is the strict transform of C and Ej = μ−1(pj). It is clear that the

non-nef locus of α = c1(L) must be equal to Ĉ ∪
⋃
Ej , although

L · Ĉ = (F + C) · C +N > 0

for N large. This example shows that the set of α-negative curves is not the

appropriate tool to understand the non-nef locus.
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7. Pseudo-effective vector bundles

In this section we consider pseudo-effective and almost nef vector bundles as

introduced in [DPS01]. As an application, we obtain interesting informations

concerning the tangent bundle of Calabi-Yau manifolds. First we recall the

relevant definitions.

7.1. Definition. Let X be a compact Kähler manifold and E a holomor-

phic vector bundle on X. Then E is said to be pseudo-effective if the line

bundle OP(E)(1) is pseudo-effective on the projectivized bundle P(E) of hy-

perplanes of E, and if the projection π(Lnonnef(OP(E)(1))) of the non-nef locus

of OP(E)(1) onto X does not cover all of X.

This definition would even make sense on a general compact complex man-

ifold, using the general definition of the non-nef locus in [Bou02b]. On the

other hand, the following proposition gives an algebraic characterization of

pseudo-effective vector bundles in the projective case.

7.2. Proposition. Let X be a projective manifold. A holomorphic vector

bundle E on X is pseudo-effective if and only if for any given ample line

bundle A on X and any positive integers m0, p0, the vector bundle

Sp((SmE)⊗A)

is generically generated (i.e. generated by its global sections on the complement

X � Zm,p of some algebraic set Zm,p �= X) for some [respectively every] m ≥
m0 and p ≥ p0.

Proof. If global sections as in the statement of Proposition 7.2 exist,

they can be used to define a singular Hermitian metric hm,p on OP(E)(1)

which has poles contained in π−1(Zm,p) and whose curvature form satis-

fies Θhm,p
(OP(E)(1)) ≥ − 1

mπ∗Θ(A). Hence, by selecting suitable integers

m = M(m0, p0) and p = P (m0, p0), we find that OP(E)(1) is pseudo-effective

(its first Chern class is a limit of pseudo-effective classes), and that

π(Lnonnef(OP(E)(1))) ⊂
⋃
m0

⋂
p0

Zm,p � X.

Conversely, assume that OP(E)(1) is pseudo-effective and admits singular Her-

mitian metrics hδ such that Θhδ
(OP(E)(1)) ≥ −δω̃ and π(Sing(hδ)) ⊂ Zδ � X

(for some Kähler metric ω̃ on P(E) and arbitrary small δ > 0). We can ac-

tually take ω = Θ(A) and ω̃ = ε0Θh0
(OP(E)(1)) + π∗ω with a given smooth

Hermitian metric h0 on E and ε0 � 1. An easy calculation shows that the

linear combination h′
δ = h

1/(1+δε0)
δ hδε0

0 yields a metric on OP(E)(1) such that

Θh′
δ
(OP(E)(1)) ≥ −δπ∗Θ(A).
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By taking δ = 1/2m and multiplying by m, we find

Θ(OP(E)(m)⊗ π∗A) ≥ 1

2
π∗Θ(A)

for some metric on OP(E)(m)⊗ π∗A which is smooth over π−1(X �Zδ). The

standard theory of L2 estimates for bundle-valued ∂-operators can be used to

produce the required sections, after we multiply Θ(A) by a sufficiently large

integer p to compensate the curvature of −KX . The sections possibly still

have to vanish along the poles of the metric, but they are unrestricted on

fibers of P(SmE) → X which do not meet the singularities. �
Note that if E is pseudo-effective, then OP(E)(1) is pseudo-effective and E

is almost nef in the following sense which is just the straightforward general-

ization from the line bundle case.

7.3. Definition. Let X be a projective manifold and E a vector bundle

on X. Then E is said to be almost nef, if there is a countable family Ai of

proper subvarieties of X such that E|C is nef for all C �⊂
⋃

i Ai. Alternatively,

E is almost nef if there is no covering family of curves such that E is non-nef

on the general member of the family.

Observe that E is almost nef if and only if OP(E)(1) is almost nef and

OP(E)(1) is nef on the general member of any family of curves in P(E) whose

images cover X. Hence Theorem 2.2 yields the following corollary.

7.4. Corollary. Let X be a projective manifold and E a holomorphic

vector bundle on X. If E is almost nef, then OP(E)(1) is pseudo-effective.

Thus for some [or any] ample line bundle A, there are positive numbers m0

and p0 such that

H0(X,Sp((SmE)⊗A)) �= 0

for all m ≥ m0 and p ≥ p0.

One should notice that it makes a big difference to assert just the existence

of a non-zero section, and to assert the existence of sufficiently many sections

guaranteeing that the fibers are generically generated. It is therefore natural

to raise the following question.

7.5. Question. Let X be a projective manifold and E a vector bundle on

X. Suppose that E is almost nef. Is E always pseudo-effective in the sense

of Definition 7.1?

This was stated as a theorem in [DPS01, 6.3], but the proof given there

was incomplete. The result now appears quite doubtful to us. However, we

give below a positive answer to Question 7.5 in case of a rank 2-bundle E
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with c1(E) = 0 (conjectured in [DPS01]), and then apply it to the study of

tangent bundles of K3-surfaces.

7.6. Theorem. Let E be an almost nef vector bundle of rank at most 3 on

a projective manifold X. Suppose that detE ≡ 0. Then E is numerically flat.

Proof. Recall (cf. [DPS94]) that a vector bundle E is said to be numerically

flat if it is nef as well as its dual (or, equivalently, if E is nef and detE

numerically trivial); also, E is numerically flat if and only if E admits a

filtration by subbundles such that the graded pieces are unitary flat vector

bundles. By [Ko87, p. 115], E is unitary flat as soon as E is stable for some

polarization and c1(E) = c2(E) = 0.

Under our assumptions, E is necessarily semi-stable since semi-stability

with respect to a polarization H can be tested against a generic complete

intersection curve, and we know that E is nef, hence numerically flat, on such

a curve. Therefore (see also [DPa04, 6.8]) we can assume without loss of gen-

erality that dimX = 2 and that E is stable with respect to all polarizations,

and it is enough to show in that case that c2(E) = 0. Since E is almost nef,

E is nef, hence numerically flat, on all curves except for at most a countable

number of curves, say (Γj)j∈N.

First suppose that E has rank 2. Then the line bundle O(1) on P(E) is

immediately seen to be nef on all but a countable number of curves. In fact,

the only curves on which O(1) is negative are the sections over the curves

Γj with negative self-intersection in P(E|Γj). Now take a general hyperplane

section H on P(E). Then H does not contain any of these bad curves and

therefore O(1) is nef on H. Hence,

c1(O(1))2 ·H ≥ 0.

Now, up to a multiple, H is of the form H = O(1)⊗ π∗(G) so that

c1(O(1))3 + c1(O(1))2 · π∗(G) ≥ 0.

Since c1(O(1))3 = c1(E)2 − c2(E) = −c2(E) and c1(O(1))2 · π∗(G) = c1(E) ·
G = 0, we conclude c2(E) = 0.

If E has rank 3, we need to argue more carefully, because now O(1) is non-

nef on the surfaces Sj = P(E|Cj) so that O(1) might be non-nef on a general

hyperplane section H. We will, however, show that this can be avoided by

choosing carefully the linear system |H|. To be more precise, we fix G ample

on X and look for

H ∈ |O(1) + π∗(mG)|
with m � 0, so that O(1) is nef on H∩Sj for all j. Given that O(1)|H and we

can argue as in the previous case to obtain c2(E) = 0. Of course for a general

choice of H, all curves H ∩ Sj will be irreducible (but possibly singular since
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Cj might be singular). Now fix j and set C̃ = H ∩ Sj , a section over C = Cj .

Let V ⊂ EC be the maximal ample subsheaf (see [PS02]). Then we obtain a

vector bundle sequence

0 → V → EC → F → 0

and we may assume that F has rank 2, because otherwise O(1) is not nef only

on one curve over C. Now C̃ induces an exact sequence

0 → OC(−mG) → F → F ′ → 0

and therefore O(1)|C̃ is nef iff c1(F
′) ≥ 0. This translates into c1(F ) +

m(G ·C) ≥ 0. Now let t0 be the nef value of E with respect to G, i.e. E(t0G)

is nef but not ample. Then F (t0G) is nef, too, so that c1(F ) ≥ −2t0(G · C).

In total

c1(F
′) ≥ (m− 2t0)(G · C),

hence we choose m ≥ 2t0 and for this choice O(1)|H is nef. �
As a corollary we obtain the following theorem.

7.7. Theorem. Let X be a projective K3-surface or a Calabi-Yau 3-fold.

Then the tangent bundle TX is not almost nef, and there exists a covering

family (Ct) of (generically irreducible) curves such that TX |Ct is not nef for

general t.

In other words, if c1(X) = 0 and TX is almost nef, then a finite étale cover

of X is abelian. One should compare this with Miyaoka’s theorem that TX |C
is nef for a smooth curve C cut out by hyperplane sections of sufficiently large

degree. Note also that TX |C being not nef is equivalent to say that TX |C is

not semi-stable. We expect that Theorem 7.7 holds in general for Calabi-Yau

manifolds of any dimension.

Proof. Assume that TX is almost nef. Then by Theorem 7.6, TX is nu-

merically flat. In particular, c2(X) = 0 and hence X is an étale quotient of a

torus. �
We will now improve Theorem 7.7 for K3-surfaces; namely, if X is a pro-

jective K3-surface, then already OP(TX)(1) should be non-pseudo-effective. In

other words, let A be a fixed ample divisor on X. Then for all positive integers

m there exists a positive integer p such that

H0(X,Sp((SmTX)⊗A)) = 0.

This has been verified in [DPS01] for the general quartic in P3 and below for

any K3-surface. The next theorem is also proved in [Na04].

7.8. Theorem. Let X be a projective K3-surface and L = OP(TX )(1).

Then L is not pseudo-effective.
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Proof. Suppose that L is pseudo-effective and consider the divisorial Zariski

decomposition ([Bou02b], cf. also Theorem 3.5(iv))

L = N + Z

with N an effective R-divisor and Z nef in codimension 1. Write N = aL +

π∗(N ′) and Z = bL+ π∗(Z ′). Let H be very ample on S. By restricting to a

general curve C in |HH | and observing that TX |C is numerically flat, we see

that L|π−1(C) is nef (but not ample), hence

N ′ · C = 0.

Thus N ′ = 0 since H is arbitrary. If a > 0, then some mL would be effective,

i.e. SmTX would have a section, which is known not to be the case. Hence,

a = 0 and L is nef in codimension 1 so that L can be negative only on finitely

many curves. This contradicts Theorem 7.7. �

8. Nef reduction relative to a covering family of curves

In this section we construct reduction maps for pseudo-effective line bundles

which have vanishing intersection numbers on large families of curves. This

will be applied in the next section in connection with the abundance problem.

8.1. Notation. Let (Ct)t∈T be a covering family of (generically irre-

ducible) curves (in particular, T is irreducible and compact). Then (Ct) is

said to be a connecting family if and only if two general points x, y can be

joined by a chain of Ct’s. We also say that X is (Ct)-connected.

By T ∗ we denote the Zariski-open (non-empty) set of those t for which Ct

is irreducible.

Using Campana’s reduction theory [Ca81], [Ca94], and [Ca04], we imme-

diately obtain the following theorem.

8.2. Theorem. Let X be a projective manifold and L a pseudo-effective

line bundle on X. Let (Ct) be a covering family with L · Ct = 0. Then there

exists an almost holomorphic surjective meromorphic map f : X > Y with

dimY < dimX such that the general (compact) fiber of f is (Ct)-connected.

f is called the nef reduction of L relative to (Ct).

Recall that a meromorphic map is almost holomorphic, if there is an open

non-empty set on which the map is holomorphic and proper. Of course, there

might be other families (C ′
s) with L · C ′

s = 0 leading to different quotients.

8.3. Definition. Let L be a pseudo-effective line bundle on X. The min-

imal number which can be realised as dimY with a nef reduction f : X > Y
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relative to L is denoted p(L). If there is no covering family (Ct) with L·Ct = 0,

then we set p(L) = dimX.

8.4. Remark. The equality p(L) = 0 holds if and only if there exists

a connecting family (Ct) such that L · Ct = 0. If, moreover, L is nef, then

p(L) = 0 if and only if L ≡ 0 [workshop].

For computing Kodaira dimensions, sometimes the notion of a connecting

family has to be strenghtened:

8.5. Definition. A covering family (Ct)t∈T is strongly connecting if any

two sufficiently general points x and y can be joined by a chain of irreducible

Ct, i.e. t ∈ T ∗, avoiding any given analytic set A of codimension at least 2.

8.6. Theorem. Let X be a projective manifold, L a pseudo-effective R-

divisor. Let (Ct) be a strongly connected family of curves. If L · Ct = 0, then

nd(L) = 0. If L is Cartier, then L is numerically equivalent to a Cartier

divisor L′ with κ(L′) = 0.

Equivalently:

8.7. Theorem. Let X be a projective manifold of any dimension n, (Ct)

a strongly connecting family and L an R-divisor that is nef in codimension 1.

If L · Ct = 0, then L ≡ 0.

Proof (of Theorem 8.6 from Theorem 8.7). Consider the divisorial Zariski

decomposition L = N + Z with N an R-effective divisor and Z nef in codi-

mension 1. Then N ·Ct ≥ 0 and Z ·Ct ≥ 0, so that L ·Ct = 0 forces Z ·Ct = 0.

Hence, Z ≡ 0 by Theorem 8.7 so that nd(L) = 0. For the second statement

we refer to Proposition 3.12. �
Proof (of Theorem 8.7) (I). Let T be the parameter space of the family

(Ct); we may assume dimT = n − 1. In a first step, we reduce to the case

that through every point x ∈ X there are only finitely many Ct. In fact, in

the general situation, take a birational map σ : X̃ → X from a projective

manifold X̃, such that the induced family C̃t has the finiteness property (this

can be achieved, e.g., by flattening the projection map from the graph of the

family to X). Then let L̃ be the mobile part of σ∗(L), i.e. the part in the

divisorial Zariski decomposition which is nef in codimension 1. Since we know

that the general Ct avoids codimension 2 sets, we obtain L̃ · C̃t = 0. By

our assumption that Theorem 8.7 already holds if the finiteness condition is

verified, we conclude that L̃ ≡ 0. Hence, L ≡ 0.

(II) From now on we may assume that only finitely many Ct pass through

a fixed point of X. Therefore the following holds. If C → T is the parameter
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space of the family (Ct) and if Y ⊂ X is any analytic set of codimension at

least 2, then the set of points t ∈ T such that dim(Ct∩Y ) = 1 has codimension

at least 2 in T .

Let B ⊂ X be a general curve. We follow the arguments in [workshop] and

fix a general point x. We choose a family (Bs)s∈S joining x with the curveB by

chains of irreducible curves Ct. Let p : S → X be the graph of the family with

parameter space q : C → T . Let Sj be the irreducible components of C. The

codimension argument above says that we may assume that dimBs ∩ A ≤ 0,

where A is the non-nef locus of L. Thus p∗(L)|Sj is nef in codimension 1 for

all j, hence nef. But now the arguments of [workshop] work, and consequently

L ·B = 0. Taking, e.g., B by complete intersection curves cut out by arbitrary

hyperplane sections, we conclude that L ≡ 0. �
Of course the question arises whether Theorem 8.6 holds for all connecting

families. Unfortunately, this is not true, as demonstrated by the following

example.

8.8. Example. We produce a smooth projective threefoldX, a line bundle

L on X which is nef in codimension 1, in particular, pseudo-effective, and a

connecting family (Ct) such that h0(L) = 2 and κ(L) = 1, but

L · Ct = 0.

We start with the P2-bundle

p : X1 := P(O ⊕O ⊕O(−1)) → P1.

Consider the section

B1 = P(O(−1)) ⊂ X1

with normal bundle NB1/X1
= O(−1) ⊕ O(−1). Now we flop the curve B1 :

we first consider the blow-up τ : X2 → X1 of X1 along B1. The exceptional

divisor E � P1 × P1 has normal bundle O(−1,−1) and therefore X2 can be

blown-down along the other projection to obtain σ : X2 → X. Let B = σ(E)

and

L = (σ∗τ
∗p∗(O(1)))∗∗.

Then clearly h0(L) = 2 and κ(L) = 1. Let Fs be the strict transform of

p−1(s), s ∈ P1 in X so that L = OX(Fs). Observe that Fs is P2 blown up in

one point, that B is the base locus of H0(L), and that B ⊂ Fs is the (−1)-

curve. In order to establish the connecting family (Ct) with L·Ct = 0, consider

a section D′ = P(O), disjoint from B1 and let D be its strict transform in

X. In every fiber Fs we can consider the family of “lines” meeting D′, i.e.,

containing the point ps = D ∩ Fs. A “line” is of course a curve whose images

in P2 is a line in the usual sense. The family of “lines” inside Fs has exactly

one splitting element containing the (−1)-curve B. The other component is
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the strict transform of the line in P2 joining ps and the point to be blown up.

Varying s, so we obtain a family (Ct), which is clearly connecting because of

the curve B. Moreover, it is clear that L · Ct = 0. �
It is still possible to say something for general connecting families. First

observe the following lemma.

8.9. Lemma. Suppose κ(L) ≥ 0 and let D ∈ |mL| for some positive

integer m. If (Ct) is a covering family such that L · Ct = 0, then

supp(D) ∩ Ct = ∅

for general t.

Proof. Just choose t general so that Ct �⊂ supp(D). Then D · Ct implies

the claim. �
8.10. Proposition. Let X be a projective manifold of dimension n and

L a line bundle on X such that L ·Ct = 0 for a connecting family (Ct). Then

κ(L) ≤ n− 2.

Proof. Suppose the contrary and choose m such that H0(mL) defines a

map f : X > Y to a variety of dimension at least n− 1. By Lemma 8.9, f

is holomorphic near the general Ct. This already reduces to dimY = n − 1.

Since we may assume that f has connected fibers, the Ct are just the fibers of

f (at least for general t), so that f is almost holomorphic, and it is immediate

that the family (Ct) cannot be connecting. �
Although Theorem 8.6 fails in general for connecting families and arbitrary

line bundles L, one might hope more in case L = KX .

8.11. Proposition. Let X be a smooth projective threefold and (Ct) be a

connecting family such that KX ·Ct = 0. Then κ(X) ≤ 0 unless we are in the

following special situation:

(i) KX is not nef, κ(X) = 1.

(ii) There is a sequence φ : X > X ′ of Mori contractions and flips such

that

KX′ · C ′
t = 0

for the induced family (C ′
t) (φ is holomorphic near the general Ct).

(iii) On X ′ we have a flip

X ′
> X+,

the induced family (C+
t ) is no longer connecting; moreover, KX+ ·

C+ = 0.
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(iv) The Iitaka fibration is a holomorphic map f : X+ → Z+ � P1 and f

is a quotient for the family (C+
t ).

(v) The exceptional locus E+ ⊂ X+ of the flip X ′ > X+ dominates Z+.

Proof. Assume κ(X) ≥ 1, hence κ(X) = 1 (see Example 8.8). By

[workshop], KX cannot be nef. Let φ : X → X1 be a Mori contraction,

necessarily birational; let E be the exceptional divisor. Then E ·Ct = 0; oth-

erwise, KX1
·φ(Ct) < 0, and X1 would be uniruled. Then we get a connecting

family (C1
t ) in X1 and proceed inductively. So we arrive at a flip

X ′
> X+.

Let E′ ⊂ X ′ respectively E+ ⊂ X+ be the 1-dimensional “exceptional” sets.

From Lemma 8.9 and the fact that KX is negative on all components of E′,

we deduce that

C ′
t ∩ E′ = ∅

for general t. Hence,

KX+ · C+
t = 0.

If (C+
t ) is again connecting, then we proceed with X+. After finitely many

steps we must arrive at the case where (C+
t ) is no longer connecting, because

by [workshop] we cannot arrive at some X+ with KX+ nef and the induced

family being connecting. Therefore, we consider the quotient

f : X+
> Z+.

Then E+ must map onto Z+; otherwise, (C ′
t) would not be connecting. Thus

Z+ � P1 and the almost holomorphic map f must be holomorphic. By

Example 8.8, the general fiber F of f has κ(F ) = 0. Hence, f is the Iitaka

fibration. �
It is not completely clear whether the situation in Proposition 8.11 really

occurs.

It is also interesting to look at covering families (Ct) of ample curves. Here

“ample” means that the dual of the conormal sheaf modulo torsion is ample

(say on the normalization). Then we have the same result as in Theorem 8.6

which is prepared by the following lemma.

8.12. Lemma. Let X be a projective manifold, C ⊂ X an irreducible

curve with normalization f : C̃ → C and ideal sheaf I. Let L be a line bundle

on X. Then there exists a positive number c such that for all t ≥ 0:

h0(X,Lt) ≤
ct∑

k=0

h0(f∗(Sk(I/I2/tor)⊗ Lt)).

Proof. Easy adaptation of the proof of Theorem 2.1 in [PSS99]. �
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8.13. Corollary. Let X be a projective manifold and C ⊂ X be an

irreducible curve with normalisation f : C̃ → C such that f∗(I/I2)∗ is ample.

Let L be a line bundle with L · Ct = 0. Then κ(L) ≤ 0. In particular, this

holds for the general member of an ample covering family.

Proof. By Lemma 8.12 it suffices to show that

h0(f∗(Sk(I/I2/tor)⊗ Lt)) = 0

for all k ≥ 1. This is, however, clear since by assumption f∗(I/I2)∗ is an

ample bundle. �
8.14. Corollary. Let X be a smooth projective threefold with KX pseudo-

effective. If there is a ample covering family or a connecting family (Ct) such

that KX · Ct = 0, then κ(X) = 0.

Proof. By Corollary 8.13 we have κ(X) ≤ 0. Suppose that κ(X) = −∞.

Then X is uniruled by Miyaoka’s theorem. Thus KX is not pseudo-effective.

�
To complete the picture, we will construct a nef reduction for pseudo-

effective line bundles, generalizing to a certain extent the result of [workshop]

for nef line bundle (however, the result is weaker). A different type of reduc-

tion was constructed in [TS00] and [Ec02].

8.15. Theorem. Let L be a pseudo-effective line bundle on a projective

manifold X. Then there exists an almost holomorphic meromorphic map f :

X > Y such that:

(i) General points on the general fiber of F can be connected by a chain

of L-trivial irreducible curves.

(ii) If x ∈ X is general and C is an irreducible curve through x with

dim f(C)

> 0, then L · C > 0.

Proof. Start with a covering L-trivial family (Ct) and build the relative nef

reduction h : X > Z (if the family does not exist, put f = id). Now take

another covering L-trivial family (Bs) (if this does not exist, just stop) with

relative nef reduction g. For general z ∈ Z, let Fz be the set of all x ∈ X

which can be joined with the fiber Xz by a chain of curves Bs. In other

words, Fz is the closure of g−1(g(Xz)). Now the Fz define a covering family

(of higher-dimensional subvarieties) which defines by Campana’s theorem a

new reduction map. After finitely many steps, we arrive at the map we are

looking for. �
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Finally, we give a criterion when a covering family is actually connecting:

8.16. Theorem. Let X be a projective manifold and (Ct) a covering

family. Suppose that [Ct] is an interior point of the movable cone M. Then

(Ct) is connecting.

Proof. Let f : X > Z be the reduction of the family (Ct). If the family

is not connecting, then dimZ > 0. Let π : X̃ → X be a modification such

that the induced map f̃ : X̃ → Z is holomorphic. Let A be very ample on

Z and put L = π∗(f̃
∗(A))∗∗. Then L is an effective line bundle on X with

L · Ct = 0 since L is trivial on the general fiber of f , this map being almost

holomorphic. Hence, [Ct] must be on the boundary of M. �
The converse of Theorem 8.16 is of course false: consider the family of lines

l in P2 and let X be the blow-up of some point in P2. Let (Ct) be the closure

of the family of preimages of general lines. This is a connecting family, but if

E is the exceptional divior, then E ·Ct = 0. So (Ct) cannot be in the interior

of M.

9. Towards abundance

In this section we prove that a smooth projective 4-fold X withKX pseudo-

effective and with the additional property that KX · Ct = 0 for some good

covering family of curves (Ct), has κ(X) ≥ 0. In other words, we deal with

problem (B2) from the introduction in dimension 4. In the remaining case,

that KX is positive on all covering and non-connecting or strongly connecting

families of curves, one expects that KX is big.

9.1. Proposition. Let X be a smooth projective 4-fold with KX pseudo-

effective. Suppose that there exists a dominant rational map f : X > Y to a

projective manifold Y with κ(Y ) ≥ 0 (and 0 < dimY < 4). Then κ(X) ≥ 0.

Proof. We may assume f holomorphic with general fiber F . If κ(F ) = −∞,

then F would be uniruled, hence X would be uniruled. Hence, κ(F ) ≥ 0. Now

Cn,n−3, Cn,n−2 and Cn,n−1 hold true; see e.g. [Mo87] for further references.

This gives

κ(X) ≥ κ(F ) + κ(Y ) ≥ 0

and therefore our claim. �
9.2. Corollary. Let X be a smooth projective 4-fold with KX pseudo-

effective. Let f : X > Y be a dominant rational map (0 < dimY < 4) with

Y not rationally connected. Then κ(X) ≥ 0.
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Proof. If dimY ≤ 2, this is immediate from Proposition 9.1. So let dim Y =

3. Since we may assume κ(Y ) = −∞, the threefold Y is uniruled. Let

h : Y > Z be the rational quotient; we may assume that h is holomorphic

and Z smooth. Since Y is not rationally connected, we have dimZ ≥ 1 and,

moreover, Z is not uniruled by Colliot-Thélène [CT86]; see also Graber-Harris-

Starr [GHS03]. Hence, κ(Z) ≥ 0 and we conclude by Proposition 9.1. �
9.3. Conclusion. In order to prove κ(X) ≥ 0 in case of a dominant

rational map f : X4 > Y , we may assume that Y is a rational curve, a

rational surface or a rationally connected 3-fold.

9.4. Proposition. Let X be a smooth projective 4-fold with KX pseudo-

effective. If p(KX) = 1, then κ(X) ≥ 0.

Proof. By assumption we have a covering family (Ct) with KX ·Ct = 0, so

that the relative nef reduction is a holomorphic map f : X → Y to a curve Y .

By Conclusion 9.3 we may assume Y = P1. We already saw that κ(F ) ≥ 0.

By Proposition 8.11 “mostly” we even have κ(F ) = 0 unless we are in a very

special situation.

We begin treating the case κ(F ) = 0. Choose m such that h0(mKF ) �= 0

for the general fiber F of f . Thus f∗(mKX) is a line bundle on Y , and we

can write

mKX = f∗(A) +
∑

aiFi + E

where Fi are fiber components and E surjects onto Y with h0(OX(E)) = 1.

The divisor E comes from the fact that F is not necessarily minimal; actually

E|F = mKF . By enlargingm, we may also assume that the support of
∑

aiFi

does not contain any fiber and also that mKX is Cartier. We consider the

divisorial Zariski decomposition

mKX = Ñ + Z̃

with Ñ being R-effective and Z̃ nef in codimension 1. Then clearly E ⊂ Ñ so

that

(∗) f∗(A) +
∑

aiFi = Ñ ′ + Z̃

with Ñ ′ again R-effective.

Now let S ⊂ X be a surface cut out by 2 general hyperplane sections. Let

L = mKX |S and E′ = E|S. Denoting Gi = Fi|S, g = f |S and N = Ñ ′|, Z =

Z̃, we obtain

(∗∗) L = g∗(A) +
∑

aiGi + E′
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and from (∗)

(∗∗∗) g∗(A) +
∑

aiGi = N ′ + Z.

Then N ′ is R-effective and not nef, and Z is nef. However, N ′ might a

priori have a nef part; so we consider the divisorial Zariski decomposition

N ′ = N0 + Z0 and set Z1 = Z0 + Z. Let l be a general fiber of g. Then we

conclude from (∗∗∗) that (N ′ + Z) · l = (N0 + Z0) · l = 0 and thus

N0 · l = Z0 · l = 0.

So N0 is contained in fibers of g and Z0 = f∗(OY (a)), [workshop, 2.11];

moreover, a ≥ 0. Comparing with (∗∗∗) and using the fact that
∑

aiGi

does not contain the support of a full fiber, A must be nef. Hence (∗) gives

κ(X) ≥ 0.

It remains to treat the case κ(F ) = 1. Then we can use the relative Iitaka

fibration of f and obtain a birational model X̂ of X such that the induced

map f̂ : X̂ → Y factors as f̂ = h ◦ g, where g|X̂y is the Iitaka fibration of

X̂y, so that the general fiber Fg of g has κ(Fg) = 0. Now we conclude by

Proposition 9.7. �
9.5. Proposition. Let X be a smooth projective 4-fold with KX pseudo-

effective. If p(KX) = 3, then κ(X) ≥ 0.

Proof. Here any reduction is a (possibly meromorphic) elliptic fibration.

We choose a holomorphic birational model f : X −→ Y (with X and Y

smooth), such that:

(a) f is smooth over Y0 and Y \Y0 is a divisor with simple normal crossings

only.

(b) The j-function extends to a holomorphic map J : Y −→ P1.

By the first property, f∗(KX) is locally free [Ko86], and we obtain the

well-known formula of Q-divisors

(∗) KX = f∗(KY +Δ) + E −G.

Here E is an effective divisor such that f∗(OX(E)) = OY and G is an effective

divisor such that dim f(G) ≤ 1. Moreover,

Δ = Δ1 +Δ2

with

Δ1 =
∑

(1− 1

mi
)Fi +

∑
ak

and

Δ2 ∼ 1

12
J∗(O(1)).
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Here Fi are the components over which we have multiple fibers and Dk are the

other divisor components over which there are singular fibers. The ak ∈ 1
12N

according to Kodaira’s list. Then by a general choice of the divisor Δ2, the

pair (Y,Δ1+Δ2) is klt. Now KY +Δ is pseudo-effective. In fact, by Theorem

2.2, it suffices to show that (KY +Δ) ·Bs ≥ 0 for every covering family (Bs)

of curves. But this is checked very easily by restricting to f−1(Ct). Hence,

the log Minimal Model Program [Ko92] in dimension 3 implies that KY +Δ

is effective. If G = 0, then we could conclude immediately κ(X) ≥ 0 by (*).

In general we argue as follows. Consider the divisorial Zariski decomposition

KX = f∗(KY +Δ) + E −G = N + Z

with Z nef in codimension 1 and N the “exceptional” part. Using the log

minimal model of (Y,Δ) we can write

KY +Δ = N ′ + Z ′,

where Z ′ is the movable part and N ′ the fixed part; this is automatically the

divisorial Zariski decomposition of KY +Δ. Since f∗(Z ′) might not be nef in

codimension 1 due to the large fibers of f , we consider the decomposition

f∗(Z ′) = N0 + Z0

into the movable part Z0 and the fixed part N0 which is again the divisorial

Zariski decomposition. Notice that N ′, E,N0, Z0 and G are Q-divisors. We

obtain

f∗(N ′) +N0 + E + Z0 = N +G+ Z.

Then f∗(N ′) + N0 + E is the exceptional part of the left hand side while

N + G is the exceptional part of the right hand side. Thus Z = Z0, so that

Z is an effective Q-divisor. Then also N is an effective Q-divisor, and we

conclude. �
9.6. Proposition. Let X be a smooth projective 4-fold with KX pseudo-

effective. If p(KX) = 2, then κ(X) ≥ 0.

Proof. Again we may assume that we have a holomorphic relative nef

reduction f : X → Y with Y smooth and that f is smooth over Y0 and Y \Y0

is a divisor with simple normal crossings only. By Propositions 8.10 and 8.11,

κ(F ) = 0 for the general fiber F of f . As in Proposition 9.5, we can write -

possibly after birational transformation -

KX = f∗(KY +Δ) + E −G

with E effective, f∗(OX(E)) = OY , G consisting of three-dimensional fiber

components and (Y,Δ) klt. This is proved in [Am04], proof of (5.1). Then

we can proceed as in Proposition 9.5. �
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The arguments of Proposition 9.6 actually show the following.

9.7. Proposition. Let X be a smooth projective 4-fold with KX pseudo-

effective. Suppose X has a holomorphic surjective map (with connected fibers)

X → Y whose general fiber F has κ(F ) = 0. Then κ(X) ≥ 0.

Proposition 9.4 could have been proved in the same way as Proposition 9.6;

but maybe the ad hoc proof given above is instructive. The case p(KX) = 0

is partially settled by Theorem 8.6 together with Proposition 3.11:

9.8. Theorem. Let X be a projective manifold such that KX is pseudo-

effective. If there is a strongly connecting family (Ct) such that KX · Ct = 0,

then κ(X) = 0.

9.9. Remark. Let X be a projective manifold of dimension n and (Ct)

a connecting family which is not strongly connecting. Assume L · Ct = for

some pseudo-effective line bundle L on X. One may wonder whether L is

numerically equivalent to an effective divisor. Let us concentrate on the case

n = 4 and L = KX . Fix a general curve Ct, consider the possibly non-compact

subspace of X filled up by the chains of irreducible Cs meeting Ct and take

closure. If this subspace is reducible, pick some irreducible component, say

Y . Since we assume the family not to be strongly connecting, Y �= X, so Y is

either a surface or a divisor. It is not difficult to see (using Example 8.8) that

nd(KX |Y ) = 0.

Let us assume that dimY = 3. Varying the curve Ct, we obtain a family (Ys)

of divisors. We may assume that the parameter space S of the family is 1-

dimensional. If it is not connecting, we obtain a holomorphic map f : X → S.

Let F be the general fiber; then nd(KF ) = 0 and by abundance for threefolds,

κ(F ) = 0. Hence, we conclude by Proposition 9.5.

If the family is connecting, we have to pass to the graph: p : C → X with

projection q : C → S. In that case, it might happen that nd(p∗(KX)) = 1 and

it seems likely that the part of p∗(KX) which is nef in codimension 1 comes

from S, hence is effective. Then we obtain κ(X) ≥ 0. Details are left to a

future paper.

9.10. Definition. Let X be a projective manifold and (Ct) a covering

family of curves. Then (Ct) is a good covering family if it is either non-

connecting or strongly connecting.

Using this notation, we may summarize our results as follows.

9.11. Theorem. Let X be a smooth projective 4-fold (or a normal pro-

jective 4-fold with only canonical singularities). If KX is pseudo-effective and
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if there is a good covering family (Ct) of curves such that KX · Ct = 0, then

κ(X) ≥ 0.

9.12. Remark. Let X be a projective manifold of dimension n.

(1) Suppose 1 ≤ κ(X) ≤ n − 1. If X has a good minimal model via

contractions and flips, then X carries a covering non-connecting family of

curves. If we require only that X has a good minimal model, then at least

some blow-up of X carries a covering non-connecting family of curves.

(2) Suppose κ(X) = 0. If X has a good minimal model via contractions

and flips, then X carries a strongly connecting family of curves. Again, if we

require only that X has a good minimal model, then at least some blow-up

of X carries a covering non-connecting family of curves.

(3) This shows that the program of proving Problem (B) via (B1) and (B2),

in the version with good connecting families, is really meaningful, i.e., we do

not try to prove too much.

The remaining task is essentially to consider 4-folds X with KX ·Ct > 0 for

all good covering families (Ct) (but a priori it might happen that KX ·Ct = 0

for a connecting, but not strongly connecting family (Ct). In that case one

expects that X is of general type. It is easy to see that every proper subvariety

S of X passing through a very general point of X is of general type, i.e. its

desingularisation is of general type; see Proposition 9.13 below. But it is

not at all clear whether KX |S is big, which is of course still not enough to

conclude.

9.13. Proposition. Let X be a smooth projective 4-fold with p(KX) = 0.

Then every proper subvariety S ⊂ X through a very general point of X is of

general type.

Proof. Supposing the contrary, we find a covering family (St) of subvarieties

such that the general St, hence every St, is not of general type. Consider the

desingularised graph p : C → X of this family; by passing to a subfamily

we may assume p generically finite. Denoting q : C → T the parametrising

projection, the general fiber Ŝt is a smooth variety of dimension at most 3

and not of general type. We have an equation

KC = p∗(KX) + E

with an effective divisor E. Notice that E must dominate T , otherwise q

induces (up to finite étale cover of X) an almost holomorphic map X > T

which would give rise to a covering non-connecting family (Ct) with KX ·Ct =

0. By further blowing-up and using [KM92], we may assume that the general

Ŝt dominates holomorphically a minimal model. We now easily find a covering
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family (Cs) of curves (sitting in q-fibers) such that KC ·Cs = 0, but E ·Cs > 0.

Hence, KX · p∗(Cs) < 0; a contradiction. �
Using the Iitaka fibration we obtain the following.

9.14. Proposition. Let X be a smooth projective 4-fold with p(KX) = 0.

Then κ(X) �= 1, 2, 3.

10. Appendix: towards transcendental Morse inequalities

As already pointed out, for the general case of Conjecture 2.3, a transcen-

dental version of the holomorphic Morse inequalities would be needed. The

expected statements are contained in the following conjecture, which is also

discussed in [Dem10].

10.1. Conjecture. Let X be a compact complex manifold, and n =

dimX.

(i) Let α be a closed, (1, 1)-form on X. We denote by X(α,≤ 1) the set

of points x ∈ X such that αx has at most one negative eigenvalue. If∫
X(α,≤1)

αn > 0, the class {α} contains a Kähler current and

Vol(α) ≥
∫
X(α,≤1)

αn.

(ii) Let {α} and {β} be nef cohomology classes of type (1, 1) on X sat-

isfying the inequality αn − nαn−1 · β > 0. Then {α − β} contains a

Kähler current and

Vol(α− β) ≥ αn − nαn−1 · β.

Remarks about the conjecture. If α = c1(L) for some holomorphic

line bundle L on X, then the inequality (i) was established in [Bou02a] as a

consequence of the results of [Dem85]. In general, (ii) is a consequence of (i).

In fact, if α and β are smooth positive definite (1, 1)-forms and

λ1 ≥ . . . ≥ λn > 0

are the eigenvalues of β with respect to α, then X(α − β,≤ 1) = {x ∈
X ; λ2(x) < 1} and

1X(α−β,≤1)(α− β)n = 1X(α−β,≤1)(1− λ1) . . . (1− λn) ≥ 1− (λ1 + . . .+ λn)

everywhere on X. This is proved by an easy induction on n. An integration

on X yields inequality (ii). In case α and β are just nef but not necessarily

positive definite, we argue by considering (α+ εω)− (β + εω) with a positive

Hermitian form ω and ε > 0 small. �
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The full force of the conjecture is not needed here. First of all, we need

only the case when X is compact Kähler. Let us consider a big class {α},
and a sequence of Kähler currents Tm ∈ {α} with logarithmic poles, such that

there exists a modification μm : Xm 
→ X, with the properties:

(10.2′) μ∗
mTm = βm + [Em] where βm is a semi-positive (1, 1)-form, and Em

is an effective Q-divisor on Xm;

(10.2′′) Vol({α}) = limm �→∞
∫
X
βn
m

(see Definition 3.2).

A first trivial observation is that the following uniform upper bound for

c1(Em) holds.

10.3. Lemma. Let ω be a Kähler metric on X, such that {ω−α} contains

a smooth, positive representative. Then for each m ∈ Z+, the (1, 1)-class

μ∗
m{ω} − c1(Em) on Xm is nef.

Proof. If γ is a smooth positive representative in {ω − α}, then μ�
mγ + βm

is a smooth semi-positive representative of μ∗
m{ω} − c1(Em). �

A second remark is that in order to prove the duality statement, Conjecture

2.3, for projective manifolds, it is enough to establish the estimate

(∗) Vol(ω −A) ≥
∫
X

ωn − n

∫
X

ωn−1 ∧ c1(A)

where ω is a Kähler metric, and A is an ample line bundle on X. Indeed, if

{α} is a big cohomology class, we use the above notation and we can write

βm + tEm = βm + tμ∗
mA− t(μ∗

mA− Em)

where A is an ample line bundle on X such that c1(A) − {α} contains a

smooth, positive representative. The arguments of the proof of Theorem 4.1

will give the orthogonality estimate, provided that we are able to establish

(∗).
In this direction, we can get only a weaker statement with a suboptimal

constant cn.

10.4. Theorem (analogue of Lemma 4.2). Let X be a projective manifold

of dimension n. Then there exists a constant cn depending only on dimension

(actually one can take cn = (n+ 1)2/4 ), such that the inequality

Vol(ω −A) ≥
∫
X

ωn − cn

∫
X

ωn−1 ∧ c1(A)

holds for every Kähler metric ω and every ample line bundle A on X.

Licensed to Biblio University Jussieu. Prepared on Fri Nov 23 08:23:52 EST 2012 for download from IP 134.157.100.1.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



40 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

Proof. Without loss of generality, we can assume that A is very ample

(otherwise multiply ω and A by a large positive integer). Pick generic sections

σ0, σ1, . . . , σn ∈ |A| so that one gets a finite map

F : X → Pn
C, x 
→ [σ0(x) : σ1(x) : . . . : σn(x)].

We let θ = F ∗ωFS ∈ c1(A) be the pull-back of the Fubini-Study metric on Pn
C

(in particular, θ ≥ 0 everywhere on X), and put

ψ = log
|σ0|2

|σ0|2 + |σ1|2 + . . .+ |σn|2
.

We also use the standard notation dc = i
4π (∂ − ∂) so that ddc = i

2π∂∂. Then

ddcψ = [H]− θ

where H is the hyperplane section σ0 = 0 and [H] is the current of integration

over H (for simplicity, we may further assume that H is smooth and reduced,

although this is not required in what follows). The set Uε = {ψ ≤ 2 log ε} is

an ε-tubular neighborhood of H. Take a convex increasing function χ : R → R

such that χ(t) = t for t ≥ 0 and χ(t) = constant on some interval ] −∞, t0].

We put ψε = ψ − 2 log ε and

αε := ddcχ(ψε) + θ = (1− χ′(ψε))θ + χ′′(ψε)dψε ∧ dcψε ≥ 0.

Thanks to our choice of χ, this is a smooth form with support in Uε. In

particular, we find∫
Uε

αn
ε =

∫
Uε

αε ∧ θn−1 =

∫
X

θn = c1(A)n.

It follows from these equalities that we have limε→0 αε = [H] in the weak

topology of currents. Now, for each choice of positive parameters ε, δ, we

consider the Monge-Ampère equation

(10.5) (ω + i∂∂ϕε)
n = (1− δ)ωn + δ

∫
X
ωn

c1(A)n
αn
ε .

By the theorem of S.-T. Yau [Yau78], there exists a smooth solution ϕε, unique

up to normalization by an additive constant, such that ωε := ω + i∂∂ϕε > 0.

Since
∫
X
ωε ∧ωn−1 =

∫
X
ωn remains bounded, we can extract a weak limit T

out of the family ωε ; then T is a closed positive current, and the arguments

in [Bou02a] show that its absolutely continuous part satisfies∫
X

Tn
ac ≥ (1− δ)

∫
X

ωn.

We are going to use the same ideas as in [DPa04], in order to estimate the

singularity of the current T on the hypersurface H. For this, we estimate the

integral
∫
Uε

ωε ∧ θn−1 on the tubular neighborhood Uε of H. Let us denote
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by ρ1 ≤ . . . ≤ ρn the eigenvalues of ωε with respect to αε, computed on the

open set U ′
ε ⊂ Uε where αε is positive definite. The Monge-Ampère equation

(10.5) implies

ρ1ρ2 . . . ρn ≥ δ

∫
X
ωn

c1(A)n
.

On the other hand, we find ωε ≥ ρ1αε on U ′
ε, hence

(10.6)

∫
Uε

ωε ∧ θn−1 ≥
∫
U ′

ε

ρ1αε ∧ θn−1 ≥ δ

∫
X
ωn

c1(A)n

∫
U ′

ε

1

ρ2 . . . ρn
αε ∧ θn−1.

In order to estimate the last integral in the right hand side, we apply the

Cauchy-Schwarz inequality to get

(10.7)
(∫

U ′
ε

(αn
ε )

1/2(αε∧θn−1)1/2
)2

≤
∫
U ′

ε

ρ2 . . . ρnα
n
ε

∫
U ′

ε

1

ρ2 . . . ρn
αε∧θn−1.

By definition of the eigenvalues ρj , we have

(10.8)

∫
U ′

ε

ρ2 . . . ρnα
n
ε ≤ n

∫
X

ωn−1
ε ∧ αε = n

∫
X

ωn−1 ∧ c1(A).

On the other hand, an explicit calculation shows that

αn
ε ≥ n(1− χ′(ψε))

n−1χ′′(ψε) dψε ∧ dcψε ∧ θn−1,

αε ∧ θn−1 ≥ χ′′(ψε) dψε ∧ dcψε ∧ θn−1,

hence∫
U ′

ε

(αn
ε )

1/2(αε∧θn−1)1/2 ≥ n1/2

∫
X

(1−χ′(ψε))
(n−1)/2χ′′(ψε) dψε∧dcψε∧θn−1

(we can integrate on X since the integrand is zero anyway outside U ′
ε). Now,

we have

n+ 1

2
(1− χ′(ψε))

(n−1)/2χ′′(ψε) dψε ∧ dcψε

= −d
(
(1− χ′(ψε))

(n+1)/2dcψε

)
+ (1− χ′(ψε))

(n+1)/2ddcψε

= −d
(
(1− χ′(ψε))

(n+1)/2dcψε

)
+ [H]− (1− χ′(ψε))

(n+1)/2θ

and from this we infer

n+ 1

2

∫
X

(1− χ′(ψε))
(n−1)/2χ′′(ψε) dψε ∧ dcψε ∧ θn−1

=

∫
X

[H] ∧ θn−1 −
∫
X

(1− χ′(ψε))
(n+1)/2θn

→ c1(A)n as ε → 0.
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We thus obtain

(10.9)

∫
U ′

ε

(αn
ε )

1/2(αε ∧ θn−1)1/2 ≥ 2
√
n

n+ 1
c1(A)n − o(1) as ε → 0.

The reader will notice, and this looks at first a bit surprising, that the final

lower bound does not depend at all on the choice of χ. This seems to indicate

that our estimates are essentially optimal and will be hard to improve. Putting

together (10.7), (10.8) and (10.9) we find the lower bound

(10.10)

∫
U ′

ε

1

ρ2 . . . ρn
αε ∧ θn−1 ≥ 4δ

(n+ 1)2
(c1(A)n)2∫

X
ωn−1 ∧ c1(A)

− o(1).

Finally, (10.6) and (10.10) yield∫
Uε

ωε ∧ θn−1 ≥ 4δ

(n+ 1)2

∫
X
ωn∫

X
ωn−1 ∧ c1(A)

c1(A)n − o(1).

As
⋂
Uε = H, the standard support theorems for currents imply that the

weak limit T = limωε carries a divisorial component c[H] with

∫
X

c[H] ∧ θn−1 ≥ 4δ

(n+ 1)2

∫
X
ωn∫

X
ωn−1 ∧ c1(A)

c1(A)n.

Therefore, as [H] ≡ θ ∈ c1(A), we infer

c ≥ 4δ

(n+ 1)2

∫
X
ωn∫

X
ωn−1 ∧ c1(A)

.

The difference T − c[H] is still a positive current and has the same absolutely

continuous part as T . Hence,

Vol(T − c[H]) ≥
∫
X

Tn
ac ≥ (1− δ)

∫
X

ωn.

The specific choice

δ =
(n+ 1)2

4

∫
X
ωn−1 ∧ c1(A)∫

X
ωn

gives c ≥ 1, hence

Vol(T − [H]) ≥
∫
X

ωn − (n+ 1)2

4

∫
X

ωn−1 ∧ c1(A).

Theorem 10.4 follows from this estimate. �
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10.11. Remark. By using similar methods, we could also obtain an

estimate for the volume of the difference of two Kähler classes on a general

compact Kähler manifold, by using the technique of concentrating the mass

on the diagonal of X ×X (see [DPa04]). However, the constant c implied by

this technique also depends on the curvature of the tangent bundle of X.

We show below that the answer to Conjecture 10.1 is positive at least when

X is a compact hyperkähler manifold ( = compact irreducible holomorphic

symplectic manifold). The same proof would work for a compact Kähler

manifold which is a limit by deformation of projective manifolds with Picard

number ρ = h1,1.

10.12. Theorem. Let X be a compact hyperkähler manifold, and let α

be a closed, (1, 1)-form on X. Then we have

Vol(α) ≥
∫
X(α,≤1)

αn.

Proof. We follow closely the approach of D. Huybrechts in [Huy98]. Con-

sider X 
→ Def(X) the universal deformation of X, such that X0 = X. If

β ∈ H2(X,R) is a real cohomology class, then we denote by Sβ the set of

points t ∈ Def(X) such that the restriction β|Xt
is of (1, 1)-type.

Next, we take a sequence of rational classes {αk} ∈ H2(X,Q), such that

αk → α on X as k 
→ ∞. As {αk} → {α}, the hypersurface Sαk
converge to

Sα; in particular, we can take tk ∈ Sαk
such that tk → 0. In this way, the

rational (1, 1)-forms αk|Xtk
will converge to our form α on X.

We have

Vol(α) ≥ lim sup
k �→∞

Vol(αk|Xtk
)

≥ lim sup
k �→∞

∫
Xtk

(αtk
,≤1)

αn
tk

=

∫
X(α,≤1)

αn

where the first inequality is a consequence of the semi-continuity of the volume

obtained in [Bou02b], and the second one is a consequence of the convergence

statement above.

10.13. Corollary. If X is a compact hyperkähler manifold, or more

generally, a limit by deformation of projective manifolds with Picard number

ρ = h1,1, then the cones E and M are dual.
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11. Concluding remarks

We would like to conclude with some new developments and applications

of the main theorem. For a general overview article we refer to [Dem07] and

also to the Bourbaki talk by Debarre [Deb06].

(1) In the paper [BFJ09], Boucksom, Favre and Jonsson consider the vol-

ume function on the big cone of a projective manifold X of dimension n. They

showed (Theorem A) that the volume function vol is differentible of class C1

and computed the derivative. Namely, given a big class α and γ ∈ N1(X),

then, using the notation of section 3,

( d

dt

)
t=0

vol(α+ tγ) = n〈αn−1〉 · γ.

In particular, setting γ = α, one obtains

〈αn〉 = 〈αn−1〉 · α,

which implies Corollary 4.5.

(2) Hacon-McKernan [HM07] showed, solving a conjecture of Shokurov,

that given a divisorial log terminal pair (X,Δ) and a birational map f : Y →
X, then all fibers f−1(x) are rationally chain connected. A crucial point in

the proof is to check that the images of rational maps from fibers of f are

uniruled. This is done using the uniruledness criterion Theorem 2.6.

(3) As indicated in section 2, given a surjective map

(Ω1
X)⊗m

X → Q → 0,

then by [CP09], detQ is pseudo-effective unlessX is uniruled. This generalises

a theorem of Miyaoka and again Theorem 2.6 is indispensable.

At this point we add a remark concerning general complete intersection

curves. For many purposes, e.g., in connection with stability, when one wants

to use the theorem of Mehta-Ramanathan, those curves play a central role.

The movable cone was defined as the closed cone of curves generated by com-

plete intersection curves on birational models of the variety X which dominate

X holomorphically. One might ask whether the movable cone actually agrees

with the complete intersection on X, i.e., with the cone generated by curves

cut out by sufficiently high multiples of ample divisors. Very unfortunately

however, these curves do not coincide in general. Some example was already

exhibited in [DPS96], Example 4.8 (and then forgotten, so that we worked

also an example of a P1-bundle over P2).
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(4) As already mentioned, Theorem 2.6 in the Kähler case is wide open.

However in dimension 3, Brunella [Br06] was able to establish the uniruledness

of a (non-algebraic) Kähler manifoldX withKX not nef. In fact, ifX is a non-

algebraic Kähler threefold, then X carries a holomorphic 2-form which can be

seen as a foliation F = KX ⊂ TX , possible with singularities in codimension

1. Now, KX being not pseudo-effective, then the canonical bundle of the

foliation (by curves) F is not pseudo-effective. In this situation, Brunella

shows that F is a foliation by rational curves (actually in any dimension).

(5) There is also a version of Theorem 2.6 for the cotangent bundle. In

fact, fix an ample line bundle A and suppose that

H0(X, ((Ω1
X)⊗m ⊗A)⊗N ) = 0

for m,N sufficiently large, then X is rationally connected. A conjecture of

Mumford says that one can actually omit the ample line bundle A. See [Pe06]

for details; the proof uses once more Theorem 2.6 to get uniruledness.
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[Pa98] Paun, M., Sur l’effectivité numérique des images inverses de fibrés en droites, Math.
Ann. 310 (1998), 411–421. MR1612321 (99c:32042)

[Pe01] Peternell, Th., Towards a Mori theory on compact Kähler 3-folds, III, Bull. Soc.
Math. France 129, 339–356 (2001). MR1881199 (2003b:32024)

[Pe06] Peternell, Th., Kodaira dimension of subvarieties II, Intern. J. Math. 17 (2006),
619–631. MR2229475 (2007b:14034)

[PSS99] Peternell, Th., Schneider, M., Sommese, A.J., Kodaira dimension of subvarieties,
Intl. J. Math. 10 (1999), 1065–1079. MR1739364 (2001e:14016)

[PS02] Peternell, Th., Sommese, A.J., Ample vector bundles and branched coverings
II. The Fano Conference, 625–645, Univ. Torino, Turin, 2004. MR2112595
(2005k:14088)

[SB92] Shepherd-Barron, N., Miyaoka’s theorems on the generic semi-negativity of TX ,
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