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Abstract We explain how to deduce from recent results in the Minimal Model Program a
general uniruledness theorem for base loci of adjoint divisors. As a special case, we recover
previous results by Takayama.
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1 Introduction

Let X be a normal projective variety defined over C (or any algebraically closed field of
characteristic 0) and let D be an R-divisor on X (where R-divisor will mean R-Cartier
R-divisor unless otherwise specified). The (real) stable base locus of D is defined as

B(D) :=
⋂

{SuppE | E effective R-divisor, E ∼R D}, (1.1)
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where E ∼R D means that E is R-linearly equivalent to D, i.e. E − D is an R-linear
combination of principal divisors div( f ), f ∈ C(X)∗. This definition coincides with the
usual notion of stable base locus when D is a Q-divisor (see for instance [1, Lemma 3.5.3]).

The augmented base locus (or non-ample locus) of D is then defined by

B+(D) :=
⋂

m>0

B
(
D − 1

m A
)

(1.2)

and the restricted base locus of D by

B−(D) :=
⋃

m>0

B
(
D + 1

m A
)

(1.3)

where A is an ample divisor, the definition being independent of A (see [5,6,10] and [2,3]
for the analytic counterpart). We thus have the inclusions

B−(D) ⊂ B(D) ⊂ B+(D),

and

B+(D) �= X ⇐⇒ D big, B+(D) = ∅ ⇐⇒ D ample,

B−(D) �= X ⇐⇒ D pseudoeffective, B−(D) = ∅ ⇐⇒ D nef.

While B+(D) is Zariski closed by definition, B−(D) is a priori only a countable union of
Zariski closed sets, which might not be Zariski closed in general even though no specific
example seems to be known at the moment.

On the other hand, the non-nef locus (or numerical base locus) NNef(D) of an R-divisor
D [2,3,11], is defined in terms of the asymptotic or numerical vanishing orders attached to
D (cf. Definition 2.5 below). We always have

NNef(D) ⊂ B−(D)

and equality was shown to hold when X is smooth in [11, Lemma V.1.9] (see also [5,
Proposition 2.8]), but seems to be unknown when X is an arbitrary normal variety (for a very
recent progress on this problem see [4]).

The goal of the present paper is to investigate the uniruledness properties of the above loci
in the case of adjoint divisors. In Sect. 2, we collect and prove some basic properties of this
loci which will be essential in the proof of our main result. We then explain in Sect. 3 how to
obtain the following general result using known parts of the Minimal Model Program [1,7].

Theorem A Let X be a normal Q-factorial projective variety, and let � be an effective
R-Weil divisor such that the pair (X,�) has klt singularities.

(i) We have NNef(K X + �) = B−(K X + �), and each of its irreducible components is
uniruled.

(ii) If K X +� is furthermore big, then

NNef(K X +�) = B−(K X +�) = B(K X +�),

while every irreducible component of B+(K X +�) is uniruled as well.

As already noticed in [14], the above uniruledness results both fail in the more general
case when (X,�) has log canonical singularities, even in the log smooth case (i.e. when X
is smooth and � has simple normal crossing support).

The special case of Theorem A where X is smooth and either K X or � vanishes was
obtained by Takayama in [14] by a completely different (and more direct) method, which
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Uniruledness of stable base loci of adjoint linear systems

combined his extension result for log pluricanonical forms (see [13, Theorem 4.5]) with the
characterization of uniruled varieties in terms of the non-pseudoeffectivity of the canonical
class [3,9].

As a corollary of Theorem A we obtain the following result, extending [14].

Corollary A Let X be a smooth projective variety, and let D a pseudoeffective R-divisor on
X such that either −K X or D − K X is nef.

(i) Every irreducible component of the restricted base locus B−(D) is uniruled.
(ii) If D is furthermore big, then every irreducible component of the stable base locus B(D)

or of the non-ample locus B+(D) is uniruled.

2 Base loci

By convention, divisor (resp. Q-divisor, R-divisor) will mean Cartier divisor (resp. Q-Cartier,
R-Cartier) unless otherwise specified. In this paper, a pair (X,�) is a normal projective
variety together with an effective R-Weil divisor such that K X +� is R-Cartier. A birational
morphism f : Y → X is a log resolution of the pair (X,�) if Y is smooth, f is projective, the
exceptional locus Exc( f ) of f is a divisor and Exc( f )+ f −1∗ � has simple normal crossing
support. A pair (X,�) is klt if for every (equivalently for some) log resolution f : Y → X ,
the divisor � defined by the following equality

KY + � = f ∗(K X +�)

has coefficients strictly less than one.

2.1 Augmented base loci

We collect in this section some preliminary results regarding augmented base loci. It will be
convenient to use the following terminology.

Definition 2.1 (Kodaira decompositions) Let X be a normal projective variety and D be a
big R-divisor on X . A Kodaira decomposition of D is a decomposition D ∼R A + E with
A an ample Q-divisor and E an effective R-divisor.

By [5, Remark 1.3], for a big R-divisor D, the augmented base locus (as defined in the
introduction) satisfies

B+(D) =
⋂

D∼R A+E

SuppE, (2.1)

where the intersection runs over all Kodaira decompositions of D. The following result shows
that one obtains the same locus by allowing Kodaira decompositions on arbitrary birational
models.

Lemma 2.2 Let X be a normal projective variety, and let D be a big R-divisor on X. Then
its augmented base locus satisfies

B+(D) =
⋂

π∗ D∼R A′+E ′
π(SuppE ′),

where π runs over all birational morphisms X ′ → X with X ′ normal and projective, and
π∗ D ∼R A′ + E ′ runs over all Kodaira decompositions of π∗ D on X ′.
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Proof In view of (2.1), it is clear that

B+(D) ⊃
⋂

π∗ D∼R A′+E ′
π(SuppE ′).

Conversely, consider a birational morphism π : X ′ → X and a Kodaira decomposition

π∗ D ∼R A′ + E ′

on X ′, and let x ∈ X \ π(SuppE ′). We are going to produce a Kodaira decomposition
D ∼R A + E on X such that x /∈ SuppE .

Since E ′ = π∗ D − A′ is both effective and π -antiample, its support must contain every
curve contracted by π , i.e. Exc(π) ⊂ SuppE ′. Since x /∈ π(SuppE ′) it follows that there is
a unique preimage x ′ of x by π and that x ′ /∈ SuppE ′. Now pick an ample Q-divisor A on X
such that A′ −π∗ A is ample on X ′ (any small enough multiple of a given ample divisor will
do). We then have B(A′ − π∗ A) = ∅, which means that there exists an effective R-divisor
F ′ on X ′ with

F ′ ∼R A′ − π∗ A

and such that x ′ /∈ SuppF ′. If we set E := π∗(G ′ + F ′), then x does not belong to SuppE ,
and G ′ ∼R π

∗(D − A) implies that E ∼R D − A, which concludes the proof. �
The next result describes the behavior of augmented base loci under birational transforms.

Proposition 2.3 Let π : X → Y be a birational morphism between normal projective
varieties. For any big R-divisor D on Y and any effective π-exceptional R-divisor F on X
we then have

B+(π∗ D + F) = π−1(B+(D)) ∪ Exc(π).

Proof Let x ∈ X \ B+(π∗ D + F), so that there exists a Kodaira decomposition

π∗ D + F ∼R A + E

with x /∈ SuppE . Then G := E − F is π -antiample and π∗G = π∗E is effective since
F is π-exceptional, thus the “negativity lemma” ([8, Lemma 3.39] or rather its version for
R-divisors [12, 1.1] ) shows that G is effective. Since G is also π-antiample, it contains
Exc(π) in its support, which shows that x /∈ Exc(π). We also get a Kodaira decomposition

π∗ D ∼R A + G

such that π(x) /∈ π(SuppG), hence π(x) /∈ B+(D) by Lemma 2.2. We have thus shown that

π−1(B+(D)) ∪ Exc(π) ⊂ B+(π∗ D + F).

In order to prove the reverse inclusion, we first consider the special case where D is an
ample Q-divisor on Y and F = 0. Our goal is then to show that B+(π∗ D) ⊂ Exc(π).
Pick x /∈ Exc(π) and choose a hyperplane section H of X such that x /∈ H . Since π is an
isomorphism above π(x), it follows that π(x) does not belong to the zero locus of the ideal
sheaf I := π∗OX (−H). If we choose k sufficiently large and divisible, then OY (k D) ⊗ I
is globally generated since D is an ample Q-divisor. So we get the existence of a section in
H0(Y,OY (k D)⊗ I) that does not vanish at π(x), hence a section s ∈ H0(X, kπ∗ D − H)
with s(x) �= 0, which indeed shows that x /∈ B+(π∗ D).
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We now treat the general case. We thus pick x ∈ X \ Exc(π) such that π(x) /∈ B+(D),
and we have to show that x /∈ B+(π∗ D + F). Since π(x) /∈ B+(D), there exists a Kodaira
decomposition

D = A + E,

with π(x) /∈ SuppE . By the special case treated above we have B+(π∗ A) ⊂ Exc(π), so that
there exists a Kodaira decomposition

π∗ A = B + G,

with B ample and x /∈ SuppG. Putting all together yields a Kodaira decomposition

π∗ D + F = B + (G + π∗E + F),

with x /∈ Supp(G + π∗E + F), which concludes the proof. �
2.2 Restricted base locus vs. non-nef locus

We use [5,11] as general references for what follows. Let D be a big R-divisor on the normal
projective variety X . Given a divisorial valuation v on X , the asymptotic vanishing order of
D along v is defined as

v(‖D‖) := inf {v(E) | E effective R-divisor, E ∼R D} .
By [5, Lemma 3.3], this is also equal to

inf {v(E) | E effective R-divisor, E ≡ D} .
In particular, it only depends on the numerical equivalence class of D; the function it defines
on the open convex cone

Big(X) ⊂ N 1(X)

of big classes is homogeneous and convex, hence continuous and sub-additive. When D is a
pseudoeffective R-divisor, one sets as in [11, Definition III.1.6] (see also [2, §3] for the case
of (1, 1)-classes)

v(‖D‖) := lim
ε→0

v(‖D + εA‖), (2.2)

where A is any ample divisor, the definition being easily seen to be independent of the choice
of A. The corresponding function on the pseudoeffective cone

Psef(X) = Big(X) ⊂ N 1(X)

is now lower semicontinuous, but not continuous up to the boundary of the pseudoeffective
cone in general (cf. [11, p.135, Example 2.8]). A pseudoeffective R-divisor D is nef iff
v(‖D‖) = 0 for every divisorial valuation v.

We will use the following result, which is a consequence of [11, Lemma III.1.7].

Lemma 2.4 Let π : X ′ → X be a birational morphism and let D be a pseudoeffective
R-divisor on X. Then we have

v(‖π∗ D‖) = v(‖D‖)
for every divisorial valuation v.
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Definition 2.5 Let X be a normal projective variety. Let D be a pseudoeffective R-divisor
on X . The non-nef locus of D (called its numerical base locus in [11]) is defined as

NNef(D) :=
⋃

{cX (v) | v(‖D‖) > 0},
where cX (v) denotes the center on X of a given divisorial valuation v, viewed as a subvariety
of X .

The non-nef locus is always contained in the restricted base locus:

Lemma 2.6 Let X be a normal projective variety. For every pseudoeffective R-divisor D we
have

NNef(D) ⊂ B−(D).

Proof Let x /∈ B−(D), and let v be any divisorial valuation such that x ∈ cX (v). Given
an ample divisor A we have x /∈ B(D + εA) for each ε > 0, thus there exists an effective
R-divisor Eε ∼R D + εA such that x /∈ SuppEε , and we infer that

v(‖D + εA‖) � v(Eε) = 0.

Letting ε → 0 yields v(‖D‖) = 0, hence x /∈ NNef(D). �
When X is smooth it was shown in [11, Lemma V.1.9] (see also [5, Proposition 2.8]) that

equality holds, i.e.

NNef(D) = B−(D) (2.3)

for every pseudoeffective R-divisor D. This shows in particular that NNef(D) is an at most
countable union of Zariski closed subsets of X . The latter property carries on to the case where
X is an arbitrary normal variety, since choosing a resolution of singularities π : X ′ → X
yields

NNef(D) = π(NNef(π∗ D))

by Lemma 2.4. It is however natural to ask:

Conjecture 2.7 1 For every normal projective variety X and every pseudoeffective R-divisor
D on X, we have NNef(D) = B−(D).

Using [1] we prove:

Proposition 2.8 Let (X,�) be a klt pair with K X + � pseudoeffective. Then we have
NNef(K X + �) = B−(K X + �), which furthermore coincides with B(K X + �) when
K X +� is big.

Proof By Lemma 2.6 we only need to show that

NNef(K X +�) ⊃ B−(K X +�). (2.4)

We claim that it is enough to prove the result when K X + � is big. Indeed, by the very
definition of B−, given an irreducible component V of B−(K X +�), there exists an ample
Q-divisor A such that V is a component of B(K X +�+ 2A). Since

B(K X +�+ 2A) ⊂ B−(K X +�+ A) ⊂ B−(K X +�),

1 After the posting of this article on the arXiv, Cacciola and Di Biagio [4] proved the conjecture for surfaces
and, in dimension ≥3, in the klt case.
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we deduce that V is an irreducible component of B−(K X +� + A). Notice moreover that
NNef(K X +�+ A) ⊂ NNef(K X +�). Upon changing A in its Q-linear equivalence class
we may assume that (X,�+ A) is klt, and we are indeed reduced to the case where K X +�
is big.

By [1, Theorem 1.2] K X + � admits an ample model, which means that there exist
birational morphisms π : Y → X and π ′ : Y → X ′ such that

π∗(K X +�) = π ′∗ H + F,

where H is ample on X ′ and F is effective and π ′-exceptional, and Y may be assumed to be
smooth. By the negativity lemma [8, Lemma 3.39], every effective R-divisor E on Y such
that E ≡ π ′∗ H + F satisfies E � F , and it easily follows that

v(‖K X +�‖) = v(‖π∗(K X +�)‖) = v(F)

for every divisorial valuation v, so that

NNef(K X +�) = π(SuppF).

On the other hand we have

B(K X +�) = π(B(π∗(K X +�))) = π(SuppF),

and the result follows. �

3 Theorem A and its corollary

3.1 Proof of Theorem A

Let X be a normal, projective and Q-factorial variety and let� be an effective R-Weil divisor
on X such that (X,�) is klt. The equality NNef(K X + �) = B−(K X + �) (respectively
NNef(K X + �) = B−(K X + �) = B(K X + �) when K X + � is big) has been proved
in 2.8. Therefore we concentrate on the uniruledness of the irreducible components of these
loci. If K X +� is not pseudoeffective, then by [3] X is uniruled: in fact, considering a log
resolution f : Y → X of (X,�), and an effective divisor � such that

KY + � = f ∗(K X +�)+ E,

with E effective f -exceptional, we have that KY + � is not pseudoeffective, since E is
f -exceptional and f ∗(K X + �) not pseudoeffective. As � is effective, KY is not pseudo-
effective either, thus Y is uniruled and X = NNef(K X + �) = B−(K X + �) is uniruled
too.

We now assume that K X +� is pseudoeffective, and let V be an irreducible component
of B−(K X +�). By [5, Lemma 1.14] we have

B−(K X +�) =
⋃

A ample

B+(K X +�+ A),

thus there exists an ample Q-divisor A such that V is a component of B+(K X + � + A).
Since A is ample, we may furthermore assume that (X,�+ A) is klt. This reduces us to the
following situation: assume that (X,�) is klt, K X + � is big and let V be an irreducible
component of B+(K X +�). We are then to show that V is uniruled.
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Consider a commutative diagram of birational maps

X

π
���

��
��

��
�

ψ ��������� X ′

π ′
����

��
��

��

Z .

(3.1)

with −(K X +�) π-ample, and either π is a divisorial contraction and π ′ is the identity, or
π is a small contraction and ψ is its flip. Since −(K X +�) is π-ample, we have Exc(π) ⊂
B+(K X +�). Indeed, K X +� has negative degree along any curve C contracted by π , and
therefore C ⊂ B+(K X + �). If V is contained in Exc(π) it must therefore be one of its
irreducible components, and it follows that V is uniruled by [7, Theorem 1]. Otherwise we
may consider its strict transform V ′ on X ′, since ψ is in both cases an isomorphism away
from Exc(π). If we denote by �′ the strict transform of � on X ′ then (X ′,�′) is klt and
K X ′ +�′ is big. We claim that

V ′ is a component of B+(K X ′ +�′). (3.2)

Indeed consider a resolution of the indeterminancies of ψ

Y
μ

����
��

��
�

μ′

���
��

��
��

X
ψ ��������� X ′

(3.3)

which may be chosen such that μ (resp. μ′) is an isomorphism above the generic point of V
(resp. V ′). Let F be the μ′-exceptional divisor on Y defined by the following equation:

μ∗(K X +�) = μ′∗(K X ′ +�′)+ F.

Notice that −F is nef over X ′ (since it is nef over Z ), thus F � 0 by the Negativity Lemma.
The claim now follows by Proposition 2.3.

Since X is Q-factorial, by [1, Corollary 1.4.2] there exists a finite composition of maps

ψ0 : X := X0 ��� X1, . . . , ψi : Xi ��� Xi+1, . . . , ψr : Xr ��� Xr+1 =: Xmin

�0 := �, �i := (ψi )∗�i−1, i = 1, . . . , r,

with

Xi

πi ���
��

��
��

�
ψi ��������� Xi+1

π ′
i����

��
��

��

Zi .

(3.4)

as in (3.4) such that K Xmin +�min is nef at the final stage. We have two cases. If, for some
i = 0, . . . , r , the strict transform of V in Xi is contained in Exc(πi ), then it is uniruled by [7,
Theorem 1]. Otherwise, by (3.2), the strict transform Vmin of V inside Xmin is a component of
B+(K Xmin +�min). By the base point free theorem there exists a further birational morphism
ρ : Xmin → W such that K Xmin + �min = ρ∗ A with A ample on W , and Proposition 2.3
shows that B+(K Xmin + �min) = Exc(ρ). Hence Vmin is a component of Exc(ρ). We then
conclude that Vmin is uniruled as desired, by a final application of [7, Theorem 2].
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3.2 Theorem A implies Corollary A

We argue as we did at the beginning of the proof of Proposition 2.8. As in the proof of
Theorem A, we then have the flexibility to assume that D is big, upon adding to it a small
multiple of an ample divisor.

Assume first that −K X is nef. We then have

εD = K X + (εD − K X )

and, for ε > 0 small enough, εD − K X is numerically equivalent to a divisor � such that
(X,�) is klt. Indeed we can write D ≡ A + E where A is ample and E is effective, hence

εD − K X ≡ εE + εA − K X ,

where εA − K X is ample and (X, εE) is klt for ε small enough. Since both B−(D) and
B+(D) are invariant under scaling D we thus get the result by Theorem A applied to (X,�).

Now assume instead that D − K X =: N is nef. We can then write

1

1 − ε
D = K X + N + ε

1 − ε
D

and N + ε
1−ε D is numerically equivalent to a divisor � such that (X,�) is klt for ε > 0

small enough just as before, and Theorem A again implies the desired result after scaling D.
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