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Abstract

We associate to certain filtrations of a graded linear series of a big line bundle a
concave function on its Okounkov body, whose law with respect to the Lebesgue measure
describes the asymptotic distribution of the jumps of the filtration. As a consequence,
we obtain a Fujita-type approximation theorem in this general filtered setting. We then
specialize these results to the filtrations by minima in the usual context of Arakelov
geometry (and for more general adelically normed graded linear series), thereby
obtaining in a simple way a natural construction of an arithmetic Okounkov body, the
existence of the arithmetic volume as a limit and an arithmetic Fujita approximation
theorem for adelically normed graded linear series. We also obtain an easy proof of the
existence of the sectional capacity previously obtained by Lau, Rumely and Varley.
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Introduction

Okounkov bodies
Let X be an n-dimensional projective variety defined over an arbitrary field K and let L be a big
line bundle on X/K. Its Okounkov body ∆(L)⊂ Rn is a compact convex set designed to study
the asymptotic behavior of H0(kL) as k→∞ by generalizing to some extent the usual picture
in toric geometry. Okounkov bodies were introduced and studied by Lazarsfeld and Mustaţǎ in
[LM09] and independently by Kaveh and Khovanskii in [KK08, KK09], both building on ideas
of Okounkov [Ok96] (himself relying on former results of Khovanskii [Kho93]). They have the
crucial property that

vol ∆(L) = lim
k→∞

dimH0(kL)
kn

.

Note that such a statement implicitly contains the existence of the right-hand limit, a basic
birational-geometric invariant of the big line bundle L known (after multiplication by n!) as its
volume vol(L).
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It was more generally shown in [LM09] that one can attach to a graded linear series V• of L
(i.e. a graded subalgebra of R(L) :=

⊕
k>0 H

0(kL)) a convex body ∆(V•)⊂ Rn such that

vol ∆(V•) = lim
k→∞

dim Vk
kn

as soon as V• contains an ample series (cf. Definition 1.1 below). The right-hand side is here
again known (after multiplication by n!) as the volume vol(V•) of V•, and a general version of
Fujita’s approximation theorem in this setting was also obtained in [LM09], to the effect that
the volume of V• can be approximated by that of its finitely generated graded subseries.

Arakelov-geometric analogues

Assume now that K is a number field, and consider the following Arakelov-geometric setting: let
X be a flat projective model of X over the ring of integers OK , L be a model of L on X and
assume also that we are given a conjugation-invariant continuous Hermitian metric on LC over

X(C) =
∐

σ:K↪→C
Xσ(C),

the whole data being summarized as L. Given a finite set S, we set

d̂imK S :=
1

[K : Q]
log #S.

One then replaces H0(kL) with the finite set of small sections

Ĥ0(kL) :=
{
s ∈H0(X , kL), sup

X(C)
|s|6 1

}
,

and it is a basic problem to construct the analogue of Okounkov bodies in this arithmetic
setting (cf. for instance [LM09, p. 51, Question 7.7]). This was largely accomplished by Yuan
in [Yua09b], at least in the case of complete linear series. Indeed, Yuan was able to construct a
family of compact convex sets ∆p(L)⊂ Rn+1 indexed by an infinite family of prime numbers p
in such a way that

lim
p→∞

vol(∆p(L)) log p= lim sup
k→∞

d̂imK Ĥ0(kL)
kn+1

.

The right-hand side (multiplied by (n+ 1)!) is known as the arithmetic volume v̂ol(L) of L, and
Yuan inferred from the above result a Fujita-type approximation theorem for v̂ol(L). Such a
result reduces for many purposes the study of arithmetic volumes to the arithmetically ample
case (where L is relatively ample and φ is smooth and strictly positively curved), which has been
well understood since the work of Gillet–Soulé [GS92] (see also [AB95]) and Zhang [Zha95a],
since it can be expressed as an arithmetic intersection number.

A Fujita-type approximation theorem was also independently obtained by the second-named
author in [Che10a] using a different approach.

The general filtered setting

Our goal in the present article is to unify in a natural and elementary way the above results. Let
V• be as above a graded linear series of L containing an ample series and consider the finite set

V̂k := Vk ∩ Ĥ0(kL)
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of small sections in Vk. We construct a (single) compact convex set ∆̂(V •)⊂ Rn+1 such that

vol ∆̂(V •) = lim
k→∞

d̂imK V̂k
kn+1

(0.1)

and show that such an arithmetic volume can be approximated by that of finitely generated
graded subseries.

More specifically, consider the filtration by minima F = Fmin of each K-vector space Vk,
defined by letting, for each t ∈ R,

F tVk := VectK

{
s ∈ Vk ∩H0(X , kL), sup

X(C)
|s|6 e−t

}
.

The jumping numbers

ej(Vk, F) := sup{t ∈ R, dim F tVk > j} (j = 1, . . . , dim Vk)

of this filtration are then essentially equal to the classical successive minima of V k and it thus
follows from Gillet–Soulé’s work [GS91] that∑

16j6dim Vk
ej(Vk,F)>0

ej(Vk, F) = d̂imK V̂k + o(kn+1). (0.2)

On the other hand, the filtration induced by F on V• is multiplicative in the sense that

(F tVk)(FsVm)⊂F t+sVk+m,

it is pointwise bounded below, i.e. for each k, we have

F−tVk = Vk for t� 1,

and it is linearly bounded above in the sense that there exists C > 0 such that

F tVk = 0 for t> Ck

(cf. Proposition 2.6). We can then consider the Okounkov body

∆(V t
• )⊂∆(V•)

of the graded subseries V t
• defined by V t

k := FktVk and introduce

GF : ∆(V•)→ [−∞, C]

as the incidence function
GF (x) := sup{t ∈ R, x ∈∆(V t

• )}
of the filtration t 7→∆(V t

• ). We show that GF is concave, upper semicontinuous and finite valued
on the interior ∆(V•)◦. Our main result is then the following.

Theorem A. Let K be an arbitrary field, X be a projective K-variety and L be a big line
bundle on X/K. Let V• be a graded linear series of L containing an ample series and let F be a
decreasing R-filtration of V• which is furthermore multiplicative, pointwise bounded below and
linearly bounded above. Then the scaled jumping numbers k−1ej(Vk, F) of the restriction of F
to Vk equidistribute as k→∞ according to the push-forward by GF of the Lebesgue measure.

In other words, this result says that

lim
k→∞

k−n
∑
j

f(k−1ej(Vk, F)) =
∫

∆(V•)◦
(f ◦GF ) dλ
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for every bounded continuous function f on R, with λ denoting standard Lebesgue measure on
Rn. This result extends in particular the second-named author’s result [Che10a, Proposition 4.6],
expressing furthermore the limit measure as the push-forward of λ by GF .

We next define the filtered Okounkov body of (V•, F) as the compact convex subset

∆̂(V•, F) := {(x, t) ∈∆(V•)× R, 0 6 t6GF (x)} ⊂ Rn+1,

and set in the Arakelov-geometric case ∆̂(V •) := ∆̂(V•, Fmin) with Fmin standing for the filtration
by minima. Gillet–Soulé’s result (0.2) combined with Theorem A will then easily be seen to
imply (0.1).

As a consequence of Theorem A, we will also obtain the following filtered analogue of
Lazarsfeld–Mustaţǎ’s Fujita-type approximation theorem.

Theorem B. Let X, L and F be as in Theorem A. For each ε > 0, there exists a finitely
generated subseries W• of V• such that

vol ∆̂(W•, F) > vol ∆̂(V•, F)− ε.

The arithmetic applications of these results will be more generally obtained for adelically
normed graded linear series satisfying a rather mild finiteness condition. We will also show that
Theorem A enables us to recover in a reasonably general special case the existence of the sectional
capacity, first obtained by Rumely et al. in [RLV00].

Relations to other works
We have already mentioned above that Theorems A and B yield in particular simpler proofs
of the main results of [Che10a, Mor09a, Yua09b], and it is therefore conversely clear that these
works have had a strong influence on the present article. The work of Witt Nyström [WN09] was
also influential as far as the idea of constructing a concave function on the Okounkov body is
concerned, even though the final outcome of our construction is not a Chebyshev-type function.

While the present work was being written, Yuan introduced in [Yua09a] another kind of
concave function c[L] on the Okounkov body of a line bundle endowed with Arakelov-geometric
data. His construction is closer in spirit to that of [WN09], since it consists in summing up the
analogues of Witt Nyström’s Chebyshev functions at all places of K. It is also closely related
to [RLV00], and indeed Yuan’s goal is to show that the mean value of c[L] coincides with the
quantity he denotes by volχ(L) and which is equal by definition to −log of the sectional capacity
from [RLV00].

We shall discuss in more detail the relation between [Yua09a] and the present work in § 4.
We will show in particular in an example that the two constructions do not coincide in general.

Organization of the paper
Let us briefly describe the structure of our article.

– Section 1.1 contains the necessary definitions and results on Okounkov bodies extracted
from [LM09], whereas § 1.2 introduces some terminology related to filtrations.

– In § 1.3, we define the concave function attached to a filtered graded linear series and prove
our main results in this general setting. Theorem A corresponds to Theorem 1.11, whereas
Theorem B is Theorem 1.14.

– We then show in § 2 how to relate the Arakelov-geometric setting (and more generally the
adelic setting) to the filtered case using filtrations by minima.
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– The existence of the sectional capacity is obtained in § 3.

– In the final § 4, we discuss the relation between the present work and [Yua09a].

1. The concave transform of a filtered graded linear series

In this section, K denotes an arbitrary field and Ka an algebraic closure of K.

1.1 Okounkov bodies

The original idea of Okounkov bodies [Ok96] was systematically developed in [LM09] and
independently in [KK08] in order to study the asymptotic behavior of graded linear series.

Let X be a projective K-variety (i.e. a geometrically integral projective K-scheme) of
dimension n and fix a system of parameters z = (z1, . . . , zn) centered at a regular closed point
p ∈X(Ka). We then get a rank-n valuation

ordz :OX\{0}→ Nn

centered at p as follows: expand a given f ∈ OX,p as a formal power series

f =
∑
α∈Nn

aαz
α

and set

ordz(f) = min
lex
{α ∈ Nn, aα 6= 0},

where the minimum is taken with respect to the lexicographic order on Nn. Note that ordz only
depends on the choice of uniformizing parameters z via the flag they induce on the tangent space
of XKa at p (compare [LM09, § 5.2]).

Given a line bundle L on X, the function ordz induces a valuation-like function on
H0(L)Ka\{0} by composing it with the evaluation operator, with the basic property that each
graded piece has

dimKa({s ∈W, ordz(s) >lex α}/{s ∈W, ordz(s)>lex α}) 6 1 (1.1)

for each subspace W ⊂H0(L)Ka . Indeed, given s1, s2 with ordz(sj) = α, i= 1, 2, we have
sj = cjz

α + (higher order terms) with cj ∈Ka∗ , and it immediately follows that s1 and s2 are
Ka-linearly dependent modulo {ordz > α} (see also [LM09, Lemma 1.3]).

Note that (1.1) implies in particular that the set ordz(W )⊂ Nn has cardinality equal to
dimKa W .

Now let V• be a graded linear series of L, i.e. a graded K-subalgebra of

R(L) :=
⊕
k>0

H0(kL).

One associates to V• the semigroup

Γ(V•) := {(k, α) ∈ Nn+1, α= ordz(s) for some non-zero s ∈ Vk ⊗Ka}

whose slice over k

Γk := Γ(V•) ∩ ({k} × Nn)
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has cardinality equal to dimK Vk by (1.1). The closed convex cone Σ(V•)⊂ Rn+1 generated by
Γ(V•) has a compact convex basis

∆(V•) := Σ(V•) ∩ ({1} × Rn)

(cf. [LM09, p. 18]). By [LM09, Proposition 2.1], it is actually a convex body (i.e. it has non-empty
interior) and its Euclidian volume satisfies

vol ∆(V•) = lim
k→∞

k−n dim Vk (1.2)

as soon as Γ(V•) generates Zn+1 as a group. As shown in [LM09, Lemma 2.12], this is in particular
the case when V• contains an ample series in the following sense.

Definition 1.1. Let V• be a graded linear series of L. We will say that V• contains an ample
series if:

(i) Vk 6= 0 for all k� 1;

(ii) there exist a Kodaira-type decomposition L=A+ E into Q-divisors with A ample and E
effective such that

H0(kA)⊂ Vk ⊂H0(kL)

for all sufficiently large and divisible k.

This corresponds exactly to condition (C) in [LM09, p. 20], as explained in Remark 2.10
thereof.

1.2 Filtered vector spaces and algebras

All decreasing R-filtrations t 7→ F tV of a finite-dimensional vector space V considered in this
article will be left-continuous in the sense that for each t ∈ R we have F tV = F t−εV for 0< ε� 1.
Given such a filtered vector space (V, F), we set

emin(V, F) := inf{t ∈ R, F tV 6= V }

and

emax(V, F) := sup{t ∈ R, F tV 6= 0}
and we shall say that F is bounded below (respectively bounded above) if emin(V, F)>−∞
(respectively emax(V, F)<+∞). We shall simply say that F is bounded if F is bounded above
and below.

Definition 1.2. Let F be a bounded filtration of an N -dimensional K-vector space V , N > 1.

(i) The jumping numbers

emin(V, F) = eN (V, F) 6 · · ·6 e1(V, F) = emax(V, F)

of (V, F) are defined by

ej(V, F) := sup{t ∈ R, dim F tV > j}.
(ii) The mass of (V, F) is defined by

mass(V, F) :=
∑
j

ej(V, F).
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(iii) The positive mass of (V, F) is defined as

mass+(V, F) :=
∑

ej(V,F)>0

ej(V, F)

(or 0 if emax(V, F) 6 0).

The non-increasing left-continuous step function t 7→ dim F tV therefore satisfies

dim F tV = j⇐⇒ t ∈ ]ej+1(V, F), ej(V, F)]

(with eN+1(V, F) =−∞ and e0(V, F) = +∞ by convention), which implies that

d

dt
dim F tV =−

∑N

j=1
δej(V,F) (1.3)

holds in the sense of distributions.
In what follows, a graded K-algebra V• =

⊕
k∈N Vk will always be indexed by N and with

finite-dimensional pieces such that V0 =K.

Definition 1.3. Let F be a decreasing, left-continuous R-filtration of a graded K-algebra V•.
We shall say that:

(i) F is multiplicative if

(F tVk)(FsVm)⊂F t+sVk+m

holds for all k, m ∈ N and s, t ∈ R;

(ii) F is pointwise bounded below (respectively pointwise bounded above) if (Vk, F) is bounded
below (respectively bounded above) for each k;

(iii) F is linearly bounded below (respectively linearly bounded above) if there exists C > 0 such
that emin(Vk, F) >−Ck (respectively emax(Vk, F) 6 Ck).

If F is a multiplicative filtration on V•, then setting

V t
k := FktVk

defines a graded subalgebra V t
• :=

⊕
k V

t
k of V•.

We introduce

emin(V•, F) := lim inf
k→∞

emin(Vk, F)
k

(1.4)

and

emax(V•, F) := lim sup
k→∞

emax(Vk, F)
k

. (1.5)

Note that, when Vk 6= 0 for k� 1, F is linearly bounded below (respectively linearly bounded
above) if and only if emin(V•, F) (respectively emax(V•, F)) is finite.

Lemma 1.4. Assume that the graded algebra V• is integral and satisfies Vk 6= 0 for all k� 1.
Then we have

emax(V•, F) = lim
k→∞

emax(Vk, F)
k

= sup
k>1

emax(Vk, F)
k

.

Proof. It is easily checked under the standing assumptions that emax(Vk, F) is super-additive in
k for k� 1, and the result follows from the standard fact that limk→∞ ak/k = supk>1 ak/k for
every super-additive sequence (ak). 2
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Lemma 1.5. If the graded algebra V• is finitely generated, then any multiplicative filtration on
V• which is pointwise bounded below is linearly bounded below.

Proof. Let p be such that V• is generated by V1 + · · ·+ Vp and choose t such that F jtVj = Vj
for j = 1, . . . , p. Writing a given v ∈ Vk as a homogeneous polynomial in elements of V1, . . . , Vp
and using the multiplicative property of F , it is then easily seen that x lies in FktVk. 2

1.3 The concave transform of a filtration
In what follows, we fix a projective K-variety X of dimension n, a set of uniformizing parameters
z at a given regular Ka-point and a big bundle L on X/K.

Lemma 1.6. Let F be a multiplicative filtration on a graded linear series V• of L containing an
ample series. Then for each t < emax(V•, F) the graded linear series V t

• also contains an ample
series.

This gives in particular an elementary proof of [Che10a, Proposition 4.9].

Proof. Given t < emax(V•, F), we have kt < emax(Vk, F) for all k� 1; thus, V t
k = FktVk 6= 0 by

definition, and we see that Definition 1.1(i) is satisfied.
Let us now turn to (ii). By Definition 1.1, there exist an integer m, an ample line bundle A

and a non-zero section s ∈H0(mL−A) such that the image Wk of the map H0(kA)→H0(kmL)
given by multiplication by sk is contained in Vkm for all k > 1. Since W• is finitely generated,
there exists a ∈ R such that Wk ⊂ V a

km for all k by Lemma 1.5.
On the other hand, let ε > 0 be such that t+ ε < emax(V•, F). We may then choose p� 1

such that there exists a non-zero element vp ∈ Fp(t+ε)Vp, and such that

sp :=
akm+ (t+ ε)kp

km+ kp
> t.

The image of the map H0(kA)→ Vk(m+p) given by multiplication by (svp)k then lies in

Wk · V t+ε
kp ⊂ V

a
km · V t+ε

kp ⊂ V
sp

k(m+p) ⊂ V
t
k(m+p),

as desired. 2

The Okounkov bodies ∆(V t
• ) make up a non-increasing family of compact convex subsets

of ∆(V•). Since F is multiplicative, it is straightforward to check that the following convexity
property holds:

∆(V ts1+(1−t)s2
• )⊃ t∆(V s1

• ) + (1− t)∆(V s2
• ) (1.6)

for all s1, s2 ∈ R and 0 6 t6 1. The interiors of the ∆(V t
• )’s fill in that of ∆(V•) in the following

circumstance.

Lemma 1.7. Let F be a multiplicative filtration on a graded linear series V• of L that contains
an ample series. If F is furthermore pointwise bounded below, then we have

∆(V•)◦ =
⋃
t∈R

∆(V t
• )◦.

Proof. Since F is pointwise bounded below, we have Vk =
⋃
t∈R V

t
k for each k, which implies that

Γ(V•) =
⋃
t∈R

Γ(V t
• ).
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On the other hand, V t
• contains an ample series for each t < emax(V•, F) by Lemma 1.6, and it

follows by [LM09, Lemma 2.12] that Γ(V t
• ) spans Zn+1. The result now follows in view of [LM09,

Lemma A.3]. 2

Definition 1.8. Let F be a multiplicative filtration of a graded linear series V• of L containing
an ample line bundle, and assume that F is pointwise bounded below and linearly bounded
above. The concave transform of F is the concave function

GF : ∆(V•)→ [−∞,+∞[

defined by

GF (x) := sup{t ∈ R, x ∈∆(V t
• )}.

The function GF is indeed concave by (1.6). It takes finite values on the interior ∆(V•)◦

by Lemma 1.7 and is thus continuous there, since it is concave. It is furthermore upper
semicontinuous on the whole of ∆(V•), since we have for each t ∈ R

{GF > t}=
⋂
s<t

∆(V s
• ). (1.7)

Note also that

emin(V•, F) 6GF 6 emax(V•, F) (1.8)

on ∆(V•).

Definition 1.9. With V•, F as in Definition 1.8, we define the filtered Okounkov body as the
compact convex subset of Rn+1 defined by

∆̂(V•, F) := {(x, t) ∈∆(V•)× R, 0 6 t6GF (x)}.

Remark 1.10. GF can also be obtained as the concave envelope in the sense of [WN09, § 3] of
the super-additive function g : Γ(V•)→ R defined by

g(k, α) := sup{t ∈ R, α= ordz(s) for some non-zero s ∈ F tVk}. (1.9)

We are now in a position to state our main result, which corresponds to Theorem A in the
introduction.

Theorem 1.11. Let F be a pointwise bounded below and linearly bounded above multiplicative
filtration of a graded linear series V• of L containing an ample series. Then the discrete measures
on R defined by

µk := k−n
∑
j

δk−1ej(Vk,F)

converge weakly to (GF )∗λ as k→∞, where λ denotes the restriction of the Lebesgue measure
of Rn to ∆(V•)◦.

Proof. By (1.3), the measure −µk is the distributional derivative of the non-increasing left-
continuous step function

gk(t) := k−n dim FktVk = k−n dim V t
k .

Since V t
• contains an ample series for t < emax(V•, F), we may apply Lazarsfeld and Mustaţǎ’s

result (1.2) to get

lim
k→∞

gk(t) = g(t) := vol ∆(V t
• )
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for each t < emax(V•, F). Since

0 6 gk(t) 6 k−n dimH0(kL)

is uniformly bounded, it follows by dominated convergence that gk→ g in L1
loc(R) and thus

−µk = g′k→ g′ as distributions. We claim on the other hand that g′ =−ν, which will conclude
the proof. Indeed, (1.7) yields

lim
s→t−

g(s) = λ({GF > t}) =: h(t).

Since the discontinuity locus of the non-increasing function g is at most countable, it follows in
particular that g = h as distributions. In terms of the finite measure ν := (GF )∗λ on R, we have
h(t) = ν({x ∈ R, x> t}), which indeed implies that h′ =−ν by basic integration theory. 2

Remark 1.12. (i) The convergence in Theorem 1.11 holds in the weak topology, i.e. against all
continuous functions with compact support. But the total mass of µk is equal to k−n dim Vk,
which converges to vol ∆(Γ), the total mass of (GF )∗λ. Indeed, this follows from (1.2) since
V• is assumed to contain an ample series. By a standard result in integration theory that the
convergence holds as well against all bounded continuous functions on R, and the result can be
reformulated in more probabilistic terms by saying that the scaled jumping numbers

k−1e1(Vk, F) > · · ·> k−1eNk
(Vk, F)

of the sequence of filtered vector spaces (Vk, F) equidistribute as k→∞ according to the law of
GF (with respect to the Lebesgue measure on ∆(V•) scaled to mass 1).

(ii) We also remark that Theorem 1.11 shows in particular that (GF )∗λ does not depend
on the choice of the regular system of parameters z, even though the Okounkov body ∆(V•)
and hence the function GF will depend on z (or rather on the infinitesimal flag it defines)
in general.

Corollary 1.13. With the same assumptions as in Theorem 1.11, the euclidian volume of the
filtered Okounkov body satisfies

vol ∆̂(V•, F) =
∫ +∞

t=0
vol ∆(V t

• ) dt= lim
k→∞

mass+(Vk, F)
kn+1

.

Proof. Let e := emax(V•, F). In the notation of Theorem 1.11, we have by definition

mass+(Vk, F)
kn+1

=
∫ +∞

0
tµk

and

vol(∆̂(V•, F)) =
∫ +∞

0
t(GF )∗λ.

Now both µk and (GF )∗λ are supported on ]−∞, e] by Lemma 1.4 and the upper bound GF 6 e.
The result thus follows by applying Theorem 1.11 to a continuous function with compact support
and coinciding with max(t, 0) on ]−∞, e]. 2
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We finally get a filtered version of the Lazarsfeld–Mustaţǎ approximation theorem.

Theorem 1.14. Let F and V• be as in Theorem 1.11. Then, for each ε > 0, there exists a finitely
generated graded subalgebra W• of V• such that

vol ∆̂(W•, F) > vol ∆̂(V•, F)− ε.

Proof. For each p, let S•V6p be the graded subalgebra of V• generated by V1 + · · ·+ Vp. For each
t < emax(V•, F), the graded linear series V t

• contains an ample series by Lemma 1.6; thus, [LM09,
Theorem 3.5] implies that

lim
p→∞

vol(S•V t
6p) = vol(V t

• )

for each t < emax(V•, F). Since we also have vol(S•V t
6p) 6 vol(V t

• ), it follows from Corollary 1.13
and dominated convergence that

lim
p→∞

vol ∆̂(S•V6p, F) = vol ∆̂(V•, F)

and the result follows. 2

This result gives in particular a simple proof of [Che10a, Theorem 5.1].

2. Applications to the study of arithmetic volumes

In this section, K will stand for a number field, OK for its ring of integers and AK for its ring of
adèles. We denote by Ka an algebraic closure of K. The set of finite (respectively infinite) places
of K will be denoted by Σf (respectively Σ∞), and we write Σ := Σf ∪ Σ∞. For each finite place
v, we denote by OKv the discrete valuation ring of the completion Kv of K. For each v ∈ Σ, let
| · |v be the associated absolute value on K, normalized so that the product formula reads∑

v∈Σ

[Kv : Qv] log |x|v = 0

for all x ∈K∗. Denote by Cv the completion of an algebraic closure of Kv. Given a finite set S,
we will write

d̂imK S =
1

[K : Q]
log #S.

As an (admittedly loose) justification for this notation, we note that

d̂imK S = (dimK F ) d̂imF S

for any finite extension F of K.

2.1 Pure v-adic norms and lattices

Let v be a finite place of K and V be a finite-dimensional Kv-vector space. Any (ultra-metric)
v-adic norm ‖ · ‖ on V admits an orthogonal basis, i.e. a basis (ei)Ni=1 of V such that

‖a1e1 + · · ·+ aNeN‖= max
i
|ai|v‖ei‖

for all (a1, . . . , aN ) ∈KN , and it is clear that ‖ · ‖ admits an orthonormal basis, i.e. an orthogonal
basis (ei) such that ‖ei‖= 1, if and only if the values of ‖ · ‖ on V are equal to those | · |v on Kv.
Such a norm is said to be pure in the terminology of [Gau09, Définition 2.2].
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Pure norms admit the following alternative characterization in terms of lattices. Recall that
an OKv -submodule V of V is said to be a Kv-lattice of V if there exists a Kv-basis e1, . . . , eN
of V such that

V =OKve1 + · · ·+OKveN . (2.1)

By [BG06, Proposition C.2.2], V is a Kv-lattice if and only if it is finitely generated and spans
V over Kv, and also if and only if V is compact and open in V . A Kv-lattice V of V determines
an ultra-metric norm ‖ · ‖V on V by setting

‖s‖V := inf{|a|v, a ∈Kv, a
−1s ∈ V},

and V is then uniquely determined as the unit ball of ‖ · ‖V . We claim that all pure norms are
of the form ‖ · ‖V for some Kv-lattice V. Indeed, the unit ball V of any v-adic norm ‖ · ‖ is open
and compact and hence a Kv-lattice, and we have

‖s‖V = min{t ∈ |Kv|, t> ‖s‖}

for each s ∈ V , since | · |v is discrete. If follows that ‖ · ‖6 ‖ · ‖V , with equality if and only if ‖ · ‖
is pure. We set ‖ · ‖pur := ‖ · ‖V and call it the purification of ‖ · ‖.

2.2 Adelically normed vector spaces and their filtration by minima
Definition 2.1. An adelically normed K-vector space V is a finite-dimensional K-vector space
V endowed for each place v with a norm ‖ · ‖v on Vv := V ⊗K Kv (non-archimedean when v is
finite), such that the following local finiteness condition holds:

for each x ∈ V we have ‖x‖v 6 1 for all but finitely many places v. (2.2)

The local finiteness condition in Definition 2.1 corresponds to [RLV00, p. 3, Assumption (A2)]
(except that we do not require the v-adic norm ‖ · ‖v to be defined on V ⊗K Cv and invariant
under the continuous Galois group of Cv/Kv).

The associated OK-module of V is defined as

V := {x ∈ V, ‖x‖v 6 1 for all v ∈ Σf}

and the set of small elements is defined by

V̂ := {x ∈ V, ‖x‖v 6 1 for all v ∈ Σ}.

The local finiteness condition (2.2) is equivalent to the fact that the associated OK-submodule
V spans V over K, and implies that for each finite place v the closure Vv =OKvV of V in Vv
spans Vv over Kv. Note that Vv coincides with the unit ball

{x ∈ Vv, ‖x‖v 6 1},

and is thus a Kv-lattice of Vv.

Definition 2.2. An adelically normed K-vector space V is said to be generically trivial if there
exists a K-basis e1, . . . , eN of V which is ‖ · ‖v-orthonormal for all but finitely many v ∈ Σf .

A generically trivial adelically normed K-vector space V is the same thing as a normed
K-vector space in the sense of [Zha95b, § 1.6] (or rather its immediate extension from the case
K = Q). It is also coincides with the notion of an adelic vector bundle over SpecK in the sense
of [Gau08, Définition 3.1] (except, here again, that the norms considered by Gaudron are defined
as Galois-invariant norms on V ⊗K Cv).
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The purification V pur of V is defined by setting ‖ · ‖pur,v = ‖ · ‖v when v is infinite and letting
‖ · ‖pur,v > ‖ · ‖v be the purification of ‖ · ‖v when v is finite. Note that V pur and V share the
same associated OK-module V and set of small elements V̂ .

Definition 2.3. Let V be an adelically normed K-vector space. The filtration by minima is the
(left-continuous) decreasing R-filtration Fmin of V defined by

F tminV := VectK

{
x ∈ V, max

v∈Σ∞
‖x‖v 6 e−t

}
.

Note that the filtrations by minima induced by V and its purification V pur coincide. The
filtration by minima is trivially bounded below, but not necessarily bounded above, as we shall
now see.

Recall that an OK-submodule V of V is said to be a K-lattice if V is finitely generated and
spans V over K.

On the other hand, a normed vector bundle over SpecOK is given by a finitely generated
projective (or equivalently torsion-free) OK-module V together with a family of norms ‖ · ‖v,
v ∈ Σ∞ on V = V ⊗OK

K. It is thus the same data as [BG06, p. 610, C.2.8]. It induces an
adelically normed K-vector space structure V by letting ‖ · ‖v be the unique pure v-adic norm
on Vv with unit ball Vv :=OKvV for each v ∈ Σf . Since V is then recovered as the associated
OK-module of V , we shall simply say that V itself is a normed vector bundle over SpecOK .

Proposition 2.4. Let V be an adelically normed K-vector space. The following conditions are
equivalent.

(i) The filtration by minima Fmin of V is bounded above.

(ii) The set of small elements V̂ is finite.

(iii) The associated OK-module V of V is a K-lattice of V .

(iv) V pur is a normed vector bundle over SpecOK .

Proof. Since V spans V over K by the local finiteness condition, we see that V is a K-lattice
if and only if V is finitely generated as an OK-module or, equivalently, as an abelian group.
Now (ii) means that the image of V in V ⊗Q R'

∏
v∈Σ∞

Vv meets the unit ball of the sup-
norm maxv∈Σ∞ ‖ · ‖v in a finite set. This holds if and only if the image of V in V ⊗Q R is a
discrete subgroup, and is thus equivalent to (i). Since each discrete subgroup of V ⊗Q R is
finitely generated, it then follows that V is a K-lattice. Conversely, if V is a K-lattice then its
image in V ⊗Q R is a (usual) lattice by [BG06, Corollary C.2.7], and is thus discrete in particular.
Finally, the equivalence of (iii) and (iv) follows from the fact that OKvV is the unit ball of the
v-adic norm of V . 2

2.3 Gillet–Soulé’s theorem

Let V be an adelically normed K-vector space of dimension N . If its filtration by minima Fmin

is bounded, then we may consider its jumping numbers of Fmin

e1(V, Fmin) > · · ·> eN (V, Fmin).

By definition, these jumping numbers are obtained by applying −log to the successive minima
in the sense of [BG06, Definition C.2.9].
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The key point for us is now [GS91, Proposition 6], which asserts that the set of small elements
V̂ relates to the positive mass

mass+(V, Fmin) =
∑
ej>0

ej(V, Fmin)

of the filtration by minima by

d̂imK V̂ = mass+(V, Fmin) +O(N log N), (2.3)

where the constant in the O only depends on K. Indeed, both sides of (2.3) only depend on
V pur, which is a normed vector bundle over SpecOK by Proposition 2.4. The result can then be
deduced from [GS91, Proposition 6] just as the adelic version of Minkowski’s second theorem
is deduced from its classical version in [BG06, p. 614, Appendix C.2.18].

2.4 Adelically normed graded linear series

Definition 2.5. Let L be a line bundle over a projective K-variety X.

(i) An adelically normed graded linear series V • of L is a graded linear series V• ⊂R(L)
such that each graded piece Vk is adelically normed with norms ‖ · ‖v,k satisfying

‖st‖v,k+m 6 ‖s‖v,k‖t‖v,m

for each s ∈ Vk, t ∈ Vm and each v ∈ Σ.

(ii) The arithmetic volume of V • is then defined by

v̂ol(V •) := lim sup
k→∞

(n+ 1)!
kn+1

d̂imK V k

with n := dimX (compare [Mor09b]).

Our definition of an adelically normed graded linear series is a natural extension of conditions
(A1) and (A2) in [RLV00, p. 3].

The filtrations by minima of the graded pieces V k induce a multiplicative filtration Fmin on
V•, the filtration by minima of V •. This filtration is always pointwise bounded below, but not
necessarily pointwise bounded above in general (see Proposition 2.4).

In concrete terms, the filtration by minima of V • is linearly bounded below if and only if the
associated OK-module Vk contains a finite set of generators of Vk whose norms grow at most
exponentially fast with k, whereas it is linearly bounded above if and only if the minimal norm
of a non-zero vector in Vk decays at most exponentially fast.

The main example of adelically normed graded linear series arises in the usual Arakelov-
geometric setting. Let L→X be a projective flat model of L→X over OK and assume that the
line bundle LC over

X(C) =
∐

σ:K↪→C
Xσ(C)

is endowed with a conjugation-invariant continuous Hermitian metric, the whole data being
summarized by L. Then for each k we get a structure of a normed vector bundle over SpecOK ,
denoted by H0(X, kL)

sup
, by taking H0(X , kL) as its associated OK-module and the sup-norms

over X(C) as the norms at infinity. We denote by R(L)
sup

the corresponding adelically normed
graded linear series.
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Denote by hL the induced (normalized) height function on X(Ka), and recall that the
essential minimum of the height function is defined by

ess-min hL := sup
{

inf
U(Ka)

hL, U ⊂X non-empty Zariski open
}
.

Proposition 2.6. The filtration by minima Fmin of R(L)
sup

(and hence of any graded sub-
series) induced by the above Arakelov-geometric data is linearly bounded above. In fact, we have

emax(R(L)
sup
, Fmin) 6 ess-min hL <+∞, (2.4)

and moreover ess-min hL >−∞ as soon as H0(kL) 6= 0 for some k.

These facts are well known and follow in particular from the deep results of [Zha95a]. We
however take the opportunity to present here an elementary proof, which has kindly been
suggested to us by Antoine Chambert-Loir.

Proof. Given a non-zero section σ ∈H0(X , kL) and x ∈X(Ka) such that σ(x) 6= 0, the height
hL(x) is no less than the mean value of the function −1/k log |σ| along the Galois orbit of x,
where |σ| denotes the length of σ with respect to the given metric on LC. The first inequality
of (2.4) follows immediately.

Let us now prove that ess-min hL <+∞. Changing the Arakelov data only affects hL by
a bounded term. Its class modulo O(1), denoted by hL, fits into Weil’s height machine. The
assertion that ess-min hL <+∞ means that there exists C > 0 such that

{x ∈X(Ka), hL(x) 6 C}

is Zariski dense in X. We may find two very ample line bundles A, B such that L=A−B; since
hB is bounded below, we may thus assume that L=A is itself very ample. But in that case there
exists a finite morphism π :X → Pn such that π∗O(1) = L and hence hL = hO(1) ◦ π +O(1) by
[HS00, Theorem B.3.6], and we get a Zariski dense subset of X(Ka) with bounded height
by considering for instance the inverse image by π of the set of points in Pn(Ka) with roots
of unity as homogeneous coordinates.

Finally, the assertion that ess-min hL >−∞means that there exists a non-empty Zariski open
subset U of X such that hL is bounded below on U(Ka), which is true with U the complement
of the base locus of kL by [HS00, Theorem B.3.6]. 2

Definition 2.7. Let L be a big line bundle on X/K and let V • be an adelically normed graded
linear series of L such that:

(i) V• contains an ample series;
(ii) the induced filtration by minima on V• is linearly bounded above.

Given the choice of a uniformizing system of parameters z = (z1, . . . , zn) at a regular point of
X(Ka), we define the arithmetic Okoukov body of V • (with respect to z) as

∆̂(V •) := {(x, t) ∈∆(V•)× R, 0 6 t6GFmin(x)},

where GFmin is the concave transform of the filtration by minima Fmin given by Definition 1.8.

Note that ∆̂(V •) is a compact convex subset of Rn+1 (but possibly of empty interior),
since

GFmin : ∆(V•)→ [−∞,+∞[
is upper semicontinuous. As a consequence of Theorem 1.11, we shall prove the following.
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Theorem 2.8. Let V • be an adelically normed graded linear series which contains an ample
series and whose filtration by minima is linearly bounded above. Then we have

vol ∆̂(V •) = lim
k→∞

d̂imK V̂k
kn+1

= (n+ 1)! v̂ol(V •).

Proof. By Corollary 1.13, we have

vol ∆̂(V •) = lim
k→∞

mass+(Vk, Fmin)
kn+1

,

where

mass+(Vk, F) = d̂imK V̂k +O(Nk log Nk)

by Gillet–Soulé’s result (2.3). Since Nk = dim Vk =O(kn), we have

Nk log Nk =O(kn log k) = o(kn+1)

and the result follows. 2

2.5 Fujita approximation and log-concavity

Let us first spell out Theorem 1.14 in the adelic case.

Theorem 2.9. Let V • be an adelically normed graded linear series which contains an ample
series and whose filtration by minima is linearly bounded above. Then for every ε > 0 there exists
a finitely generated subseries W• of V• whose arithmetic volume satisfies

v̂ol(W •) > v̂ol(V •)− ε.

Indeed, this follows directly from Theorem 1.14 in view of Theorem 2.8.

We next get as usual the log-concavity of arithmetic volumes.

Proposition 2.10. Let L and M be two big line bundles on X/K. Assume that U•, V• and
W• are adelically normed graded linear series of L, M and L+M respectively such that each of
them contains an ample series and has a linearly bounded above filtration by minima. Assume
furthermore that:

(i) Uk · Vk ⊂Wk for each k;

(ii) for any v ∈ Σ and all s ∈ Uk, s′ ∈ Vk, one has ‖s · s′‖v 6 ‖s‖v‖s′‖v.

Then one has

v̂ol(W •)1/(n+1) > v̂ol(U•)1/(n+1) + v̂ol(V •)1/(n+1). (2.5)

Proof. The assumptions easily imply that

FsminUk · F tminVk ⊂Fs+tminWk

for all k and all s, t ∈ R, which yields in turn

∆̂(U•) + ∆̂(V •)⊂ ∆̂(W •)

and the result follows by the Brunn–Minkowski inequality. 2
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3. Application to the sectional capacity and the Arakelov degree

3.1 Existence of the sectional capacity

Given an adelically normed N -dimensional K-vector space V , we consider as in [Gau08, RLV00,
Yua09a, Zha95a] its (normalized) adelic Euler characteristic

χ(V ) :=
1

[K : Q]
log vol B(V ) ∈ ]−∞,+∞], (3.1)

where B(V )⊂ V ⊗K AK denotes the adelic unit ball induced by the family of norms ‖ · ‖v of V
and vol is the Haar measure of V ⊗K AK normalized by

vol(V ⊗K AK/V ) = 1

(compare this normalization to [BG06, Proposition C.1.10]). Since ‖ · ‖v and ‖ · ‖pur,v share the
same unit ball Vv in Vv for all places v, we see that B(V ) = B(V pur).

Assume now that the filtration by minima Fmin of V is bounded. According to Proposition 2.4,
V pur is then a normed vector bundle over SpecOK , and it follows in particular that χ(V ) =
χ(V pur) is finite. Moreover, the adelic version of Minkowski’s second theorem applies to V pur

(cf. [BG06, Theorem C.2.11]) and yields

χ(V ) = mass(V, Fmin) +O(N log N), (3.2)

where the constant in O only depends on K. As a consequence, we will show similarly to
Theorem 2.8 the following.

Theorem 3.1. Let V • be an adelically normed graded linear series of L that contains an ample
series and whose filtration by minima Fmin is linearly bounded above. If the filtration by minima
is furthermore linearly bounded below (e.g. if V• is finitely generated), then the concave transform
GFmin satisfies ∫

∆(V•)
GFmin dλ= lim

k→∞

χ(V k)
kn+1

.

In particular, the right-hand limit exists in R.

If L is ample and Vk =H0(kL) (so that V• is indeed finitely generated), then it was shown
in [RLV00] that exp(−(n+ 1)!/kn+1χ(V k)) admits a limit in [0,+∞[, called the sectional
capacity. This result was proved without assuming that Fmin is linearly bounded above (but
recall that this condition always holds in the Arakelov-geometric setting). On the other hand,
the proof of Theorem 3.1 we now present is substantially shorter than in [RLV00].

Proof. Set as in Theorem 1.11

µk := k−n
∑
j

δk−1ej(Vk,Fmin).

By Minkowski’s second theorem (3.2), we have

χ(V k)
kn+1

=
∫

R
t µk(dt) + o(1)

as k→∞. On the other hand, since Fmin is assumed to be linearly bounded above and below, the
support of µk stays in a fixed compact set of R independently of k and Theorem 1.11 therefore
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yields

lim
k→∞

∫
R
tµk(dt) =

∫
∆(V•)

GFmin dλ,

which proves the result. 2

3.2 Arakelov degree

The aim of this section is to discuss a tentative definition of Arakelov degree for adelically normed
vector spaces and to introduce a filtration by height, which differs from the filtration by minima
and is better suited to the study of the asymptotic behavior of Arakelov degrees in the non-pure
case.

All adelically normed vector spaces V considered in this section will be assumed to be gener-
ically trivial, and we shall moreover assume that each norm ‖ · ‖v, v ∈ Σ, is defined on V ⊗K Cv

and invariant under the continuous Galois group Gal(Cv/Kv), in line with [Gau08, RLV00].
As in [Gau08, Définition 4.11], we introduce the following definition.

Definition 3.2. Let V be a (generically trivial) adelically normed K-vector space. The
(normalized) projective height of s ∈ VKa − {0} is defined by

hV (s) :=
∑
v∈ΣF

[Fv : Qv]
[F : Q]

log ‖s‖v,

where F is a field of definition of s.

The height of s only depends on [s] ∈ P(VKa) by the usual arguments relying on the product
formula. When V itself is a line, we simply write h(V ) := hV (s) for any non-zero s ∈ V . When
V is pure, [Gau08, Lemme 4.4] yields

hV (s) = χ(F )− χ(Fs)

for every field of definition F of s, where F is adelically normed in the trivial way and Fs is of
course endowed with the adelic structure induced by that of V . This relation is no longer true
in general when V is not pure. What remains true in general is the relation

hV (s) = inf
F
hV F,pur

(s) = inf
F

(χ(F )− χ(Fs)), (3.3)

where F runs over all fields of definition of s. Note that hV F,pur
(s) decreases when F increases,

so that the infimum in (3.3) is actually a limit.

The normalized Arakelov degree d̂eg(V ) of a Hermitian vector bundle V over SpecOK (i.e.
such that each norm ‖ · ‖v at infinity is induced by a Galois-invariant Hermitian scalar product
on V ⊗K Cv), as defined in [Bos96, §A.2], satisfies

d̂eg(V ) =−h(det V ) = χ(V )− χ(KN ),

where the determinant line det V :=
∧dim V V is endowed with the induced adelic norm

(cf. [Cha02, (5.5.2)] and [Gau08, Lemme 4.5]).
In [Gau08, Définition 4.1], Gaudron used the right-hand side of this formula as the definition

of d̂eg(V ) when V is pure but not necessarily Hermitian (i.e. for a normed vector bundle over
SpecOK by Proposition 2.4). In the general non-pure case, we arrive at the following tentative
definition in view of (3.3).

1222



Okounkov bodies of filtered linear series

Definition 3.3. Let V be a (generically trivial) adelically normed K-vector space V . We define
its Arakelov degree as

d̂eg(V ) := sup
F

(χ(VF )− χ(FN )) = sup
F

d̂eg(V F,pur) ∈ ]−∞,+∞],

where F runs over all finite extensions of K.

A word of warning is in order. If V is Hermitian, then F 7→ d̂eg(V F,pur) is easily seen to be
non-decreasing, but this property becomes unclear (and even doubtful) in the non-Hermitian
case (as pointed out to us by Gaël Rémond). As a consequence, Definition 3.3 is probably the
‘right one’ when V is Hermitian, but less clearly so in general.

When V is one dimensional, we have at any rate

d̂eg(V ) =−h(V ) (3.4)

by (3.3).
For each fixed finite extension F , a computation shows that

χ(FN ) =O(N log N). (3.5)

In the pure case, we thus have

d̂eg(V ) = d̂eg(V pur) = χ(V ) +O(N log N),

so that Theorem 3.1 applies to describe the asymptotic behavior of the Arakelov degree of a
purely adelically normed graded linear series. In the general case, this simple connection with
the Euler characteristic is lost since (3.5) is not uniform with respect to F .

We introduce a new filtration that will be used to describe the asymptotic behavior of the
Arakelov degree in the general non-pure case.

Definition 3.4. Let V be a (generically trivial) adelically normedK-vector space. The filtration
by height of VKa is defined by

F theVKa := VectKa{s ∈ VKa − {0}, hV (s) 6−t}.

The filtration by height is trivially bounded below and left continuous. It is bounded above
if and only if hV is bounded below on P(VKa). This is for instance the case when V is pure
(compare the proof of [Gau08, Proposition 4.12]).

We shall now deduce from [Gau08] the following Siegel lemma.

Proposition 3.5. Let V be a (generically trivial) adelically normed K-vector space.

(i) The Arakelov degree of V satisfies

d̂eg(V ) =− inf
(sj)

( N∑
j=1

hV (sj)
)

+O(N log N),

where (sj) runs over all Ka-bases of VKa and the constant in the O is a universal numerical
constant.

(ii) If the filtration by height of V is bounded (i.e. if hV is bounded below on P(VKa)), then
we have

mass(VKa , Fhe) =− inf
(sj)

( N∑
j=1

hV (sj)
)
,
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where (sj) runs as above over all Ka-bases of VKa . In particular, the Arakelov degree d̂eg(V ) is
finite in that case.

Proof. Let s1, . . . , sN be a given Ka-basis of VKa . Let F be a field of definition of the vectors sj .
Since (sj) is an F -basis of VF , applying [Gau08, Proposition 4.13] to the pure adelically normed
F -vector space V F,pur yields

d̂eg(V ) > d̂eg(V F,pur) >−
N∑
j=1

hV F,pur
(sj)−

N

[F : Q]
log ∆(V F,pur).

But, [Gau08, (27), p. 21] shows that log ∆(V F,pur) 6 [F : Q]/2 log(2N), so we get

d̂eg(V ) >−
N∑
j=1

hV F,pur
(sj)− CN log N,

where C is a universal numerical constant. Since the infimum in (3.3) is a limit, we infer that

d̂eg(V ) >−
N∑
j=1

hV (sj)− CN log N.

We have thus established that

d̂eg(V ) >− inf
(sj)

( N∑
j=1

hV (sj)
)
− CN log N. (3.6)

On the other hand, let F be a given finite extension of K. The absolute Siegel lemma [Gau08,
Theorem 4.14] applied to the pure adelically normed F -vector space V F,pur shows that

d̂eg(V F,pur) 6− inf
(sj)

( N∑
j=1

hV (sj)
)

+
1
2
N log N +

N

[F : Q]
log vr(V F,pur).

By [Gau08, Définition 4.7], we have

log vr(V F,pur) =
∑
v|∞

[Fv : Qv] log vr(Vv),

where the sum is over all infinite places of F . Since log vr(Vv) 6 1
2 log N for each infinite place v

by [Gau08, p. 8], it thus follows that

N

[F : Q]
log vr(V F ) 6

1
2
N log N

and we get

d̂eg(V F,pur) 6− inf
(sj)

( N∑
j=1

hV (sj)
)

+N log N,

so that

d̂eg(V ) 6− inf
(sj)

( N∑
j=1

hV (sj)
)

+N log N

by Definition 3.3. Combining this estimate with (3.6) completes the proof of (i).
The proof of (ii) easily follows from Definition 1.2 and is left to the reader. 2

1224



Okounkov bodies of filtered linear series

Many results of [Gau08] may similarly be extended to the more general non-pure setting. For
instance, [Gau08, Proposition 4.22] immediately implies the following lemma.

Lemma 3.6. Let W ⊂ V be two adelically normed K-vector spaces. Then we have

d̂eg(V ) = d̂eg(W ) + d̂eg(V/W ) +O(N log N),

where the constant in the O is a universal numerical constant.

As a consequence of Proposition 3.5, we have obtained the analogue of (3.2) for the Arakelov
degree and the filtration by height

d̂eg(V ) = mass(VKa , Fhe) +O(N log N) (3.7)

as soon as the filtration by height is bounded. We may thus directly adapt the proof of
Theorem 3.1 to get the following.

Theorem 3.7. Let V • be an adelically normed graded linear series of L which contains an
ample series and such that each graded piece V k is generically trivial. Assume that the filtration
by height of V • is linearly bounded above and below (the latter condition being automatic if V•
is finitely generated). Then its concave transform GFhe

satisfies∫
∆(V•)

GFhe
dλ= lim

k→∞

d̂eg(V k)
kn+1

.

In particular, the right-hand limit exists in R.

Remark 3.8. Let V • be an adelically normed graded linear series of L.

(i) The condition that Fhe is linearly bounded above is similar to the increasing speed
condition of [RLV00, Theorem A].

(ii) It is immediate to see that the filtration by minima and the filtration by height of an
adelically normed vector space V satisfy F tmin ⊂F the, and thus GFmin 6GFhe

for an adelically
normed graded linear series V •.
In the pure case, i.e. when each V k is pure, one can actually prove that GFmin =GFhe

. More
precisely, there exists in that case a sequence Ck =O(log Nk) = o(k) such that

F theVk ⊂ (F t−Ck
min Vk)Ka

for all k and all t ∈ R (compare with Proposition 3.6 in the arXiv version of [Che10a]). Details
will appear elsewhere.

4. Comparison with other results

4.1 Asymptotic measures
We first compare our results with some of the second author’s previous results. In [Che10b,
Che10a], the second author constructed the asymptotic measure of a big line bundle L endowed
with Arakelov-geometric data L as above. This measure describes the asymptotic distribution
of the jumping numbers of the Harder–Narasimhan filtration (see [Che10b, § 2.2]). Now a
comparison of the latter filtration with the filtration by minima as in [Che10a] shows that the
asymptotic measure coincides with the limit measure we obtain in Theorem 1.11, i.e. with
the direct image of λ by GFmin . A special case of this general phenomenon appears in the
example computed in [Che10b, § 4.1.5].
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4.2 Yuan’s construction
As mentioned in the introduction, given a big line bundle L endowed with Arakelov-geometric
data L, Yuan constructed in his recent paper [Yua09a] a concave function on the Okounkov
body ∆(L), which we shall denote by YL, and whose mean value (under adequate assumptions)
computes the sectional capacity. His construction consists in summing up the analogues of
Witt Nyström’s Chebyshev-type transforms over all places of K. We would like here to give an
alternative description of his construction. We will show in the next section that Yuan’s function
does not coincide in general with the concave transform of either the filtration by minima or the
filtration by height.

Let L be a big line bundle on X/K and let V • be an adelically normed graded linear series
of L. Assume as in § 3.2 that each V k is generically finite.

Given a system of parameters z = (z1, . . . , zn) at a given regular point p ∈X(Ka), the
valuation ordz induces an Nn-indexed filtration of each Vk. Let Gk,α, α ∈ Nn, be the associated
graded pieces, i.e.

Gk,α := {s ∈ Vk,Ka , ordz(s) > α}/{s ∈ Vk,Ka , ordz(s)> α},

and endow them with the induced adelically normed vector space structure Gk,α. Each Gk,α is
at most one dimensional over Ka by the basic property (1.1) of the valuation ordz, and we have
Gk,α 6= 0 if and only if (α, k) ∈ Γ(V•). Let y : Γ(V•)→ R be defined by

y(k, α) := d̂eg(Gk,α), (4.1)

where d̂eg denotes the Arakelov degree (cf. Definition 3.3). Since Gk,α is one dimensional, we
have

d̂eg(Gk,α) =−h(Gk,α) (4.2)

for any non-zero s ∈ Gk,α by (3.4). One infers from this that y is super-additive, whereas
Lemma 3.6 yields

d̂eg(V k) =
∑
α∈Γk

y(k, α) +O(Nk log Nk) (4.3)

with Γk := Γ(V•) ∩ ({k} × Nn).
Now assume that V• contains an ample series, so that the semigroup Γ(V•) spans Zn+1 as a

group. Assume also that there exists C > 0 such that

−Ck 6 y(k, α) 6 C(k + |α|) (4.4)

for all (k, α) ∈ Γ(V•). By [WN09, § 3], the upper bound in (4.4) enables us to consider the concave
envelope

YV • : ∆(V•)→ R
of the super-additive function y (compare Remark 1.10 above), which satisfies

YV •(α) = lim
k→∞

1
k
y(k, αk) (4.5)

for any sequence (k, αk) ∈ Γ(V•) such that αk/k→ α ∈∆(V•)◦, and is in particular bounded
above and below by (4.4). One then shows exactly as in [WN09, § 8.2] that (4.3) implies that∫

∆(V•)
YV • dλ= lim

k→∞

d̂eg(V k)
kn+1

. (4.6)
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Let us now assume that V• =R(L) is endowed with the adelic norms R(L)
sup

coming from
the Arakelov-geometric setting. This is essentially the setting considered in [Yua09a]. In that
case, Yuan’s F [mL] satisfies

F [mL](α) =−y(m, α)
for any (m, α) ∈ Γ(L), as one easily sees using (4.2). The upper bound in (4.4) is then shown to
hold true in [Yua09a, Lemma 2.3], and is the counterpart in this setting to Proposition 2.6. On the
other hand, the lower bound in (4.4) is assumed to be true in [Yua09a, Theorem 1.2], and (4.6)
is then equivalent to Yuan’s result, since c[L] =−YL while d̂eg(V k) = χ(V k) +O(kn log k) since
we are dealing with pure adelic norms. Yuan conjectures that the lower bound of (4.4) always
holds (in the Arakelov-geometric setting), and notes that it is the case when (X, L) = (Pn,O(1))
[Yua09a, p. 18].

4.3 A counterexample
Recall that the concave transforms GFmin and GFhe

are actually equal when the V k are pure (and
generically trivial) (cf. Remark 3.8(ii)). We will now show on the other hand in a very simple
example in the Arakelov-geometric setting that they do not coincide with Yuan’s function YV •
in general.

Let K := Q, X := P1 and L :=O(1), endowed with the Arakelov-geometric data L given by
the standard model (X , L) of (X, L) over Z and the Fubiny–Study metric on LC.

Given a point p ∈X(Q), we may then consider the valuation ordp, which does not depend
on the specific choice of a coordinate in this one-dimensional situation. The Okounkov body
∆ = ∆(L) of L is then equal to the unit segment [0, 1]⊂ R for any choice of p (cf. [LM09,
Example 1.13]).

Since L is arithmetically ample, we have on the one hand emin(L) > 0 and hence GFmin > 0
by (1.8). On the other hand, pick m ∈ Z and choose p= [m : 1] in homogeneous coordinates.
Under the standard identification H0(X , kL) = Z[X, Y ]k with homogeneous polynomials of
degree k, we have

{s ∈H0(kL), ordp(s) > α}= (X −mY )αZ[X, Y ]k−α

and hence the function y : Γ(L)→ R defined by (4.1) satisfies

y(k, k) = d̂eg(Q · (X −mY )k) =−log‖(X −mY )k‖sup

= −log sup
(x,y)6=(0,0)

(x−my)k

(x2 + y2)k/2
=−k

2
log(1 +m2).

By (4.5), Yuan’s function YL : [0, 1]→ R satisfies

YL(1) =−1
2 log(1 +m2).

We thus conclude that the functions corresponding to any point p := [m : 1] with m 6= 0 satisfy

inf
∆(L)

YL < 0 6 inf
∆(L)

GFmin ,

which shows indeed that they cannot be equal.

4.4 The toric case
Let us briefly discuss the toric case. Let X be a smooth toric variety and L be a toric big
line bundle with associated polytope ∆. Note that (X, L) is automatically defined over Z.
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The toric line bundle LC is canonically trivialized on the torus (C∗)n ⊂X(C), and a continuous
invariant metric on L therefore defines a function on (C∗)n of the form g(log |z1|, . . . , log |zn|).
The Legendre transform

g∗(t) := sup
s∈Rn

(〈s, t〉 − g(s))

is a continuous convex function on ∆ (known as the symplectic potential when φ is smooth and
positively curved). If one uses a toric system of parameters z at a toric point p of X, then the
Okounkov body of L coincides with the polytope ∆ (cf. [LM09, § 6.1]), and one can then check in
this specific case that both our concave transform GFmin and Yuan’s function YL coincide with
−g∗. Note that a similar construction appears also in the recent work of Burgos Gil et al. [BPS09].

We are not going to prove this, but only indicate the key points. The first idea is to replace as
in [WN09, § 9.3] the sup-norm by the L2-norm with respect to a volume form invariant under the
compact torus. These norms are not submultiplicative any more, but one can still consider
the functions g and y defined by (1.9) and (4.1), whose concave envelope will still compute
GFmin and YL by the usual argument that the distortion between the sup-norm and the L2-norm
has subexponential growth. Now the decomposition

H0(kL) =
⊕
α∈k∆

Qsα

in monomials sα is both orthogonal with respect to the L2-scalar product and defined over Z,
and this enables us to perform the computation of the functions g and y explicitly. One then
concludes exactly as in [WN09, Lemma 9.2].

Acknowledgements

The authors would like to thank Antoine Ducros, Charles Favre, Éric Gaudron, Shu Kawaguchi,
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GS92 H. Gillet and C. Soulé, An arithmetic Riemann–Roch theorem, Invent. Math. 110 (1992),

473–543.
HS00 M. Hindry and J. Silverman, Diophantine geometry. An introduction, Graduate Texts in

Mathematics, vol. 201 (Springer, New York, 2000).
KK08 K. Kaveh and A. Khovanskii, Convex bodies and algebraic equations on affine varieties, Preprint

(2008), arXiv:0804.4095.
KK09 K. Kaveh and A. Khovanskii, Newton convex bodies, semigroups of integral points, graded

algebras and intersection theory, Preprint (2009), arXiv:0904.3350.
Kho93 A. Khovanskii, Newton polyhedron, Hilbert polynomial and sums of finite sets, Funct. Anal.

Appl. 26 (1993), 331–348.
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