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Abstract. We prove the existence and uniqueness of Kähler–Einstein metrics on
Q-Fano varieties with log terminal singularities (and more generally on log Fano pairs) whose
Mabuchi functional is proper. We study analogues of the works of Perelman on the conver-
gence of the normalized Kähler–Ricci flow, and of Keller, Rubinstein on its discrete version,
Ricci iteration. In the special case of (non-singular) Fano manifolds, our results on Ricci itera-
tion yield smooth convergence without any additional condition, improving on previous results.
Our result for the Kähler–Ricci flow provides weak convergence independently of Perelman’s
celebrated estimates.
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Introduction

Complex Monge–Ampère equations have been one of the most powerful tools in Kähler
geometry since T. Aubin and S. T. Yau’s classical works [2, 70], culminating in Yau’s solution
to the Calabi conjecture. A notable application is the construction of Kähler–Einstein metrics
on compact Kähler manifolds. Whereas their existence on manifolds with ample and trivial
canonical class was settled in [2] and [70] respectively, determining necessary and sufficient
conditions for a Fano manifold to carry a Kähler–Einstein metric is still an open problem that
attracts a lot of attention (see [54]).1)

In recent years, following the pioneering work of H. Tsuji [69], degenerate complex
Monge–Ampère equations have been intensively studied by many authors. In relation to the
Minimal Model Program, they led to the construction of singular Kähler–Einstein metrics with
zero or negative Ricci curvature [34] or, more generally, of canonical volume forms on compact
Kähler manifolds with non-negative Kodaira dimension [59, 60].

Making sense of and constructing Kähler–Einstein metrics on (possibly singular) Fano
varieties turns out to require more advanced tools in the study of degenerate complex Monge–
Ampère equations. The purpose of this article is to develop these tools, following the first step
taken in [7], so as to investigate Kähler–Einstein metrics on singular Fano varieties, and more
generally on log Fano pairs.

A main motivation to study them comes from the fact that singular Kähler–Einstein Fano
varieties arise naturally as Gromov–Hausdorff limits of Kähler–Einstein Fano manifolds. This
had been suggested strongly by [19, 47, 64], among other works, and was finally established
very recently by S. Donaldson and S. Sun in [33].

Let X be a Q-Fano variety, i.e. a normal projective complex variety such that �KX is
Q-Cartier and ample, without any further a priori restriction on its singularities. Any reasonable
notion of a Kähler–Einstein metric on X should at least restrict to a Kähler metric ! on the
regular locus Xreg with Ric.!/ D !.

We show (see Proposition 3.8) that the existence of such a metric ! on Xreg forces X to
have log terminal singularities, a class of singularities which comprises quotient singularities
and is characterized in analytic terms by a finite volume condition.

We prove that the volume
R
Xreg

!n is automatically finite, bounded above by c1.X/n

with n WD dimC X . Relying on finite energy techniques and regularity of solutions to Monge–
Ampère equations, we further show that

R
Xreg

!n D c1.X/
n if and only if ! extends to a closed

positive .1; 1/-current ! onX lying in c1.X/ and having continuous local potentials, or equiva-
lently the curvature form of a continuous psh metric on the Q-line bundle �KX . We then say
that ! is a Kähler–Einstein metric on X .

In [33, Theorem 1.2] it is proved that the Gromov–Hausdorff limit of any sequence
.Xj ; !j / of Kähler–Einstein Fano manifolds with fixed volume c1.Xj /n D V is a Q-Fano vari-
ety X with log terminal singularities, equipped with a Kähler–Einstein metric ! in the above
sense, with c1.X/n D V . Combined with [47], this strongly suggests that Kähler–Einstein
Q-Fano varieties can be used to compactify the moduli space of Kähler–Einstein Fano mani-
folds. We thank O. Debarre and B. Totaro for emphasizing this point.

1) This problem has been solved recently by Chen, Donaldson and Sun [21, 22], see also [66].
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We now give precise formulations of our main results. To simplify the exposition, we
only consider the easier context of Fano varieties and refer the reader to the sequel for the
corresponding statements for log Fano pairs.

Existence and uniqueness of Kähler–Einstein metrics. We define a Mabuchi func-
tional Mab (extending the classical Mabuchi K-energy) and a J -functional J for a given
Q-Fano variety X with log terminal singularities, and we say as usual that the Mabuchi func-
tional is proper if Mab!C1 as J !C1.

Our first main result is as follows.

Theorem A. Let X be a Q-Fano variety with log terminal singularities.

(i) The identity component Aut0.X/ of the automorphism group ofX acts transitively on the
set of Kähler–Einstein metrics on X .

(ii) If the Mabuchi functional of X is proper, then Aut0.X/ D ¹1º and X admits a unique
Kähler–Einstein metric, which is the unique minimizer of the Mabuchi functional.

WhenX is non-singular, the first point is a classical result of S. Bando and T. Mabuchi [3].
Our proof in the present context builds on the recent work of B. Berndtsson [9]. The second
point generalizes a result of W.Y. Ding and G. Tian (see [63]), and relies as in [5] on the
variational approach developed in our previous work [7]. It should be recalled that, when X is
non-singular and Aut0.X/ D ¹1º, a deep result of G. Tian [62], strengthened in [53], conversely
shows that the existence of a Kähler–Einstein metric implies the properness of the Mabuchi
functional. It would of course be very interesting to establish a similar result for singular
varieties.2)

Ricci iteration. In their independent works [43] and [55], J. Keller and Y. Rubinstein
investigated the dynamical system known as Ricci iteration, defined by iterating the inverse
Ricci operator. Our second main result deals with the existence and convergence of Ricci iter-
ation in the more general context of Q-Fano varieties.

Theorem B. Let X be a Q-Fano variety with log terminal singularities.

(i) Given a smooth form !0 2 c1.X/, there exists a unique sequence of closed positive cur-
rents !j 2 c1.X/ with continuous potentials on X , smooth on Xreg, and such that

Ric.!jC1/ D !j

on Xreg for all j 2 N.

(ii) If we further assume that the Mabuchi functional of X is proper and let !KE be the
unique Kähler–Einstein metric provided by Theorem A, then limj!C1 !j D !KE, the
convergence being in C1-topology on Xreg, and uniform on X at the level of potentials.

When X is non-singular, this result settles [55, Conjecture 3.2], which was obtained
in [55, Theorem 3.3] under the more restrictive assumption that Tian’s ˛-invariant satisfies
˛.X/ > 1 (an assumption that implies the properness of the Mabuchi functional). Building

2) This should be a consequence of the present article and the recent work of Darvas–Rubinstein [25].
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on a preliminary version of the present paper, a more precise version of Theorem B was ob-
tained in [42, Theorem 2.5] for Kähler–Einstein metrics with cone singularities along a smooth
hypersurface of a non-singular variety.

Convergence of the Kähler–Ricci flow. WhenX is a Q-Fano variety with log terminal
singularities, the work of J. Song and G. Tian [59] shows that given an initial closed positive
current !0 2 c1.X/ with continuous potentials, there exists a unique solution .!t /t>0 to the
normalized Kähler–Ricci flow, in the following sense:

(i) For each t > 0, !t is a closed positive current in c1.X/ with continuous potentials.

(ii) On Xreg � �0;C1Œ, !t is smooth and satisfies P!t D �Ric.!t /C !t .

(iii) limt!0C !t D !0, in the sense that their local potentials converge in C0.Xreg/.

Our third main result studies the long time behavior of this normalized Kähler–Ricci flow,
and provides a weak analogue for singular Fano varieties of G. Perelman’s3) result on the
convergence of the Kähler–Ricci flow on Kähler–Einstein Fano manifolds:

Theorem C. Assume that the Mabuchi functional of X is proper, and denote by !KE its
unique Kähler–Einstein metric. Then limt!C1 !t D !KE and limt!C1 !

n
t D !

n
KE, both in

the weak topology.

When X is non-singular, the above result is certainly weaker than Perelman’s theorem,
which yields convergence in C1-topology. On the other hand, our approach, which relies
on a variational argument using results of [7], is completely independent of Perelman’s deep
estimates - which are at any rate out of reach for the moment on singular varieties.

The strong topology of currents with finite energy. The classical differential-geom-
etric approach to the above convergence results requires delicate a priori estimates to guarantee
compactness of a given family of metrics in C1-topology. Our approach consists in work-
ing with the set T 1 of closed positive .1; 1/-currents ! in the fixed cohomology class c1.X/
and having finite energy in the sense that J.!/ < C1. As a consequence of [7], the map
! 7! V �1!n (which corresponds to the complex Monge–Ampère operator at the level of
potentials) sets up a bijection between T 1 and the set M1 of probability measures with
finite energy.

With respect to the weak topology of currents, compactness in T 1 is easily obtained: any
set of currents with uniformly bounded energy is weakly compact. But the drawback of this
weak topology is that the Monge–Ampère operator is not weakly continuous as soon as n � 2.

An important novelty of this article is to define, study and systematically use a strong
topology on T 1 and M1, which turns them into complete metric spaces and with respect to
which the bijection T 1 'M1 described above becomes a homeomorphism. At the level of
potentials, the strong topology appears as a higher-dimensional and non-linear version of the
Sobolev W 1;2-norm.4)

3) Perelman explained his celebrated estimates during a seminar talk at MIT in 2003 (see [56]). These
have been used since then in studying the C1-convergence of the normalized Kähler–Ricci flow under various
assumptions (see notably [51, 52, 68]).

4) This topology has recently been studied further in [24].
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Relying on a property of Lelong numbers of psh functions proved in Appendix A, we
prove that !-psh functions with finite energy have identically zero Lelong numbers on any
resolution of singularities ofX , and hence satisfy an exponential integrability condition. This is
used to prove a compactness result in the strong topology of M1 for probability measures with
uniformly bounded entropy, which is a key point to our approach. Under the assumption that
the Mabuchi functional is proper, the entropy bound is easily obtained along the normalized
Kähler–Ricci flow and Ricci iteration, thanks to the monotonicity property of the Mabuchi
functional.

Structure of the article. The article is organized as follows:

� Section 1 is a recap on finite energy currents. It provides in particular a crucial integra-
bility property of their potentials (finite energy functions).

� Section 2 introduces the strong topology and establishes strong compactness of measures
with uniformly bounded entropy.

� Section 3 studies the first basic properties of Kähler–Einstein metrics on log Fano pairs,
showing in particular that the singularities are at most log terminal.

� Section 4 gives a variational characterization of Kähler–Einstein metrics, extending some
results from [7].

� Section 5 provides an extension of the uniqueness results of Bando–Mabuchi and
Berndtsson to the context of log Fano pairs, finishing the proof of Theorem A.

� Section 6 studies ‘Ricci iteration’ in the context of log Fano pairs, and contains the proof
of Theorem B.

� Section 7 recalls Song and Tian’s construction of the normalized Kähler–Ricci flow on
a Q-Fano variety, and proves Theorem C.

� Section 8 adapts a construction of [1] to get examples of log Fano pairs and log terminal
Fano varieties with Kähler–Einstein metrics that are not of orbifold type.

� The article ends with three appendices. The first one proves an Izumi-type estimate that
plays a crucial role for the integrability properties of quasi-psh functions with finite
energy. The second one provides an explicit version of Paun’s Laplacian estimate [50],
on which relies the C1-convergence in Theorem B. The third one gives a detailed proof
of a version of Berndtsson’s subharmonicity theorem that plays a crucial role in the proof
of the uniqueness of Kähler–Einstein metrics.

Nota bene. The current version of this article differs substantially from the first version
of the arXiv preprint. The latter dealt more generally with Mean Field Equations with refer-
ence measures having Hölder continuous potentials, a point of view that made it less readily
accessible to differential geometers. Meanwhile, the preprint [26] appeared, giving further
motivation for the general context of our previous work. Another new feature of the present
version is the Izumi-type result proved in Appendix A.

Various important works have appeared since the first version of our work was circulat-
ing. We have only mentioned in footnotes those that are immediately connected to the contents
of the present article.
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1. Finite energy currents

The goal of this section is to establish a number of preliminary facts about functions and
measures with finite energy on a normal compact Kähler space, which rely on a combination
of the main results from [7, 13, 34, 35].

1.1. Plurisubharmonic functions and positive .1; 1/-currents. Let X be a normal,
connected, compact complex space, and denote by n its (complex) dimension.

By definition, a Kähler form !0 on X is locally the restriction to X of an ambient Kähler
form in a polydisc whereX is locally realized as a closed analytic subset. In particular, it admits
local potentials, which are smooth strictly psh functions.

A function ' W X ! Œ�1;C1Œ is !0-plurisubharmonic (!0-psh for short) if ' C u is
psh for each local potential u of !0, which means that ' C u is the restriction to X of an am-
bient psh function in a polydisc as above (see [27, 36] for further information on psh functions
in this context).

We denote by PSH.X; !0/ the set of !0-psh functions on X , endowed with its natural
weak topology. By Hartogs’ lemma, ' 7! supX ' is continuous on PSH.X; !0/ (with respect to
the weak topology), and we say that ' 2 PSH.X; !0/ is normalized if supX ' D 0. We denote
by

PSHnorm.X; !0/ � PSH.X; !0/

the set of normalized !0-psh functions, which is compact for the weak topology. We also
denote by T .X; !0/ the set of all closed positive .1; 1/-currents ! dd c-cohomologous to !0,
endowed with the weak topology. The map

' 7! !' WD !0 C dd
c'

defines a homeomorphism
PSHnorm.X; !0/ ' T .X; !0/

with respect to the weak topologies. We denote its inverse by ! 7! '! , so that '! is the unique
function in PSHnorm.X; !0/ such that

! D !0 C dd
c'! :

When X is non-singular, Demailly’s regularization theorem [28] (see also [11]) shows that any
' 2 PSH.X; !0/ is the decreasing limit of a sequence of smooth !0-psh functions. The analo-
gous statement is not known in the general singular case (except when !0 2 c1.L/ represents
the first Chern class of an ample line bundle L [23]). However, it follows from [35] that every
' 2 PSH.X; !0/ is the decreasing limit of a sequence of continuous !0-psh functions.

If we let � W QX ! X be a resolution of singularities, then Q!0 WD ��!0 is a semipositive
.1; 1/-form which is big in the sense that

R
QX
Q!n0 > 0. Since X is normal, � has connected
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fibers, hence every Q!0-psh function on QX is of the form ' ı � for a unique !0-psh function '
on X . We thus have a homeomorphism

PSH.X; !0/ ' PSH. QX; Q!0/:

This reduces the study of !0-psh functions on X to Q!0-psh functions on QX , where QX is thus
a compact Kähler manifold and Q!0 is a semipositive and big .1; 1/-form.

1.2. Functions with full Monge–Ampère mass. Let X be a normal compact com-
plex space endowed with a fixed Kähler form !0. For each ' 2 PSH.X; !0/, the functions
'j WD max¹';�j º are !0-psh and bounded for all j 2 N. The Monge–Ampère measures
.!0 C dd

c'j /
n are therefore well-defined in the sense of Bedford–Taylor, withZ

X

.!0 C dd
c'j /

n
D

Z
X

!n0 DW V:

By [4], the positive measures �j WD 1¹'>�j º.!0 C dd c'j /n satisfy

1¹'>�j º�jC1 D �j ;

and in particular �j � �jC1. As in [13], we say that ' has full Monge–Ampère mass (this is
called finite energy in [39]) if limj!1 �j .X/ D 1, i.e.

lim
j!1

Z
¹'��j º

.!0 C dd
c max¹';�j º/n D 0:

In that case we set .!0 C dd c'/n WD limj!C1 �j , which is thus a positive measure on X
with mass V . More generally, for any '1; : : : ; 'n 2 PSHfull.X; !0/ the positive measure

.!0 C dd
c'1/ ^ � � � ^ .!0 C dd

c'n/

is also well-defined, and depends continuously on the 'j ’s when the latter converge monotoni-
cally.

We denote by
PSHfull.X; !0/ � PSH.X; !0/

the set of !0-functions with full Monge–Ampère mass. We say that a current ! 2 T .X; !0/

has full Monge–Ampère mass if so is '! , and we write

Tfull.X; !0/ � T .X; !0/

for the set of currents with full Monge–Ampère mass. For each ' 2 PSHfull.X; !0/ we define
a probability measure

MA.'/ WD V �1!n' :

We denote by M.X/ the set of probability measures onX , endowed with the weak topol-
ogy, and we call

MA W PSHfull.X; !0/!M.X/

the Monge–Ampère operator. We emphasize that for n � 2 this operator is not continuous in
the weak topology of PSHfull.X; !0/.
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8 Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics

For each psh function ' 2 PSHfull.X; !0/, the measure MA.'/ is non-pluripolar, i.e. it
puts no mass on pluripolar sets. Conversely, applying [7, Corollary 4.9] to a resolution of sin-
gularities shows that any non-pluripolar probability measure � is of the form MA.'/ for some
' 2 PSHfull.X; !0/. In other words, the map Tfull.X; !/!M.X/ defined by ! 7! V �1!n is
injective, and its image is exactly the set of non-pluripolar measures in M.X/.

The following crucial integrability property of functions with full Monge–Ampère mass
relies on a non-trivial property of Lelong numbers of psh functions proved in Appendix A.

Theorem 1.1. Let ' 2 PSHfull.X; !0/ and let � W QX ! X be any resolution of singu-
larities of X . Then Q' WD ' ı � has zero Lelong numbers. Equivalently, e� Q' 2 Lp. QX/ for all
p < C1.

Proof. By Corollary A.3 from Appendix A, f ı � has zero Lelong numbers as soon as
the slope

s.'; x/ WD sup
²
s � 0

ˇ̌̌̌
' � s log

X
i

jfi j CO.1/

³
is zero for each x 2 X . Let .fi / be local generators of the maximal ideal of OX;x and set
 WD log

P
i jfi j, which is a psh function defined on a neighborhood U of x, with an isolated

logarithmic singularity at x. Let 0 � � � 1 be a smooth function with compact support in U
such that � � 1 on a neighborhood of x. A standard computation (see e.g. [28, Lemma 3.5])
shows that

� WD log.�e C .1 � �//

satisfies dd c� � �C!0 for some C > 0. It follows that "� is !0-psh for all " > 0 small
enough. If s.'; x/ > 0, then ' � "�CO.1/ for any 0 < " < s.'; x/. Since ' has full Monge–
Ampère mass, it follows from [13, Proposition 2.14] that "� also has full Monge–Ampère mass,
which is impossible since .!0 C dd c"�/n.¹xº/ D "nm.X; x/ > 0 by [27].

Finally, the last equivalence is a classical result of Skoda [58].

1.3. ˛-invariants and tame measures. The following uniform integrability exponent
generalizes the classical one of [61, 67]:

Definition 1.2. The ˛-invariant of a measure � 2M.X/ (with respect to !0) is defined
as

˛!0.�/ WD sup
²
˛ � 0

ˇ̌̌̌
sup

'2PSHnorm.X;!0/

Z
X

e�˛' d� < C1

³
:

Note that ˛!0.�/ > 0 implies that � is non-pluripolar. We also introduce the following
ad hoc terminology.

Definition 1.3. We say that a positive measure � on X is tame if � puts no mass on
closed analytic sets and if there exists a resolution of singularities � W QX ! X such that the lift
Q� of � to QX has Lp-density (with respect to Lebesgue measure) for some p > 1.

By the lift of �, we mean the push-forward by ��1 of its restriction to the Zariski open
set over which � is an isomorphism. Note that this is well-defined precisely because � puts no
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mass on closed analytic sets. As we shall see, this a priori artificial looking notion of a tame
measure appears naturally in the context of log terminal singularities.

Proposition 1.4. Let � be a tame measure on X . Then ˛!0.�/ > 0, and for each
' 2 PSHfull.X; !0/ we have e�' 2 Lp.�/ for all finite p. In particular, e�'� is also tame.
Furthermore given p < C1 and a weakly compact subset K � PSHfull.X; !0/, both the iden-
tity map and the map ' 7! e�' define continuous maps K ! Lp.�/.

Proof. Let � W QX ! X be a resolution of singularities such that the lift Q� of � to QX has
Lp-density for some p > 1. By [58] and Hölder’s inequality, it follows that there exists " > 0
such that

R
QX
e�" Q'd Q� is finite and uniformly bounded for all normalized Q!0-psh functions Q' on

QX . Since � puts no mass on closed analytic subsets, we inferZ
X

e�"' d� D

Z
QX

e�" Q' d Q� < C1;

hence ˛!0.�/ > 0.
If we take ' 2 PSHfull.X; !0/ and set Q' WD ' ı � , Theorem 1.1 shows that e� Q' belongs

to Lq for all q < C1. By [72], we even have a uniform Lq-bound as long as Q' stays in
a weakly compact set of Q!0-psh functions. Using the elementary inequality

jea � ebj � ja � bjeaCb; a; b > 0;

the continuity of ' 7! e�' now follows from Hölder’s inequality.

Lemma 1.5. Let � 2M.X/ be a tame probability measure. Then there exists a unique
! 2 Tfull.X; !0/ such that V �1!n D �, and ! has continuous potentials.

Proof. We have already observed that the measure � is non-pluripolar, which implies
that � D V �1!n for unique ! 2 Tfull.X; !0/. To see that ! has continuous potentials, let
� W QX ! X be a resolution of singularities such that Q� has Lp-density for some p > 1. By
[34, 35], there exists a continuous Q!0-psh function Q' on QX such that V �1. Q!0 C dd c Q'/n D Q�.
If we let ' be the corresponding !0-psh function on X , then ' is continuous on X by proper-
ness of � , and the result follows since ! WD !0 C dd c' by uniqueness.

1.4. Functions and currents of finite energy. We introduce

E1.X; !0/ WD ¹' 2 PSHfull.X; !0/ j ' 2 L
1.MA.'//º;

and say that functions ' 2 E1.X; !0/ have finite energy. We denote by

T 1.X; !0/ � Tfull.X; !0/

the corresponding set of currents with finite energy, i.e. currents of the form !' with
' 2 E1.X; !0/. It is important to note that T 1.X; !0/ is not a closed subset of T .X; !0/.

The functional E W E1.X; !0/! R defined by

(1.1) E.'/ D
1

nC 1

nX
jD0

V �1
Z
X

' !j' ^ !
n�j
0
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is a primitive of the Monge–Ampère operator, in the sense that

d

dt tD0
E.t' C .1 � t / / D

Z
.' �  /MA. /

for any two '; 2 E1.X; !0/. This implies that

(1.2) E.'/�E. / D
1

nC 1

nX
jD0

V �1
Z
X

.' �  /.!0 C dd
c'/j ^ .!0 C dd

c /n�j

for all '; 2 E1.X; !0/. The energy functional E satisfies E.' C c/ D E.'/C c for c 2 R,
and it is concave and non-decreasing on E1.X; !0/ (we refer the reader to [13] for the proofs
of these results).

If we extend it to PSH.X; !0/ by setting E.'/ D �1 for ' 2 PSH.X; !0/ n E1.X; !0/,
then E W PSH.X; !0/! Œ�1;C1Œ so defined is upper semicontinuous. As a consequence,
the convex set

(1.3) E1C .X; !0/ WD
°
' 2 E1.X; !0/

ˇ̌̌
sup
X

' � C and E.'/ � �C
±

is compact (for the L1-topology) for each C > 0.
We also recall the definition of two related functionals that were originally introduced

by Aubin. The J -functional (based at a given  2 E1.X; !0/) is the functional on E1.X; !0/

defined by setting

J .'/ WD E. / �E.'/C

Z
X

.' �  /MA. /:

Note that J .'/ D E. / �E.'/CE 0. / � .' �  / � 0 by concavity of E. For  D 0 we
simply write

J.'/ WD J0.'/ D V
�1

Z
X

' !n0 �E.'/:

Finally, the I -functional is the symmetric functional defined by

I.';  / D

Z
X

.' �  /.MA. / �MA.'//(1.4)

D

n�1X
jD0

V �1
Z
X

d.' �  / ^ d c.' �  / ^ !j' ^ !
n�1�j
 ;

which is also non-negative by concavity of E. When  D 0, we simply write

I.'/ WD I.'; 0/ D V �1
Z
X

' !n0 �

Z
X

'MA.'/:

These functionals compare as follows (see for instance [7, Lemma 2.2]):

(1.5) n�1J'. / � J .'/ � I.';  / � .nC 1/J .'/:

We will also use:

Lemma 1.6. For each  2 E1.X; !0/, there exists A;B > 0 such that

A�1J.'/ � B � J .'/ � AJ.'/C B

for all ' 2 E1.X; !0/.
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Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics 11

Proof. By translation invariance, we may restrict to ' 2 E1norm.X; !0/. We compute

J .'/ � J.'/ D E. /C

Z
X

.' �  /MA. / �
Z
X

'MA.0/:

Since ' is normalized,
R
X 'MA.0/ is uniformly bounded by [7, Lemma 3.2]. On the other

hand, by [7, Proposition 3.4], there exists C > 0 such thatˇ̌̌̌Z
X

'MA. /
ˇ̌̌̌
� CJ.'/1=2

for all ' 2 E1norm.X; !0/. We thus get J D J CO.J 1=2/ on E1norm.X; !0/, and the result
follows.

As opposed toE, these functionals are translation invariant, hence descend to T 1.X; !0/.
For !;!0 2 T 1.X; !/we set J!.!0/ D J'! .'!0/ and I.!; !0/ D I.'! ; '!0/. For each C > 0

we set
T 1
C .X; !0/ WD ¹! 2 T 1.X; !0/ j J.!/ � C º:

1.5. Measures of finite energy. As in [7], we define the energy of a probability mea-
sure � on X (with respect to !0) as

(1.6) E�.�/ WD sup
'2E1.X;!0/

�
E.'/ �

Z
' �

�
2 Œ0;C1�:

This defines a convex lsc functionE� WM.X/! Œ0;C1�, and a probability measure � is said
to have finite energy if E�.�/ < C1. We denote the set of probability measures with finite
energy by

M1.X; !0/ WD ¹� 2M.X/ j E�.�/ < C1º;

and we set for each C > 0

(1.7) M1
C .X; !0/ WD ¹� 2M.X/ j E�.�/ � C º:

By [7, Theorem 4.7], the map ! 7! V �1!n is a bijection between T 1.X; !0/ and M1.X; !0/

(but here again it is not continuous with respect to weak convergence).
The concavity of E shows that

(1.8) E�.MA.'// D E.'/ �
Z
X

'MA.'/ D J'.0/ D .I � J /.'/;

and consequently the following Legendre duality relation holds:

(1.9) E.'/ D inf
�2M.X/

�
E�.�/C

Z
X

' d�

�
:

We also note that

(1.10) n�1E�.MA.'// � J.'/ � nE�.MA.'//;

by (1.5), hence ! 7! V �1!n maps T 1
C .X; !0/ into M1

Cn.X; !0/, and similarly for its inverse.
We end this section with the following continuity properties.
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12 Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics

Proposition 1.7. Let � 2M1.X; !0/ be a measure with finite energy. Then � acts
continuously on E1C .X; !0/ for each C > 0. Dually, every ' 2 E1.X; !0/ acts continuously
on M1

C .X; !0/.

Proof. The first assertion is [7, Theorem 3.11]. Let us prove the dual assertion. By [35],
we may choose a decreasing sequence of continuous !0-psh functions 'k converging pointwise
to ' on X . This monotone convergence guarantees that I.'k; '/! 0. By [7, Lemma 5.8], it
follows that the map� 7!

R
X '� is the uniform limit on M1

C .X; !0/ of the maps� 7!
R
X 'k�,

each of which is continuous by continuity of 'k .

1.6. A quasi-triangle inequality for I . When X has dimension 1,

I.';  / D

Z
X

d.' �  / ^ d c.' �  /

coincides with the squared L2-norm of d.' �  / for all functions '; 2 E1.X; !0/. By the
Cauchy–Schwarz inequality, I 1=2 satisfies the triangle inequality, and the convexity inequality
.x C y/2 � 2.x2 C y2/ for x; y 2 R yields

1
2
I.'1; '2/ � I.'1; '3/C I.'3; '2/

for any '1; '2; '3 2 E1.X; !0/.
Our goal here is to establish the following higher-dimensional version of this inequality.

Theorem 1.8. There exists a constant cn > 0, only depending on the dimension n, such
that

cnI.'1; '2/ � I.'1; '3/C I.'3; '1/

for all '1; '2; '3 2 E1.X; !0/.

For any '1; '2;  2 E1.X; !/ we set

(1.11) kd.'1 � '2/k WD
�Z
X

d.'1 � '2/ ^ d
c.'1 � '2/ ^ .! C dd

c /n�1
�1=2

;

which is theL2-norm of d.'1 � '2/with respect to ! when the latter is a Kähler form. Using
(1.4) it is easy to see that

(1.12) kd.'1 � '2/k
2
'1C'2
2

� I.'1; '2/ � 2
n�1
kd.'1 � '2/k

2
'1C'2
2

:

Lemma 1.9. There exists a constant cn > 0, only depending on n, such that for all
'1; '2;  2 E.X; !0/,

cnkd.'1 � '2/k
2
 � I.'1; '2/

1=2n�1
�
I.'1;  /

1�1=2n�1
C I.'2;  /

1�1=2n�1
�
:

Proof. The proof is a refinement of [7, Lemma 3.12] and [40, Lemma 3.1]. Set

u WD '1 � '2; v WD
1

2
.'1 C '2/
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Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics 13

and for each p D 0; : : : ; n � 1,

bp WD

Z
X

du ^ d cu ^ !
p
 ^ !

n�p�1
v :

By (1.12) we have b0 � I.'1; '2/, while

bn�1 D kd.'1 � '2/k
2
 

is the quantity we are trying to bound. Let us first check that

(1.13) bpC1 � bp C 4

q
bpI. ; v/

for p D 0; : : : ; n � 2. Using integration by parts and the identity dd cu D !'1 � !'2 , we com-
pute

bpC1 � bp D

Z
X

du ^ d cu ^ dd c. � v/ ^ !
p
 ^ !

n�p�2
v

D �

Z
X

du ^ d c. � v/ ^ dd cu ^ !
p
 ^ !

n�p�2
v

D �

Z
X

du ^ d c. � v/ ^ !'1 ^ !
p
 ^ !

n�p�2
v

C

Z
X

du ^ d c. � v/ ^ !'2 ^ !
p
 ^ !

n�p�2
v :

For i D 1; 2 the Cauchy–Schwarz inequality yieldsˇ̌̌̌Z
X

du ^ d c. � v/ ^ !'i ^ !
p
 ^ !

n�p�2
v

ˇ̌̌̌
�

�Z
X

du ^ d cu ^ ^!'i ^ !
p
 ^ !

n�p�2
v

�1=2
�

�Z
X

d. � v/ ^ d c. � v/ ^ !'i ^ !
p
 ^ !

n�p�2
v

�1=2
� 2b1=2p I. ; v/1=2;

noting that !'i � 2!v and using (1.4). This proves (1.13).
Next we use the convexity of ' 7! J .'/ and (1.5) to get

2I.v;  / � .nC 1/.I.'1;  /C I.'2;  //:

Setting

(1.14) Hn WD 8.nC 1/.I.'1;  /C I.'2;  //

and

(1.15) h.t/ WD t C
p
Hnt

we thus have bpC1 � h.bp/ for p D 0; : : : ; n � 1 by (1.13). Since b0 � I.'1; '2/ and h is
non-decreasing, it follows that

(1.16) kd.'1 � '2/k
2
 � h

n�1.I.'1; '2//;

where hn�1 WD h ı � � � ı h denotes the .n � 1/-st iterate of h W RC ! RC.
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14 Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics

It is easy to check by induction on p 2 N that

(1.17) hp.t/ � 4H 1�1=2p

n t1=2
p

for 0 � t � 2�2
pC1

Hn

There are two cases:

� If I.'1; '2/ � 2�2
n

Hn, we can apply (1.17) with p D n�1, which combines with (1.16)
to yield

kd.'1 � '2/k
2
 � 4H

1�1=2n�1

n I.'1; '2/
1=2n�1 :

We conclude by definition of Hn and the subadditivity of t 7! t1=2
n�1

.

� Assume now that I.'1; '2/ � 2�2
n

Hn. Using (1.4) we have

kd.'1 � '2/k � kd.'1 �  /k C kd. � '2/k ;

� I.'1;  /
1=2
C I.'2;  /

1=2;

hence

kd.'1 � '2/k
2
 � 2.I.'1;  /C I.'2;  //

D
1

4.nC 1/
Hn

D
1

4.nC 1/
H 1�1=2n�1

n H 1=2n�1

n

�
1

nC 1
H 1�1=2n�1

n I.'1; '2/
1=2n�1 ;

and we conclude as before.

Proof of Theorem 1.8. Set  WD '1C'2
2

. The triangle inequality

kd.'1 � '2/k � kd.'1 � '3/k C kd.'2 � '3/k 

and (1.12) yield
I.'1; '2/ � 2

n
�
kd.'1 � '3/k

2
 C kd.'2 � '3/k

2
 

�
Applying Lemma 1.9 we obtain

cnI.'1; '2/ � I.'1; '3/
1=2n�1

�
I.'1;  /

1�1=2n�1
C I.'3;  /

1�1=2n�1
�

C I.'2; '3/
1=2n�1

�
I.'2;  /

1�1=2n�1
C I.'3;  /

1�1=2n�1
�
:

As before the convexity of J and (1.5) imply

I.'1;  / �
nC 1

2
I.'1; '2/; I.'2;  / �

nC 1

2
I.'1; '2/

and
I.'3;  / �

nC 1

2
.I.'1; '3/C I.'2; '3//:

Plugging this in the above inequality, we obtain after changing cn,

cnI.'1; '2/ �
�
I.'1; '3/

1=2n�1
C I.'2; '3/

1=2n�1
�

�
�
I.'1; '2/

1�1=2n�1
C I.'1; '3/

1�1=2n�1
C I.'2; '3/

1�1=2n�1
�
:
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Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics 15

Note that we can assume I.'1; '2/ � max¹I.'1; '3/; I.'2; '3/º, otherwise the usual triangle
inequality holds and we are done. It follows therefore from our last inequality that

cnI.'1; '2/ � 3
�
I.'1; '3/

1=2n�1
C I.'2; '3/

1=2n�1
�
I.'1; '2/

1�1=2n�1 ;

and the result follows thanks to the convexity inequality .xCy/2
n�1

� 22
n�1�1.x2

n�1

Cy2
n�1

/

for x; y 2 R.

2. The strong topology

2.1. The strong topology for functions. In order to circumvent the discontinuity of the
Monge–Ampère operator with respect to the weak topology, we introduce a strong topology
that makes it continuous.

Definition 2.1. The strong topology on E1.X; !0/ is defined as the coarsest refinement
of the weak topology such that E become continuous.

In other words, a sequence (or net) 'j in E1.X; !0/ converges to ' in the strong topology
if and only if 'j ! ' in the usual (weak) topology and E.'j /! E.'/.

Lemma 2.2. Every strongly convergent sequence in E1.X; !0/ is contained in
E1C .X; !0/ for some C > 0.

Proof. If 'j ! ' is a strongly convergent sequence in E1.X; !0/, then both supX 'j
and E.'j / are convergent sequences, hence are bounded.

As the next result shows, on E1norm.X; !0/, the strong topology corresponds to the notion
of convergence in energy from [7, Section 5.3].

Proposition 2.3. If 'j ; ' 2 E1norm.X; !0/ are normalized!0-psh functions, then 'j ! '

in the strong topology if and only if I.'j ; '/! 0.

Proof. By (1.5) we have

(2.1) .nC 1/�1I.'j ; '/ � E.'/�E.'j /C
Z
X

.'j � '/MA.'/ D J'.'j / � I.'j ; '/:

If 'j ! ' strongly, then all 'j belong to E1C .X; !0/ for some C > 0 by Lemma 2.2. By Propo-
sition 1.7 it follows that

R
X .'j � '/MA.'/! 0, hence I.'j ; '/! 0 by (2.1).

Assume conversely that I.'j ; '/! 0. By [7, Proposition 5.6] it follows that 'j ! '

weakly. It remains to show that E.'j /! E.'/. Using (1.5) we see that 'j 2 E1C .X; !0/ for
some fixed C > 0, hence Z

X

.'j � '/MA.'/! 0

by Proposition 1.7, and we get E.'j /! E.'/ using again (2.1).
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16 Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics

We are now going to show that I defines a complete metrizable uniform structure on the
space E1norm.X; !/, whose underlying topology is the strong topology. These results will not be
used in the rest of the article.

When n D dimC X D 1, (1.4) shows that I.u; v/1=2 coincides with the L2-norm of the
gradient of u � v. As a consequence, I 1=2 defines a complete metric space structure on the
space E1norm.X; !/. Since the unit ball of the Sobolev space W 1;2 is not compact, it is easy
to see that the sets E1C .X; !0/, even though they are weakly compact, are not compact in the
strong topology already for n D 1 (compare also Lemma 2.8).

In higher dimension, the quasi-triangle inequality of Theorem 1.8 implies that I defines
a uniform structure, which is furthermore metrizable for general reasons [16]. Let us now show
that it is complete.

Proposition 2.4. Every sequence .'j / in E1norm.X; !0/ such that

lim
j;k!C1

I.'j ; 'k/ D 0

converges in the strong topology of E1norm.X; !0/.

Proof. Pick j0 such that I.'j ; 'k/� 1 for all j; k � j0. By (1.5) it follows that J'j0 .'j /
is bounded, hence also J.'j /, by Lemma 1.6. We may thus find a constant C > 0 such that
'j 2 E1C .X; !0/ for all j . Using the Cauchy-like assumption, it is as usual enough to show that
some subsequence of .'j / is strongly convergent. By weak compactness of E1C .X; !0/, we may
thus assume after perhaps to a subsequence that 'j converges weakly to some ' 2 E1C .X; !0/.
Let us show that 'j ! ' strongly as well. Let " > 0, and pick N 2 N such that I.'j ; 'k/ � "
for all j; k � N . By (1.5) we get

E.'j / �E.'k/C

Z
X

.'k � 'j /MA.'j / D J'j .'k/ � I.'j ; 'k/ � ":

Since E is usc in the weak topology and MA.'j / is weakly continuous on E1C .X; !0/ by
Proposition 1.7, it follows that by letting k !1 with j fixed that

J'j .'/ D E.'j / �E.'/C

Z
X

.' � 'j /MA.'j / � "

for all j � N . Using again (1.5) we thus see as desired that I.'j ; '/! 0.

2.2. The strong topology for currents and measures. We introduce the following
dual strong topologies:

Definition 2.5. The strong topology on T 1.X; !0/ and M1.X; !0/ are respectively
defined as the coarsest refinement of the weak topology such that J and E� become con-
tinuous.

Again, this means that a sequence (or net) of currents Tj in T 1.X; !0/ (resp. of measures
�j in M1.X; !0/) converges strongly to T 2 T 1.X; !0/ (resp. � 2M1.X; !0/) if and only if
Tj ! T (resp. �j ! �) weakly and J.Tj /! J.T / (resp. E�.�j /! E�.�/).
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Proposition 2.6. The maps ' 7! !' and ! 7! V �1!n define homeomorphisms

E1norm.X; !0/ ' T 1.X; !0/ 'M1.X; !0/

for the strong topologies.

Proof. The strong bicontinuity of ' 7! !' is easy to see, since we have by definition
J.'/ D V �1

R
X ' !

n
0 � E.'/, where ' 7!

R
X ' !

n
0 is weakly continuous. It is thus enough to

establish the continuity in the strong topology of the map E1norm.X; !0/!M1.X/ given by
' 7! MA.'/ and of its inverse.

We thus consider 'j ; ' 2 E1norm.X; !0/ and set �j WD MA.'j /, � WD MA.'/. Suppose
first that 'j ! ' strongly. By [7, Proposition 5.6] we have

R
X  �j !

R
X  � uniformly with

respect to  2 E1C .X; !0/ for each C > 0. This shows on the one hand that �j ! � weakly,
and on the other hand that

R
X 'j�j !

R
X '�. It follows that E�.�j / D E.'j / �

R
X 'j�j

converges to E�.�/ D E.'/ �
R
X '�, so that �j ! � strongly.

Conversely, assume that �j ! � strongly. Then E�.�j / D E.'j /�
R
X 'jMA.'j / con-

verges to E�.�/ D E.'/ �
R
X 'MA.'/, and alsoZ

X

'MA.'j /!
Z
X

'MA.'/

by Proposition 1.7, since MA.'j / D �j ! MA.'/ D � weakly. Adding up we get

E.'j / �E.'/C

Z
X

.' � 'j /MA.'j /! 0;

hence I.'j ; '/! 0 by (2.1), which shows as desired that 'j ! ' strongly.

The following dual equicontinuity properties hold:

Proposition 2.7. For each C > 0 we have:

(i) the set of probability measures M1
C .X; !0/ acts equicontinuously on E1.X; !0/ with its

strong topology,

(ii) the set of !0-psh functions E1C .X; !0/ acts equicontinuously on M1.X; !0/ with its
strong topology.

Proof. In view of Propositions 2.3 and 2.6, (i) follows from [7, Lemma 5.8], while (ii)
follows from [7, Lemma 3.12].

As a consequence, we get the following characterization of strongly compact subsets
of M1.X; !0/:

Lemma 2.8. Let K be a weakly compact subset of M1.X; !0/. The following proper-
ties are equivalent:

(i) K is strongly compact,

(ii) K �M1
A.X; !0/ for some A > 0, and for each C > 0, K acts equicontinuously on

E1C .X; !0/ equipped with its weak topology.
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18 Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics

Proof. Let us prove (i)) (ii). Since E� is by definition continuous with respect to this
topology, it is bounded on K , which shows that K is a subset of M1

A.X; !0/ for some A > 0,
and is necessarily weakly closed. Assume by contradiction that K fails to act equicontinuously
on E1C .X; !0/ for some C > 0. Then there exists sequence �j 2K and 'j 2 E1C .X; !0/ such
that 'j ! ' weakly but

R
X .'j � '/�j stays away from 0. Using the compactness assumption

we assume after perhaps passing to a subsequence that �j converges in energy to some � 2K .
By Proposition 2.7 we then have

R
X 'j�j !

R
X '�, and we also have

R
X .'j � '/�! 0 by

Proposition 1.7. It follows that
R
X .'j � '/�j ! 0, a contradiction.

Conversely, assume that (ii) holds and let �j be a sequence in K . Set 'j WD '�j , so
that 'j 2 E1C .X; !0/ for a uniform C > 0 by (1.10). By weak compactness of E1C .X; !0/,
we may assume after perhaps passing to a subsequence that 'j converges weakly to some
' 2 E1C .X; !0/. The equicontinuity assumption therefore implies that

R
X .'j�'/MA.'j /! 0.

We also have
R
X .'j � '/MA.'/! 0 by Proposition 1.7, hence

I.'j ; '/ D

Z
X

.'j � '/.MA.'/ �MA.'j //! 0:

By Proposition 2.3 it follows that 'j ! ' in energy, hence �j ! � WD MA.'/, and we have
proved as desired that �j admits a limit point in K .

2.3. Entropy and the Hölder–Young inequality. We first recall a general definition:

Definition 2.9. Let � and � be probability measures on X . The relative entropy
H�.�/ 2 Œ0;C1� of � with respect to � is defined as follows. If � is absolutely continuous
with respect to � and f WD d�

d�
satisfies f logf 2 L1.�/ then

H�.�/ WD

Z
X

f logf d� D
Z
X

log
�
d�

d�

�
d�:

Otherwise one sets H�.�/ D C1.

We write
H .X; �/ WD ¹� 2M.X/ j H�.�/ < C1º

and for each C > 0

HC .X; �/ WD ¹� 2M.X/ j H�.�/ � C º;

a compact subset of M.X/. We will use the following basic properties of the relative entropy.

Proposition 2.10. Let � and � be probability measures on X .

(i) We have

H�.�/ D sup
g2C0.X/

�Z
g d� � log

Z
eg d�

�
:

(ii) H�.�/ � 2k� � �k2. In particular, H�.�/ D 0 if and only if � D �.

Part (i) says thatH� is the Legendre transform of the convex functional g 7! log
R
eg d�.

In particular, it is convex and lower semicontinuous on M.X/. We refer to [30, Lemma 6.2.13]
for a proof.
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Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics 19

The norm in (ii) denotes the total variation of � � �, i.e. its operator norm as an element
of C 0.X/�. The inequality in (ii) is known as Pinsker’s inequality, see [30, Exercise 6.2.17]
for a proof. For later use we note:

Lemma 2.11. For each lower semicontinuous function g on X we have

sup
�2M.X/

�Z
g d� �H�.�/

�
D log

Z
eg d�:

Proof. When g is continuous this follows from Legendre duality (i.e. the Hahn–Banach
theorem). Assume now that g is an arbitrary lsc function. The inequalityZ

g d� � log
Z
eg d�CH�.�/

is a direct consequence of Jensen’s inequality. Conversely since g is lsc there exists an increas-
ing sequence of continuous functions gj � g increasing pointwise to g. By the continuous case
we get for each j

log
Z
egj d� D sup

�2M.X/

�Z
gj d� �H�.�/

�
� sup
�2M.X/

�Z
g d� �H�.�/

�
and the result follows by monotone convergence.

We now briefly recall some facts on Orlicz spaces.

Definition 2.12. A weight is a convex non-decreasing lower semicontinuous function
� W Œ0;C1�! Œ0;C1� such that ��1¹0º D ¹0º and �.C1/ D C1. Its conjugate weight
�� W Œ0;C1�! Œ0;C1� is the Legendre transform of �.j � j/, i.e.

��.t/ WD sup
s�0

.st � �.s//:

By Legendre duality we have ��� D �. Apart from the well-known case of the conjugate
weights sp=p and tq=q with 1

p
C

1
q
D 1, the main example for us will be:

Example 2.13. The conjugate weight of �.s/ WD .s C 1/ log.s C 1/ � s is

��.t/ D et � t � 1:

Definition 2.14. Let � be a positive measure on X and let � be a weight. The Orlicz
space L�.�/ is defined as the set of all measurable functions f on X such thatZ

�."jf j/ d� < C1

for some " > 0.

Observe that f 2 L�.�/ if and only if "f belongs to the convex symmetric set

B WD

²
g 2 L�.�/

ˇ̌̌̌ Z
�.jgj/ d� � 1

³
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20 Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics

for 0 < "� 1. The Luxembourg norm on L�.�/ is then defined as the gauge of B , i.e. one
sets for f 2 L�.�/

kf kL�.�/ WD inf
²
� > 0

ˇ̌̌̌ Z
�.��1jf j/ d� � 1

³
:

It turns L�.�/ into a Banach space.

Proposition 2.15 (Hölder–Young inequality). For any two measurable functions
f 2 L�.�/ and g 2 L�

�

.�/ we haveZ
jfgj d� � 2kf kL�.�/kgkL�� .�/:

We recall the straightforward proof for the convenience of the reader.

Proof. We may assume that the right-hand side is non-zero. By homogeneity we may
assume that kf kL�.�/ D kgkL�� .�/ D 1, hence

R
�.jf j/ d� � 1 and

R
��.jgj/ d� � 1. We

have jfgj � �.jf j/C ��.jgj/ pointwise on X by the definition of ��, hence
R
jfgj d� � 2

after integrating, and the result follows.

Corollary 2.16. Let � D f � be a positive measure that is absolutely continuous with
respect to �, and let � be a weight function such that

R
�.f / d� � A for some 1 � A < C1.

Then we have
kgkL1.�/ � 2AkgkL�� .�/

for every measurable function g.

Proof. The assumption amounts to

kf k
LA
�1�.�/

� 1;

and the weight �A.t/ WD A�1��.At/ is conjugate to A�1�. On the other hand it follows from
the definition that

kgkL�A .�/ D AkgkLA�1�� .�/ � AkgkL�� .�/

since A � 1, and the result follows from the Hölder-Young inequality.

2.4. Strong compactness of measures with bounded entropy. The goal of this sub-
section is to prove the following result, which is a main ingredient in the convergence of Ricci
iteration and of the Kähler–Ricci flow.

Theorem 2.17. Let �0 be a tame probability measure on X . Then

H .X; �0/ �M1.X; !0/;

and for each A > 0 the set HA.X; �0/ is strongly compact.

We first show that measures of finite entropy have finite energy.

 - 10.1515/crelle-2016-0033
Downloaded from De Gruyter Online at 09/15/2016 08:40:13AM by sebastien.boucksom@polytechnique.edu

via Sebastien Boucksom



Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics 21

Lemma 2.18. Assume that �0 is a probability measure on X with ˛!0.�0/ > 0.

(i) For each 0 < ˛ < ˛!0.�0/ there exists C > 0 such that

H�0.�/ � ˛ E
�.�/ � C

for all � 2M.X/. In particular, we have

H .X; �0/ �M1.X; !0/;

and for each A > 0 there exists B > 0 such that HA.X; �0/ �M1
B.X; !0/.

(ii) If ˛!0.�0/ >
n
nC1

, then there exists "; C > 0 such that

H�0.�/ � .1C "/E
�.�/ � C

for all �.

Proof. By the definition of ˛!0.�0/, given ˛ < ˛!0.�0/ there exists C > 0 such that

log
Z
e�˛' �0 � �˛ sup

X

' C C

for all !0-psh functions ', hence

� log
Z
e�˛' �0 � ˛V

�1

Z
X

' !n0 � C � ˛E.'/ � C:

By Lemma 2.11 this implies

(2.2) H�0.�/ � ˛ sup
'

�
V �1

Z
' !n0 �

Z
' �

�
� C � ˛E�.�/ � C;

which already proves (i). In order to prove (ii) we may assume that H�0.�/ is finite. By (i) it
follows that E�.�/ is finite as well, hence � D MA.'/ for some ' 2 E1.X; !0/. By the first
inequality in (2.2) we then obtain H�0.�/ � ˛ I.'/ � C , hence

H�0.�/ �E
�.�/ � .˛ � 1/I.'/C J.'/ � C

� .˛ � 1C .nC 1/�1/I.'/ � C

D .˛ � n.nC 1/�1/I.'/ � C

by (1.5). Part (ii) follows since I.'/ � I.'/ � J.'/ D E�.�/.

Proof of Theorem 2.17. By Lemma 2.8, it is enough to show that HA.X; �0/ acts equi-
continuously on E1C .X; !0/ for each C > 0. Let thus 'j ! ' be a weakly convergent sequence
in E1C .X; !0/, and let � D f�0 be a measure in HA.X; �0/. Introduce as in Example 2.13
the weight �.s/ WD .s C 1/ log.s C 1/ � s, whose conjugate function is ��.t/ D et � t � 1.
We have �.s/ � s log s CO.1/ on Œ0;C1Œ, hence

R
�.f / d� � A1 for some A1 � 1 only

depending on A. By Corollary 2.16 it follows that

k'j � 'kL1.�/ � 2A1k'j � 'kL�� .�0/:
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We are thus reduced to showing that k'j � 'kL�� .�0/ ! 0. Using the inequality ��.t/ � tet

and the definition of the norm k � kL�� .�0/, we see that it is enough to show that

(2.3) lim
j!C1

Z
X

j'j � 'j exp.�j'j � 'j/ �0 D 0

for every given � > 0. But by Proposition 1.4 there exists B > 0 only depending on C and
� such that

R
e�2�' �0 and

R
e�2�'j �0 are both bounded by B . Since supX 'j � C and

supX ' � C , it follows that Z
X

exp.2�j'j � 'j/ �0 � B1

for some other constant B1 > 0 independent of j . By Hölder’s inequality we inferZ
X

j'j � 'j exp.�j'j � 'j/ d� � B
1=2
1 k'j � 'kL2.�0/;

and (2.3) now follows since 'j ! ' in L2.�0/ by Proposition 1.4.

As a consequence we get the following stability result for Monge–Ampère equations:

Corollary 2.19. Let �0 be a tame probability measure on X and let A > 0. For each
� 2M1.X; !0/ let '� 2 E1.X; !0/ be the unique normalized solution of MA.'�/ D �. Then
� 7! '� defines a continuous map from HA.X; �0/ with its weak topology to E1.X; !0/ with
its strong topology.

Proof. By Theorem 2.17 and Lemma 2.8, the weak and strong topologies coincide
on HA.X; �/. We conclude using Proposition 2.3.

This result should be compared with [34, Theorem A], which (combined with [35] to
get the “continuous approximation property”) implies that � 7! '� defines a continuous map
Lp.�0/! C 0.X/ for p large enough.

3. Kähler–Einstein metrics on log Fano pairs

3.1. Log terminal singularities. A pair .X;D/ is the data of a connected normal com-
pact complex variety X and an effective Q-divisorD such thatKX CD is Q-Cartier. We may
then consider the dd c-cohomology class of �.KX CD/, that we denote by c1.X;D/. We
write

X0 WD Xreg n suppD:

Given a log resolution � W QX ! X of .X;D/ (which may and will always be chosen to be
an isomorphism over X0), there exists a unique Q-divisor

P
i aiEi whose push-forward to X

is �D and such that
K QX D �

�.KX CD/C
X
i

aiEi :

The coefficient ai 2 Q is known as the discrepancy of .X;D/ along Ej , and the pair .X;D/ is
klt (a short-hand for Kawamata log terminal) if aj > �1 for all j . It is a basic fact about singu-
larities of pairs that the same condition will then hold for all log resolutions ofX . WhenD D 0,
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one simply says that X is log terminal when the pair .X; 0/ is klt (so that KX is in particular
Q-Cartier, i.e. X is Q-Gorenstein).

The discrepancies ai admit the following analytic interpretation. Let r be a positive inte-
ger such that r.KX CD/ is Cartier. If � is a nowhere vanishing section of the corresponding
line bundle over a small open set U of X , then

(3.1) .irn
2

� ^ N�/1=r

defines a smooth, positive volume form on U0 WD U \X0. If fj is a local equation of Ej
around a point of ��1.U /, it is easily seen that we have

(3.2) ��
�
irn

2

� ^ N�
�1=r
D

Y
i

jfi j
2aidV

locally on ��1.U / for some local volume form dV . Since
P
i Ei has normal crossings, this

shows that .X;D/ is klt if and only if each volume form of the form (3.1) has locally finite
mass near singular points of X .

The previous construction globalizes as follows:

Definition 3.1. Let .X;D/ be a pair and let � be a smooth Hermitian metric on the
Q-line bundle �.KX CD/. The corresponding adapted measure m� onXreg is locally defined
by choosing a nowhere zero section � of r.KX CD/ over a small open set U and setting

(3.3) m� WD

�
irn

2

� ^ �
�1=r

j� j
2=r
r�

:

The point of the definition is that the measure m� does not depend on the choice of � ,
hence is globally defined. The above discussion shows that .X;D/ is klt if and only if m� has
finite total mass on X , in which case we view it as a Radon measure on the whole of X .

Lemma 3.2. Let .X;D/ be a klt pair and let m� be an adapted measure as above.

(i) If � W QX ! X is a log resolution of .X;D/, then the lift Qm� of �0 to QX writes

Qm� D e 
C� �dV ;

where ˙ are quasi-psh functions with analytic singularities, smooth over ��1.X0/, and
e� 

�

2 Lp for some p > 1. In particular, Q�0 is tame (Definition 1.3).

(ii) On X0 the Ricci curvature of the volume form m� coincides with the curvature of �.

(iii) The Bergman space O.X0/ \ L
2.m�/ contains only constant functions.

Property (ii) should be compared with [32, p. 319, Remark].

Proof. Write as aboveK QX D �
�.KX CD/C

P
j ajEj . Let �j be a smooth Hermitian

metric on the line bundle O QX .Ej / and let sj 2 H 0. QX;Ej / be a section with Ej as its zero
divisor. If we set

 C WD
X
aj>0

2aj log jsj j�j and  � WD
X
aj<0

2.�aj / log jsj j�j ;
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then (3.2) immediately shows that

Qm� D e 
C� �dV

where dV is a (smooth positive) volume form on QX . Since aj > �1 there exists p > 1 such
that paj > �1 for all j , and the normal crossing property of

P
j Ej yields e� 

�

2 Lp, which
proves (i).

The proof of (ii) is straightforward from the very definition of �0. In order to prove (iii),
let f 2 O.X0/ \ L

2.m�/. We then haveZ
��1.X0/

jf ı �j2
Y
j

jsj j
2aj
�j
dV < C1:

Since a holomorphic function extends across a divisor as soon as it is locally L2 near the
divisor, the above L2 condition implies that f ı � extends to QX n

S
aj>0

Ej , or equivalently
that f extends holomorphically to X nZ with Z WD �.

S
aj>0

Ej /. But the fact that

D D ���

�X
j

ajEj

�
is effective implies that each Ej with aj > 0 is �-exceptional. As a consequence Z has codi-
mension at least two in X , and the normality of X therefore shows that f extends to X , hence
is constant since X is compact.

3.2. Kähler–Einstein metrics. We recall the following standard terminology:

Definition 3.3. A log Fano pair is a klt pair .X;D/ such that X is projective and
�.KX CD/ is ample.

Let .X;D/ be a log Fano pair. We fix a reference smooth strictly psh metric �0 on
�.KX CD/, with curvature !0 and adapted measure �0 D m�0 . We normalize �0 so that
�0 2M.X/ is a probability measure. The volume of .X;D/ is

V WD c1.X;D/
n
D

Z
X

!n0 :

We let T .X;D/ WD T .X; !0/ be the set of closed positive currents (with local potentials)
! 2 c1.X;D/, and T 1.X;D/ WD T 1.X; !0/ be those with finite energy. Similarly, we denote
by M1.X;D/ the set of probability measures with finite energy, which are thus of the form
V �1!n for a unique ! 2 T 1.X;D/.

For any current with full Monge–Ampère mass ! 2 Tfull.X;D/, Proposition 1.4 guaran-
tees that e�'!�0 has finite mass, since �0 is tame by Lemma 3.2. We may thus set

(3.4) �! WD
e�'!�0R
X e
�'!�0

:

Lemma 3.4. The map T 1.X; !0/!M1.X; !0/, ! 7! �! , is continuous with respect
to the strong topology on both sides.

Proof. Let !j ! ! be a strongly convergent sequence in T 1.X; !0/, and set�j WD �!j
and � WD �! . By Lemma 2.2 there exists C > 0 such that 'j WD '!j belongs to E1C .X; !0/

for all j . Since E1C .X; !0/ is weakly compact, Proposition 1.4 shows that �j D fj�0 and
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� D f�0 with 'j ! f in L2.�0/. This implies that �j ! � weakly, and also that �j has
uniformly bounded entropy with respect to �0. By Theorem 2.17 and Lemma 2.8, it follows as
desired that �j ! � strongly.

Definition 3.5. A Kähler–Einstein metric ! for the log Fano pair .X;D/ is a current
with full Monge–Ampère mass ! 2 Tfull.X;D/ such that

(3.5) V �1!n D �! :

Lemma 3.6. A Kähler–Einstein metric ! is automatically smooth on X0, with continu-
ous potentials on X , and it satisfies

Ric.!/ D ! C ŒD�
on Xreg.

Here ŒD� is the integration current on DjXreg . Writing Ric.!/ on Xreg implicitly means
that the positive measure !njXreg corresponds to a singular metric on�KXreg , whose curvature is
then Ric.!/ by definition. Note that the terminology is slightly abusive, since a Kähler–Einstein
metric ! for .X;D/ is not smooth on X in general, hence not a Kähler form on X in the sense
of Section 1.1. This should hopefully cause no confusion.

Proof. Set ' WD '! . The Kähler–Einstein equation (3.5) reads

.!0 C dd
c'/n D e�'Cc�0

for some constant c 2 R. If we choose a log resolution � W QX ! X of .X;D/, the equation
becomes . Q!0 C dd c Q'/n D e� Q'Cc Q�0, where Q!0 D ��!0 is semipositive and big, Q�0 satisfies
(i) of Lemma 3.2, and Q' D ' ı � has e� Q' 2 Lq for all finite q by Theorem 1.1. By [34, 35],
Q' is continuous on QX , and hence ' is continuous on X by properness of � . The smoothness
of ' on X0 follows from Theorem B.1 (Appendix B) and the Evans–Krylov theorem.

Finally, on Xreg we have

Ric.!/ D �dd c log!n D dd c' � dd c log�0 D dd c' C !0 C ŒD�

by definition of the adapted measure �0 D m�0 and the Lelong–Poincaré formula.

Remark 3.7. Assume that .X;D/ is log smooth, i.e.X is smooth andD D
P
i aiEi has

simple normal crossing support. If ai � 1
2

for all i , it is shown in [18] that any Kähler–Einstein
metric for .X;D/ has cone singularities along

P
i Ei , with cone angle 2�.1 � ai / along Ei .

If the support of D D aE for a single smooth hypersurface E, it is shown in [42] that !
has cone singularities without the restriction a � 1

2
, and that ! even admits a full asymptotic

expansion along E.

The definition of a log Fano pair requires the singularities to be klt. This condition is in
fact necessary to obtain Kähler–Einstein metrics on the regular part:

Proposition 3.8. Let .X;D/ be any pair with �.KX CD/ ample. Let � � Xreg be
a Zariski open subset with complement of codimension at least 2, and assume the existence of
a closed positive .1; 1/-current ! on � with continuous potentials such that

Ric.!/ D ! C ŒD�
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on �. Then .X;D/ is necessarily klt. We further haveZ
�

!n � c1.X;D/
n;

with equality if and only if ! is the restriction to � of a Kähler–Einstein metric for .X;D/.

Proof. Let  be the singular metric on �K� corresponding to the measure !n, with
curvature dd c D Ric.!/. If we let �D be the canonical psh metric on the Q-line bundle
attached toDj� such that dd c�D D ŒD�, we have by assumption dd c D ! C dd c�D on�,
so that � WD  ��D defines a psh metric on the Q-line bundle�.KXCD/j�, with curvature !.

Now let � be a local trivialization of r.KX CD/ for some positive r 2 N, defined on an
open setU � X . If we denote by j� jr� the length of � with respect to the metric induced by r�,
then u WD log j� j2r� is a psh function onU \�, hence it automatically extends to a psh function
on U by normality, thanks to [38]. This means on the one hand that  extends to a globally
defined psh metric on �.KX CD/, so that its curvature ! satisfies

R
� !

n � c1.X;D/
n by

[13, Proposition 1.20]. On the other hand, unravelling the definitions yields

(3.6) .� ^ �/1=r D eu=r!n

on V \�. Since u is in particular bounded above, this shows that .� ^ �/1=r has locally finite
mass near singular points of U , so that .X;D/ is klt.

Now to say that
R
� !

n D c1.X;D/
n precisely means that ! belongs to Tfull.X;D/, and

the last assertion follows from Lemma 3.6.

4. The variational principle

In this section .X;D/ denotes a log Fano pair, and we use the notation of Section 3.2.

4.1. The Ding and Mabuchi functionals. Let H D H�0 the relative entropy with
respect to the given adapted �0 2M.X/. For each ' 2 E1.X; !0/ we set

(4.1) L.'/ WD � log
Z
X

e�' �0:

Note that

(4.2) �!' D e
�'CL.'/ �0:

Lemma 4.1. The map L W E1.X; !/! R is continuous in the strong topology.

Proof. Let 'j ! ' be a convergent sequence in E1.X; !0/. By Lemma 2.2 there exists
C > 0 such that 'j 2 E1C .X; !0/ for all j . Since E1C .X; !0/ is weakly compact, we conclude
using Proposition 1.4.

By Lemma 2.11 we have

(4.3) L.'/ D inf
�2M.X/

�
H.�/C

Z
X

' �

�
and the infimum is achieved for � D �!' by (4.2) and the definition of H . This should be
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compared with

E.'/ D inf
�2M.X/

�
E�.�/C

Z
X

' �

�
;

where the infimum is achieved for � D MA.'/. Observe also that L.' C c/ D L.'/C c, so
that L �E is translation invariant.

Definition 4.2. We introduce the following two functionals on the set T 1.X;D/ of
currents with finite energy:

(i) the Ding functional Ding W T 1.X;D/! R, defined by

Ding.!/ WD .L �E/.'!/;

(ii) the Mabuchi functional Mab W T 1.X;D/! ��1;C1�, defined by

Mab.!/ WD .H �E�/.V �1!n/:

Written in the form (3.5), the Kähler–Einstein equation is, at least formally, the
Euler–Lagrange equation of the Ding functional. In the case of Fano manifolds, this functional
seems to have been first explicitly considered by W. Y. Ding in [31, p. 465], hence the chosen
terminology.

Regarding the Mabuchi functional, our definition yields the following analogue of Chen
and Tian’s formula [20, 63]:

(4.4) Mab.!/ D V �1
Z
X

log
�
V �1!n

�0

�
!n C .J � I /.!/:

Lemma 4.3. With respect to the strong topology of T 1.X;D/, the Ding functional is
continuous, while the Mabuchi functional is lower semicontinuous.

Proof. The energyE is continuous on E1.X; !0/ in the strong topology, by definition of
the latter. The continuity of the Ding functional is thus a consequence of Lemma 4.1. Similarly,
E� is strongly continuous on M1.X;D/, and H is lsc in the weak topology, hence the result
for the Mabuchi functional.

Lemma 4.4. The Ding and Mabuchi functionals compare as follows:

(i) For all ! 2 T 1.X;D/ we have Mab.!/ � Ding.!/, with equality if and only if ! is
a Kähler–Einstein metric for .X;D/.

(ii) We have
inf

T 1.X;D/
Mab D inf

T 1.X;D/
Ding 2 R [ ¹�1º:

Proof. Unravelling the definition we get

Mab.!/ � Ding.!/ D
Z
X

log
�
V �1!n

�0

�
V �1!n C

Z
X

'!V
�1!n C log

Z
X

e�'!�0

D

Z
X

log
�
V �1!n

�!

�
V �1!n D H�! .V

�1!n/:

We conclude thanks to Proposition 2.10.
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Part (ii) is proved exactly as [5, Theorem 3.4] (see also [48]). We reproduce the short
argument for the convenience of the reader. Set

m D inf
M1.X;D/

.H �E�/ D inf
T 1.X;D/

Mab :

By (i) it is enough to show that Ding.!/ � m for all ! 2 T 1.X;D/. Write ! D !0 C dd c'
with ' 2 E1.X; !0/. By Lemma 2.18 any probability measure � with H.�/ < C1 belongs
to M1.X;D/, so the inequalityH.�/ � E�.�/Cm is actually valid for all � 2M.X/. Using
(4.3) we thus get L.'/ � E.'/Cm, which concludes the proof.

4.2. Weak geodesics and convexity. Let !.0/; !.1/ 2 T 1.X;D/ be two currents with
continuous potentials, and set '0 WD '!.0/ and '1 WD '!.1/. Let S � C be the open strip
0 < Re t < 1 and let ' be the usc upper envelope of the family of all continuous !0-psh func-
tions (i.e. p�1!0-psh function, with p1 W X � S ! X the first projection) onX � S such that
 � '0 for Re t D 0 and � '1 for Re t D 1. Setting 't WD '. � ; t / and!.t/ WD !0Cdd c't ,
we call .!.t//t2Œ0;1� the weak geodesic joining !.0/ to !.1/ (we also call the function ' the
“weak geodesic” joining '0 to '1).

By [9, Section 2.2] we have:

Lemma 4.5. Let ' be the !0-psh envelope defined above. Then:

(i) ' is !0-psh and bounded on X � S .

(ii) .!0 C dd c'/nC1 D 0 on X � S .

(iii) The map t 7! 't is Lipschitz continuous, and converges uniformly on X to '0 (resp. '1)
as Re t ! 0 (resp. Re t ! 1).

Here again we write !0 instead of p�1!0 in (ii) for simplicity. When dealing with Kähler
forms on a non-singular X , (ii) gives the geodesic equation for the Mabuchi metric defined
on the space of Kähler metrics, as was observed by Donaldson and Semmes. This explain the
present terminology.

Lemma 4.6. Let S be an open subset of C, let ' be an !0-psh function on X � S , and
set 't WD '. � ; t /, which is an !0-psh function unless 't � �1.

(i) t 7! L.'t / and t 7! E.'t / are subharmonic on S .

(ii) If ' further satisfies (i) and (ii) of Lemma 4.5, then t 7! E.'t / is even harmonic on S .

Proof. The assertions for E are well known in the smooth case, and the proof in the
present context reduces to [7, Proposition 6.2] by passing to a log resolution of .X;D/. The
subharmonicity of L.'t / is deeper, and is basically a special case of Berndtsson’s theorem(s)
on the subharmonic variation of Bergman kernels. Let us briefly explain how to deduce the
present result from [8].

Pick a log resolution � W QX ! X , set QX0 WD ��1.X0/, Q!0 WD ��!0, a semipositive and
big form on QX . Since QX0 is contained in the ample locus Amp. Q!0/ of Q!0, we may find a Q!0-psh
function  on QX which is smooth on QX0 and such that Q!0 C dd c � � for some Kähler form
� on QX (cf. Appendix B). Applying [28] to functions of the form .1 � ı/' ı � C ı C ıjt j2
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with 0 < ı � 1, we obtain (after perhaps slightly shrinking S ) a sequence of smooth functions
'j on QX � S such that 'j ! ' and Q!0 C dd c'j > 0 on QX � S .

Using the isomorphism QX0 ' X0 induced by � , we now view 'j as a smooth, bounded
!0-psh function on X0 � S . For each j and t 2 S let �tj be the smooth Hermitian metric on
L WD �KX0 defined by the (smooth positive) volume form e�'

t
j�0. By (ii) of Lemma 3.2, the

curvature of �j on X0 � S equals !0 C dd c'j , hence is positive. By (iii) of Lemma 3.2, the
Bergman kernel forL-valued .n; 0/-forms onX0 with respect to �tj coincides with the constant
function �Z

X0

e�'
t
j�0

��1
:

In particular, this Bergman kernel is smooth on X0 � S .
Since Hörmander’s L2-estimates for L-valued .n; q/-forms apply for the positively

curved line bundle .L; �jt / on the weakly pseudoconvex manifold X0 (cf. for instance [29]),
we may then argue exactly as in [8, pp. 1638–1640] to get that

t 7! � log
Z
X0

e�'
t
j �0

is subharmonic on S . The desired result now follows by letting j !1.

Combining these results we get the following crucial convexity property of the Ding
functional along weak geodesics:

Lemma 4.7. Let .!.t//t2Œ0;1� be the weak geodesic joining two currents

!.0/; !.1/ 2 T 1.X;D/

with continuous potentials. Then t 7! Ding.!.t// is convex and continuous on Œ0; 1�.

4.3. Variational characterization of Kähler–Einstein metrics. In this subsection we
prove the following generalization to log Fano pairs of a result of Ding and Tian for Fano
manifolds (without holomorphic vector fields):

Theorem 4.8. Given ! 2 T 1.X;D/ the following conditions are equivalent:

(i) ! is a Kähler–Einstein metric for .X;D/.

(ii) Ding.!/ D infT 1.X;D/ Ding.

(iii) Mab.!/ D infT 1.X;D/ Mab.

Proof. The equivalence between (i) and (ii) is proved as in [7, Theorem 6.6], which
we summarize for completeness. To prove (ii)) (i), we introduce the !0-psh envelope Pu of
a function u on X as the usc upper envelope of the family of all !0-psh functions ' such that
' � u on X (or Pu � �1 if this family is empty). Given v 2 C 0.X/ we set for all t 2 R

't WD P.'! C tv/:

On the one hand, t 7! L.'! C tv/ is concave by Hölder’s inequality, and its right-hand deriva-
tive at t D 0 is easily seen to be given by Z

X

v �! ;
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see [7, Lemma 6.1]. On the other hand, the differentiability theorem of [6] (applied in our case
to a resolution of singularities of X ) shows that t 7! E.'t / is differentiable, with derivative
at t D 0 given by Z

X

vMA.P'!/ D V �1
Z
X

v !n:

Since 't belongs to E1.X; !0/, (ii) shows that L.'! C tv/ �E.'t / achieves is minimum for
t D 0, and hence

d

dt 0C
.L.'! C tv/ �E.'

t // � 0;

i.e. Z
X

v �! � V
�1

Z
X

v !n:

Applying this to�v shows that�! D V �1!n, which means that ! is a Kähler–Einstein metric.
To prove (i)) (ii), we rely on the convexity of the Ding functional along weak geodesics.

Let ! be any Kähler–Einstein metric. Since every !0-psh function on X is the decreasing
limit of a sequence of continuous !0-psh functions thanks to [35], it is enough to show that
Ding.!/ � Ding.!0/ for all !0 2 T 1.X;D/ with continuous potentials. Let .!.t//t2Œ0;1� be
the weak geodesic between !.0/ D ! and !.1/ D !0. By Lemma 4.7 t 7! Ding.!.t// is con-
vex and continuous on Œ0; 1�. To get as desired that Ding.!.0// � Ding.!.1//, it is thus enough
to show that

(4.5)
d

dt 0C
Ding.!.t// � 0;

which is proved exactly as in the last part of the proof of [7, Theorem 6.6]. More specifically,
by convexity with respect to t of 't WD '!.t/, the function ut WD .'t � '0/=t decreases to
a bounded function v, and the concavity of E yields

d

dt 0C
E.'t / � V

�1

Z
v !n:

On the other hand, monotone convergence shows that

d

dt 0C
L.'t / D

Z
v !! D V

�1

Z
v !n;

hence (4.5). Finally, the equivalence between (ii) and (iii) is a consequence of Lemma 4.4.

Remark 4.9. When X is non-singular with Aut0.X/ D ¹1º, the implication (i)) (iii)
was proved by Ding and Tian [62] using the continuity method. Their result was generalized
to (a priori) singular Kähler–Einstein metrics on any non-singular Fano variety in [7], using as
above Berndtsson’s theorem on psh variations of Bergman kernels.

As a corollary, we see that the set of Kähler–Einstein metrics is “totally geodesic” in the
space of currents with continuous potentials:

Corollary 4.10. Let !.0/; !.1/ be two Kähler–Einstein metrics, and let .!.t//t2Œ0;1�
be the weak geodesic joining them. Then !.t/ is a Kähler–Einstein metric for all t 2 Œ0; 1�.
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Proof. By Lemma 4.6, the map t 7! Ding.!.t// is convex on Œ0; 1�, and is equal to
infT 1.X;D/ Ding at both ends by Theorem 4.8. It is thus constantly equal to infT 1.X;D/ Ding
on Œ0; 1�, and the result follows by another application of Theorem 4.8.

4.4. Properness and the ˛-invariant. We say as usual that the Mabuchi functional
(resp. the Ding functional) is proper if Mab!C1 (resp. Ding!C1) as J !C1. We
also say that Mab (resp. Ding) is coercive if there exists "; C > 0 such that Mab � "J � C
(resp. Ding � "J � C ).

Regarding coercivity, the following result holds.

Proposition 4.11. The following conditions are equivalent:

(i) The Ding functional is coercive.

(ii) The Mabuchi functional is coercive.

(iii) A Moser–Trudinger-type estimate

ke�'kLp.�0/ � Ae
�E.'/

holds for some p > 1, A > 0, and all ' 2 E1.X; !0/.

Proof. The implication (i)) (ii) is obvious since Mab � Ding by Lemma 4.4. If (ii)
holds, then there exist " > 0 and C > 0 such that H.�/ �E�.�/ � "E�.�/ � C , hence

H.�/ � pE�.�/ � C

with p WD 1C ". By Lemma 2.11 we then have for each ' 2 E1.X; !0/,

log
Z
X

e�p' �0 D sup
�

�Z
X

.p'/� �H.�/

�
� �p inf

�

�
E�.�/C

Z
X

' �

�
C pC

D �pE.'/C pC

and hence ke�'kLp.�0/ � e
C e�E.'/, which proves that (ii)) (iii). Assume now that (iii)

holds. Set " WD p � 1 > 0. The assumption reads

(4.6) 1
1C"

log
�Z
X

e�.1C"/' �0

�
� �E.'/C C1

for some C1 > 0 and all ' 2 E1.X; !0/. On the other hand, since ˛!0.�0/ > 0 by Proposi-
tion 1.4, we may assume that " > 0 is small enough so that

(4.7) log
�Z
X

e�"' �0

�
� "

Z
X

'MA.0/C C2

for some C2 > 0 and all ' 2 PSH.X; !0/.
Writing ' D .1 � "/.1C "/' C "2', we have by convexity

log
�Z
X

e�' �0

�
� .1 � "/ log

�Z
X

e�.1C"/' �0

�
C " log

�Z
X

e�"' �0

�
:
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Using (4.6) and (4.7), it follows that

L.'/ � .1 � "2/E.'/C "2
Z
X

'MA.0/ � C3;

and we conclude that

Ding.'/ D L.'/ �E.'/ � "2
�Z
X

'MA.0/ �E.'/
�
� C3 D "

2J.'/ � C3

for ' 2 E1.X; !0/. We have this shown that (iii)) (i).

In order to extend Tian’s well-known criterion of properness [61], we introduce:

Definition 4.12. The ˛-invariant of the log Fano pair .X;D/ is defined as

˛.X;D/ WD ˛!0.�0/;

i.e.

˛.X;D/ D sup
²
˛ > 0

ˇ̌̌̌
sup

'2PSHnorm.X;!0/

Z
X

e�˛' �0 < C1

³
:

Here !0 and �0 denote as before the curvature and the adapted measure of a smooth
strictly psh metric �0 on �.KX CD/, the definition being easily seen to be independent of the
choice of �0. As an immediate consequence of Lemma 2.18, we obtain as desired:

Proposition 4.13. If ˛.X;D/ > n
nC1

, then the Mabuchi functional (or, equivalently, the
Ding functional) of .X;D/ is coercive, and hence proper.

The following topological characterization of properness is crucial to our approach.

Theorem 4.14. The Mabuchi functional

Mab W T 1.X;D/! R [ ¹C1º

is proper in the above sense if and only if it is an exhaustion function with respect to the strong
topology, i.e. the sublevel set

¹! 2 T 1.X;D/ j Mab.!/ � mº

is strongly compact for all m 2 R.

Proof. By Proposition 2.3, the statement is equivalent to the strong compactness of

Cm WD ¹� 2M1.X;D/ j H.�/ � E�.�/Cmº:

This set is strongly closed in M1.X;D/ by Lemma 4.3. Using (1.10), the properness assump-
tion shows that E� is bounded on Cm, hence Cm � HA.X; �/ for some A > 0. The result
follows since HA.X; �/ is strongly compact by Theorem 2.17. The converse is straightforward
to see, using Proposition 2.3 and (1.10).

Corollary 4.15. If the Mabuchi functional is proper, then .X;D/ admits a Kähler–
Einstein metric.
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Proof. Theorem 4.14 implies that Mab admits a minimizer in T 1.X;D/, which is nec-
essarily a Kähler–Einstein metric by Theorem 4.8.

We will prove in Theorem 5.4 below that ! is furthermore unique in that case, and
that Aut0.X;D/ D ¹1º. Recall that, for X non-singular with Aut0.X/ D ¹1º (and D D 0),
a deep result of Tian [62], strengthened in [53], conversely shows that the existence of
a Kähler–Einstein metric implies the properness of the Mabuchi functional – an infinite-dimen-
sional version of the Kempf–Ness theorem.

5. Uniqueness and reductivity

The goal of this section is to prove a singular version of Bando and Mabuchi’s uniqueness
theorem [3]. As we shall see, it is a fairly direct consequence of a slight variant of a result of
Berndtsson [9], stated and proved with full details in Appendix C.

Theorem 5.1. Let .X;D/ be a log Fano pair. For any two Kähler–Einstein metrics
!;!0 for .X;D/, there exists a 1-parameter subgroup � W .C;C/! Aut0.X;D/ such that
�.1/�! D !0 and �.is/�! D ! for all s 2 R.

Here Aut.X;D/ denotes the stabilizer of D in Aut.X/. Since Aut.X;D/ preserves the
polarization �.KX CD/, it is realized as the stabilizer of X and D in the linear group of
H 0.X;�m.KX CD// form large enough, and it is therefore a linear algebraic group. Further,
recall that the identity component Aut0.X/ of the full automorphism group is also a complex
algebraic group with Lie algebra H 0.X; TX /, where TX D .�1X /

� denotes the Zariski tangent
sheaf (cf. [44, Exercise 2.6.4]).

Proof. Let � W QX ! X be a log resolution of .X;D/. The klt condition enables to write
in a unique way

��.KX CD/ D K QX C� �E;

where� is an effective Q-divisor on QX with coefficients in Œ0; 1/,E is an effective divisor on QX
with integer coefficients, and ��.� �E/ D D. We do not claim that � and E are without
common components, but on the other hand observe that � and E have SNC support and E is
necessarily �-exceptional. SetL WD �K QXCE, so that the canonical section of OX .E/ induces
a holomorphic L-valued n-form u on X having E as its zero divisor. Since E is exceptional,
we have H 0. QX;K QX C L/ D Cu. Note also that L DM C�, where M WD ���.KX CD/
is a semipositive, big Q-line bundle. By the Kawamata–Viehweg (or Nadel) vanishing theorem,
we thus have H 1. QX;K QX C L/ D 0.

Choose continuous psh metrics 0;  1 on�.KX CD/with curvature !, !0 respectively,
and normalized so that E. 0/ D E. 1/ D 0. Let  be the “weak geodesic” joining  0 to  1
as in Section 4.2, so that  is a locally bounded psh metric on the pull-back of �.KX CD/
to X � S with S D ¹t 2 C j 0 < Re t < 1º. Recall that t 7!  t is Lipschitz continuous on S ,
independent of Im t , and converges uniformly to  0 (resp.  1) as t ! 0 (resp. t ! 1).

From Lemma 4.6 we have that E. t / is an affine function of t 2 .0; 1/, which converges
to E. 0/ D E. 1/ D 0 as t ! 0 and 1, and hence E. t / D 0 for all t 2 S .
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By Lemma 4.7, the map t 7! Ding. t / D L. t / is continuous and convex on Œ0; 1�,
with Ding. 0/ D Ding. 1/ D inf Ding thanks to the variational characterization of Kähler–
Einstein metrics (Theorem 4.8). It follows that Ding. t / D inf Ding for all t 2 S , and another
application of the variational characterization shows that !t WD dd c t is a Kähler–Einstein
metric for .X;D/ for all t 2 S .

Now set � WD �� , let � WD � C �� be the, with �� the canonical metric on � with
curvature current equal to Œ��, so that � is a psh metric on the pull-back of L to X � S , and
observe that

L. t / D � log
Z
QX

u ^ Nu e��t :

By Theorem C.1 in Appendix C, there exists a holomorphic vector field V on QX nE such
that dd cz �t D dd

c
z �t C Œ�� moves along the local flow of V on QX nE. Using for instance

the uniqueness of the Siu decomposition of a closed positive .1; 1/-current, it follows that
dd cz �t D �

�!t also moves along the local flow of V , i.e.

(5.1)
�

LV C
à
àt

�
��!t D 0:

SinceE is �-exceptional, V induces a holomorphic vector field on a Zariski open set� � Xreg

with X n� of codimension at least 2. But the Zariski tangent sheaf TX is a dual sheaf and
X is normal, so V extends to a section in H 0.X; TX /, still denoted by V for simplicity.
Since H 0.X; TX / is the Lie algebra of the complex Lie group Aut0.X/, �.t/ WD exp.�tV /
defines a .C;C/-action on X . By (5.1), �.�t /�!t is independent of t 2 S . For all t; t 0 2 S ,
�.�t /� t � �.�t

0/� t 0 is thus a constant, and

L.�.�t /� t / D L. t / D L. t 0/ D L.�.�t
0/� t 0/

shows that in fact �.�t /� t D �.�t 0/� t 0 . Since  t 0 converges uniformly to  0 as t 0 ! 0,
we conclude that  t D �.t/� 0 for all t 2 S , and hence  1 D �.1/� 0 in the limit. Since
 t is independent of Im t , we have �."C is/� 0 D  " for 0 < " < 1 and s 2 R, and hence
�.is/� 0 D  0 in the limit. Finally, the Kähler–Einstein equation shows that

�.t/�.!0 C ŒD�/ D �.t/
�Ric.!0/ D Ric.�.t/�!0/ D Ric.!t /

D !t C ŒD� D �.t/
�!0 C ŒD�

on Xreg, so that � is indeed a 1-parameter subgroup of Aut0.X;D/.

Following [22], we observe that Theorem 5.1 yields the following generalization of
a classical result of Matsushima [49], which plays a key role in [22].

Theorem 5.2. If the log Fano pair .X;D/ admits a Kähler–Einstein metric !, then
Aut0.X;D/ coincides with the complexification of the group K of holomorphic isometries
of .X; !/. Further, K is compact, and Aut0.X;D/ is thus reductive.

Proof. For each g 2 Aut0.X;D/, g�! is a Kähler–Einstein metric for .X;D/. By
Theorem 5.1, we may thus find a 1-parameter subgroup � of Aut0.X;D/ with �.is/ 2 K
for all s 2 R and such that ��.1/! D g�!. The first condition implies that �.1/ lies in the
complexification of K, and the second one means g 2 K�.1/, which proves the first assertion.
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Next, write ! as the curvature form of a metric � on the Q-line bundle �.KX CD/, nor-
malized so that L.�/ D 0. For each g 2 K, we have g�!n D !n. Since L.g��/ D L.�/ D 0,
the Kähler–Einstein equation yields as before g�� D �. In other words, K is the stabilizer
of �, and we conclude by Lemma 5.3 below.

Lemma 5.3. Let .X;L/ be a polarized normal variety, and let G D Aut.X;L/ be its
(linear algebraic) group of automorphisms. For each psh metric � 2 E1.X;L/, the stabilizer
G� D ¹g 2 G j g

�� D �º is then compact.

Proof. Replacing L with a large enough multiple, we may assume that L is very ample.
Choosing a basis .s1; : : : ; sN / forH 0.X;L/, we get an embeddingX � PN�1, which realizes
G as the Zariski closed subgroup of GL.N;C/ sending X to itself. Let

�0 D log
�X

jsi j
2
�

be the corresponding Fubini-Study metric on L, with curvature form !0. We then introduce the
!0-psh functions  WD � � �0 2 E1.X; !0/, and

(5.2) 'g WD g
��0 � �0 D log

�X
i

ˇ̌̌̌X
j

gij sj

ˇ̌̌̌2
�0

�
for each g D .gij / 2 GL.N;C/. By homogeneity, it is easy to see thatZ

X

'g!
n
0 D log kgk2 CO.1/

for any given choice of norm k � k on the space of complexN �N matrices (compare the proof
of [65, Lemma 3.2]). It will thus be enough to show that

R
X 'g!

n
0 remains bounded for g 2 G� .

By (1.2), we have

E. / �E.'g/ D
1

nC 1

nX
jD0

V �1
Z
.g�� � g��0/.dd

cg��/j ^ .dd cg��0/
n�j

D
1

nC 1

nX
jD0

V �1
Z
.� � �0/.dd

c�/j ^ .dd c�0/
n�j
D E. /;

and hence E.'g/ D 0 for all g 2 G� . For similar reasons, we have J .'g/ D J .0/, and
Lemma 1.6 yields as desired that J.'g/ D

R
'g!

n
0 is bounded.

The next result summarizes the consequences of the properness of the Mabuchi functional
regarding Kähler–Einstein metrics.

Theorem 5.4. Assume that the Mabuchi functional of .X;D/ is proper. Then we have:

(i) Aut0.X;D/ D ¹1º.

(ii) .X;D/ admits a unique Kähler–Einstein metric !KE.

(iii) For every sequence !j 2 T 1.X;D/ such that Mab.!j / converges to infT 1.X;D/ Mab, we
have !j ! !KE in the strong topology of T 1.X;D/.

Proof. By Corollary 4.15 there exists a Kähler–Einstein metric !. Let us prove (i). Let �
be a 1-parameter subgroup of Aut0.X;D/. We claim that � preserves ! for all t 2 C. Granting
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this, the affine variety Aut0.X;D/ will be contained in the compact group of isometries of
!, and hence will be trivial. To prove the claim, observe that �.t/�! is a Kähler–Einstein
metric for each t 2 C. If we let � be a continuous psh metric on �.KX CD/ with curvature !
and set 't WD �.t/�� � �0, then '.x; t/ WD 't .x/ is a continuous !0-psh function on X �C
such that .!0 C dd c'/nC1 D 0 on X �C. By Lemma 4.6, E.'t / is thus harmonic on C,
while

R
X .'

t � '!/MA.'!/ is subharmonic, simply because t 7! 't .x/ is subharmonic for
each x 2 X fixed. It follows that

J!.�.t/
�!/ D E.'!/ �E.'

t /C

Z
X

.'t � '!/MA.'!/

is subharmonic and bounded on C, hence constant since it vanishes for t D 0. By [7, Theo-
rem 4.1] it follows that as desired that �.t/�! D ! for all t 2 C.

By Theorem 5.1, (i) implies the uniqueness part in (ii). It remains to prove (iii). Since
Mab.!j / is in particular bounded above, .!j / stays in a strongly compact set by Theorem 4.14.
It is thus enough to show that any strong limit point !1 of !j has to coincide with !. But since
Mab is lsc in the strong topology by Lemma 4.3, we have

Mab.!1/ � lim inf
j

Mab.!j / D inf
T 1.X;D/

Mab:

By Theorem 4.8 it follows as desired that !1 D !.

We will also use the following variant for the Ding functional to prove the convergence
of the Kähler–Ricci flow:

Lemma 5.5. Assume that the Mabuchi functional of .X;D/ is proper. Furthermore,
let !j 2 T 1.X;�/ be a sequence such that Mab.!j / is bounded above. If Ding.!j / con-
verges to infT 1.X;D/ Ding, then !j strongly converges to the unique Kähler–Einstein metric
!KE of .X;D/.

Proof. The assumption guarantees that .!j / stays in a strongly compact set, and it
is thus enough to show that any limit point !1 of .!j / in the strong topology necessarily
coincides with !KE. But the minimizing assumption on .!j / and the strong continuity of Ding
(Lemma 4.3) imply that Ding.!1/ D infT 1.X;D/ Ding, and we conclude by Theorem 4.8.

6. Ricci iteration

We still denote by .X;D/ a log Fano pair, and use the notation of Section 4.1.

6.1. The Ricci inverse operator. For each ! 2 T 1.X;D/, the measure �! is tame by
Proposition 1.4. Using Lemma 1.5 we may thus introduce:

Definition 6.1. For each ! 2 T 1.X;D/ we let R! 2 T 1.X;D/ be the unique current
with continuous potentials such that

(6.1) V �1.R!/n D �! :

The map R W T 1.X;D/! T 1.X;D/ so defined is called the Ricci inverse operator.
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The defining equation for R! may be rewritten as

(6.2) Ric.R!/ D ! C ŒD�

on Xreg, and R! D ! if and only if ! is a Kähler–Einstein metric.

Lemma 6.2. The Ricci inverse operator satisfies the following properties.

(i) R W T 1.X;D/! T 1.X;D/ is continuous with respect to the strong topology.

(ii) If ! 2 T 1.X;D/ is smooth on a given open subset U of X0, then so is R!.

Proof. Part (i) follows from Proposition 2.6 and Lemma 3.4. As in the proof of Lem-
ma 3.6, assertion (ii) is a consequence of Theorem B.1 applied to a log resolution of .X;D/,
combined with the Evans–Krylov theorem.

As in [43, 55] we next observe that the Mabuchi functional decreases along R:

Lemma 6.3. For all ! 2 T 1.X;D/ we have Mab.R!/ � Mab.!/, with equality if and
only if R! D !, i.e. ! is a Kähler–Einstein metric.

Proof. We have by definition

Mab.R!/ D .H �E�/.V �1!n/ D .H �E�/.�!/:

Now (1.6) implies in particular that E�.�!/ � E.'!/ �
R
X '! �! , whereas we have

H.�!/ D L.'!/ �

Z
X

'! �!

by the definition of L and H . As a consequence we get

Mab.R!/ � .L �E/.'!/ D Ding.!/

and the result follows thanks to Lemma 4.4.

6.2. Convergence of Ricci iteration. Our goal in this subsection is to prove the fol-
lowing result, which extends in particular [55, Theorem 3.3].

Theorem 6.4. Let .X;D/ be a log Fano pair whose Mabuchi functional is proper, and
let !KE be its unique Kähler–Einstein metric.

(i) For all ! 2 T 1.X;D/ we have

lim
j!C1

Rj! D !KE

in the strong topology, the convergence being uniform at the level of potentials.

(ii) If ! is smooth on an open subset U of X0, then Rj! is also smooth on U for all j , and
the convergence holds in C1.U /.

As mentioned in the introduction, a more precise version of this result was obtained
in [42] when X is non-singular and the support of D is a smooth hypersurface.
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Proof. We divide the proof into three steps.

Step 1: Convergence in energy Set

M WD ¹!0 2 T 1.X;D/ j Mab.!0/ � Mab.!/º:

Note that !KE belongs to M, since it minimizes Mab by Theorem 4.8. Theorem 4.14 implies
that M is strongly compact, since the Mabuchi functional of .X;D/ is assumed to be proper.
By Lemma 6.3, R defines a strongly continuous map R WM!M. We are going to show
that Rj! converges strongly to !KE by using a Lyapunov-type argument. Since M is strongly
compact, it is enough to show that any limit point !1 of Rj! necessarily coincides with !KE,
i.e. is a fixed point ofR. Since Mab.Rj!/ is non-increasing by Lemma 6.3 and bounded below
by Theorem 4.8, it admits a limit

lim
j!1

Mab.Rj!/ D m:

By continuity of R, both !1 and R!1 are limit points of .Rj!/, hence

Mab.R!1/ D Mab.!1/ D m;

which shows that ! is a fixed point of R by Lemma 6.3.

Step 2: Uniform convergence onX Set 'j WD 'Rj! and 'KE WD '!KE . By Lemma 6.2,
all 'j are continuous, and we are to show that 'j ! 'KE uniformly on X . Unravelling the
definitions, we get that

MA.'jC1/ D e�'jCL.'j /�0
for all j 2 N. Since 'j converges strongly to ', we have L.'j /! L.'/ by Lemma 4.3,
while e�'j ! e�' in Lp.�0/ for all finite p by Proposition 1.4. If we pick a log resolution
� W QX ! X and use the usual notation, we get that

fj WD
. Q!0 C dd

c Q'j /
n

dV

converges in Lp to

f WD
. Q!0 C dd

c Q'KE/
n

dV

for some p > 1. By [34, Theorem A] it follows that Q'j ! Q'KE uniformly on QX , hence we have
'j ! 'KE uniformly on X .

Step 3: Smooth convergence Let again � W QX ! X be a log resolution, and write
Q�0 D e

 C� �dV as in Lemma 3.2. We then have for all j 2 N,

(6.3) V �1. Q!0 C dd
c
Q'jC1/

n
D e 

C� �� Q'jCL.'j /dV:

By Step 2, Q'j and L.'j / are uniformly bounded. Since  � is locally bounded below on
QU WD ��1.U / ' U , Theorem B.1 shows that the complex Hessian of Q'j is locally bounded

on QU , uniformly with respect to j . In particular, the functions C �  � � Q'j C L.'j / appear-
ing on the right-hand side of (6.3) are locally Lipschitz continuous on QU , uniformly with
respect to j . Applying the version of the Evans–Krylov a priori estimate given in [10, Theo-
rem 4.5.1], we get a uniform C 2C˛-bound for 'j on compact subsets of U , which implies as
desired that Q'j is smooth and uniformly bounded in C1. QU/, by applying the standard elliptic
boot-strapping argument to (6.3).

 - 10.1515/crelle-2016-0033
Downloaded from De Gruyter Online at 09/15/2016 08:40:13AM by sebastien.boucksom@polytechnique.edu

via Sebastien Boucksom



Berman, Boucksom, Eyssidieux, Guedj and Zeriahi, Kähler–Einstein metrics 39

7. Convergence of the Kähler–Ricci flow

To avoid unnecessary technical complications in the definition of the Kähler–Ricci flow,
we assume in this section that D D 0, so that X is a Q-Fano variety with log terminal singu-
larities.

7.1. The Kähler–Ricci flow. The following result can be deduced from [59] (a detailed
proof is provided in [15]):

Theorem 7.1 ([59]). Given any initial closed positive current !.0/ 2 T 1.X/ with
continuous potentials, there exists a unique solution .!.t//t2�0;C1Œ, of the normalized Kähler–
Ricci flow, in the following sense:

(i) for each t 2 �0;C1Œ, !.t/ 2 T 1.X/ has continuous potentials on X ,

(ii) on Xreg � �0;C1Œ, !.t/ is smooth and satisfies P!.t/ D �Ric.!.t//C !.t/,

(iii) limt!0C !.t/ D !.0/, in the sense that their local potentials converge in C0.Xreg/.

Our goal is to prove the following convergence result.

Theorem 7.2. Let .!.t//t2�0;C1Œ be the Kähler–Ricci flow with initial data !.0/ as
above. Assume that the Mabuchi functional of X is proper, and let !KE be its unique Kähler–
Einstein metric as in Theorem 5.4. Then

lim
t!C1

!.t/ D !KE

in the strong topology of T 1.X/.

7.2. Monotonicity along the flow. We show in this section that the Ding and Mabuchi
functionals are both non-increasing along the flow, as in the usual non-singular setting.

Proposition 7.3. Let .!.t//t2�0;C1Œ be the Kähler–Ricci flow with initial data !.0/.
Then Mab.!.t// and Ding.!.t// are both non-increasing functions of t . For all t 0 > t > 0 we
have more precisely

Ding.!.t 0// � Ding.!.t// � �
Z t 0

t

kV �1!.s/n � �!.s/k
2 ds:

The monotonicity of the two functionals is standard in the non-singular case, where !.t/
is smooth onX � Œ0;C1Œ. The technical difficulty in the present case is that we cannot directly
differentiate Ding.!.t// and Mab.!.t// since P!.t/ is a priori not globally bounded on Xreg.
We will rely on an approximation argument, using the following specific information about the
construction of !.t/. What Song and Tian construct in [59] is a function

' W X � �0;C1Œ! R

with the following properties:

� ' is smooth on Xreg � �0;C1Œ, and 't WD '. � ; t / is a continuous !0-psh function for
each t fixed.
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� On Xreg � �0;C1Œ we have

à
àt
' D log

V �1.!0 C dd
c't /n

�.t/
;

with

�.t/ WD
e�'

t

�0R
X e
�'t�0

:

� limt!0C '
t D '!.0/ uniformly on compact subsets of Xreg.

Let � W QX ! X be a log resolution of X , so that the exceptional divisor E D ��1.Xsing/ has
simple normal crossings. Set Q!0 WD ��!0, which is semipositive and big on QX , with ample
locus QX0 WD QX nE. By Lemma 3.2, the pull-back of �0 to QX is of the form

Q�0 D e
 C� �dV;

where  ˙ are quasi-psh functions with analytic singularities along E. Pick a Kähler form �

on QX . In Song and Tian’s construction, the restriction of Q' WD 't ı � to QX0 � �0;C1Œ is the
C1-limit (on compact sets) of the restriction of a sequence of smooth functions

'j W QX � �0;C1Œ! R

such that:

� There exists "j > 0 converging to 0 such that 'tj is !j -psh with !j WD Q!0 C "j�.

� On QX � �0;C1Œ we have

(7.1)
à
àt
'j D log

V �1j .!j C dd
c'tj /

n

�j .t/
;

where
Vj D

Z
QX

!nj

and

�j .t/ D
e�'

t
j�jR

X e
�'t
j�j

with �j D e
 
C

j
� �

j dV for decreasing sequences of smooth approximants  ˙j of  ˙.

We also extract from [59] the following estimate to be used in what follows:

Lemma 7.4. There exists p > 1 such that the measures .!j C dd c'tj /
n are bounded

in Lp, uniformly with respect to j , as long as t stays in a compact subset of �0;C1Œ.

Proof. By [59, Corollary 3.4] we have a uniform estimate

.!j C dd
c'tj /

n
� C �j ;

as long as t stays in a compact subset of �0;C1Œ. The result follows since �j D e
 
C

j
� �

j dV

is bounded in Lp.
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Lemma 7.5. LetEj be the energy functional on E1. QX;!j /, andE�j the dual functional
on M1. QX;!j /. Then we have for each t > 0 fixed

Ding.!.t// D lim
j!1

�
� log

�Z
QX

e�'
t
j �j

�
�Ej .'

t
j /

�
and

Mab.!.t// D lim
j!1

.H�j �E
�
j /.V

�1
j .!j C dd

c'tj /
n/:

Proof. By Lemma 7.4, 'tj is uniformly bounded with respect to j , t being fixed. Since
we have 'tj ! Q'

t in C1-topology on QX0, dominated convergence yields

lim
j!C1

Z
QX0

.'tj � '
t /.!j C dd

c
Q't /n D 0:

On the other hand, since .!jCdd c'tj /
n! . Q!0Cdd

c Q't /n pointwise on QX0 and .!jCdd c'tj /
n

is bounded in Lp, we also get by dominated convergence

lim
j!C1

Z
QX

.'tj � Q'
t /.!j C dd

c'tj /
n
D 0

as j !1, and similarly

lim
j!C1

Z
QX

e�'
t
j �j D

Z
QX

e� Q'
t

Q�0:

Since both 'tj and Q't are !j -psh, the concavity of Ej yieldsZ
QX

.'tj � Q'
t /.!j C dd

c'tj /
n
� Ej .'

t
j / �Ej . Q'

t / �

Z
QX

.'tj � Q'
t /.!j C dd

c
Q't /n:

We thus see that
lim

j!C1
Ej .'

t
j / D E Q!0. Q'

t / D E.'t /;

which proves that the first assertion, as well as the convergence of

E�j ..!j C dd
c
Q'tj /

n/ D Ej .'
t
j / �

Z
QX

'tj .!j C dd
c
Q'tj /

n

to E�.MA.'t //. If we set

fj WD
V �1j .!j C dd

c Q'tj /
n

�j

and

f WD
V �1. Q!0 C dd

c Q't /n

Q�0
;

it remains to show that

H�j .V
�1
j .!j C dd

c
Q'tj /

n/ D

Z
QX

.fj logfj / �j

converges to

H.MA.'t // D
Z
QX

.f logf / Q�0:

But since fj logfj is uniformly bounded and converges pointwise to f logf on QX0, this fol-
lows again from the Lp convergence �j ! Q�0.
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Proof of Proposition 7.3. We perform the following standard computation:

d

dt
.H�j �E

�
j /.V

�1
j .!j C dd

c'tj /
n/

D nV �1j

Z
QX

�
'
j
t C log

�
V �1j .!j C dd

c'
j
t /
n

�j

��
dd c P'tj ^ .!j C dd

c'tj /
n�1

D nV �1j

Z
P'tj dd

c log
�
V �1j .!j C dd

c'
j
t /
n

�j .t/

�
^ .!j C dd

c'
j
t /
n�1

D �nV �1j

Z
d P'

j
t ^ d

c
P'tj ^ .!j C dd

c'
j
t /
n�1
� 0

using (7.1). By Lemma 7.5 it follows that Mab.!.t// is non-increasing along the flow.
Similarly, we compute

d

dt

�
log
�Z
QX

e�'
t
j �j

�
CEj .'

t
j /

�
D �

Z
QX

P'tj �j .t/C V
�1
j

Z
QX

P'tj .!j C dd
c'
j
t /
n

D H�j .t/.V
�1
j .!j C dd

c'tj /
n/CHV �1

j
.!jCddc'

t
j
/n.�j .t//;

using again (7.1). By Pinsker’s inequality (see Proposition 2.10), it follows that�
log
�Z
QX

e�'
t0

j �j

�
CEj .'

t 0

j /

�
�

�
log
�Z
QX

e�'
t
j �j

�
CEj .'

t
j /

�
�

Z t 0

t

kV �1j .!j C dd
c'sj /

n
� �j .s/k

2 ds:

By Lemma 7.5, the left-hand side converges to �Ding.!.t 0//C Ding.!.t// as j !1. On
the other hand

lim inf
j!C1

kV �1j .!j C dd
c'sj /

n
� �j .s/k � kMA.'s/ � �.s/k D kV �1!.s/n � �!.s/k

by lower semicontinuity of the total variation with respect to weak convergence, and we get the
desired result thanks to Fatou’s lemma.

7.3. Proof of Theorem 7.2. By Proposition 7.3, Mab.!.t// is bounded above for,
say, t � 1. Thanks to Lemma 5.5, we are thus reduced to showing that

lim
t!C1

Ding.!.t// D inf
T 1.X;D/

Ding :

As Ding.!.t// is bounded below, Proposition 7.3 yields the existence of a sequence tj !C1
such that kV �1!.tj /n � �!.tj /k ! 0 as j !1. Since !.t/ stays in a strongly compact
set, we may assume upon passing to a subsequence that !.tj / converges strongly to some
!1 2 T 1.X;D/. By Proposition 2.3 we have !.tj /n ! !n1 strongly. The same argument as
in the proof of Lemma 4.3 (relying on Proposition 1.4) shows that �!.tj / ! �!1 weakly. We
conclude that V �1!n1 D �!1 , and hence Ding.!1/ D infT 1.X;D/ Ding by Theorem 4.8. By
strong continuity of Ding (Lemma 4.3), it follows that

lim
j!1

Ding.!.tj // D Ding.!1/ D inf
T 1.X;D/

Ding;

which concludes the proof.
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8. Examples

8.1. Log Fano pairs. As explained in [37], to each orbifold X is attached a klt pair
.X;D/, where the normal variety X has quotient singularities and the boundary D has an
irreducible decomposition of the form

D D
X
E

�
1 �

1

mE

�
E

with mE 2 N. This boundary encodes the ramification of X in codimension one, and X is
uniquely determined by the pair .X;D/. If X is a Fano orbifold, then .X;D/ is a log Fano pair.
A Kähler–Einstein metric ! for .X;D/ is then smooth in the orbifold sense.

A related class of log Fano pairs arises by taking quotients of Fano varieties. More specif-
ically, let Y be a Q-Fano variety with log terminal singularities, let G be a finite group of
automorphisms of Z, and set X WD Y=G. Then p W Y ! X is a ramified Galois cover, and
there exists a unique effective Q-divisor D supported on the ramification locus of X such that
KZ D p

�.KX CD/. This shows that .X;D/ has klt singularities and �.KX CD/ is ample,
so that .X;D/ is a log Fano pair. When Z is non-singular this is a special case of the previous
examples, with X WD ŒZ=G�.

Note that T .X;D/ ' T .Z/G , and in particular Kähler–Einstein metrics on .X;D/ cor-
respond precisely to G-invariant Kähler–Einstein metrics on Z.

8.2. Properness of the Mabuchi functional. Inspired by a nice construction of [1], we
prove a criterion that produces a rather broad class of log Fano pairs having a proper Mabuchi
functional.

Theorem 8.1. Let X be a Q-Fano variety with log terminal singularities, and let D be
an effective Q-Cartier divisor satisfying

(i) D �Q �KX ,

(ii) .X;D/ is klt,

so that .X; .1 � �/D/ is in particular a log Fano pair for every (rational) � 2 �0; 1Œ. If the Ding
functional (or, equivalently, the Mabuchi functional) of X is bounded below (in particular, if X
admits a Kähler–Einstein metric), then the Ding and Mabuchi functionals of .X; .1 � �/D/
are coercive for all rational numbers � 2 �0; 1Œ.

Remark 8.2. It is interesting to compare this result with [5, Theorem 7], which deals
with the case where X is a (non-singular) Fano manifold and D is reduced, smooth and irre-
ducible (so that .X;D/ is merely lc in that case). Without any further assumption on X , it is
then proved that ˛.X; .1 � �/D/! 1 as �! 0, which implies in particular that the Mabuchi
functional of .X; .1 � �/D/ is coercive for 0 < �� 1. As a consequence, .X; .1 � �/�/
admits a unique Kähler–Einstein metric for 0 < �� 1, which is further known to have cone
singularities of cone angle 2�� along D by [42].

Note on the other hand that the irreducibility ofD is crucial in this result: forX D P1 and
D D Œ0�C Œ1�, the Mabuchi functional of .X; .1 � �/D/ cannot proper even for 0 < �� 1,
since Aut0.X; .1 � �/D/ D Aut0.X;D/ D C� is not trivial. This also shows that it is not
enough to assume .X;D/ lc in (ii) of Theorem 8.1.
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It is shown in [46, Proposition 2.5] that any effective divisor D on Pn of degree d such
that .Pn; nC1

d
D/ is klt defines a stable point in the projective space jOPn.d/j with respect to

the action of the reductive group Aut.Pn/. As a consequence of the above result, we get the
following generalization of this fact:

Corollary 8.3. Let X be a Kähler–Einstein Fano manifold (so that G WD Aut0.X/ is
reductive by [49]), and let L be an ample G-line bundle on X with cL �Q �KX for some
c 2 QC. Then every effective divisor D � L such that .X; cD/ is klt defines a G-stable point
of jLj D PH 0.X;L/.

Proof. By semicontinuity [45], U WD ¹D 2 jLj j .X; cD/ kltº is a G-invariant Zariski
open subset of jLj. It is thus enough to show that the stabilizer GD of D in G is finite for
all D 2 U (compare [17, Proposition 1.26]), which amounts to G0D D ¹1º since GD is an
algebraic group. But the Mabuchi functional of .X; cD/ is proper by Theorem 8.1, hence
G0D D Aut0.X;D/ D Aut0.X; cD/ D ¹1º by Theorem 5.4.

Example 8.4. Let H be an irreducible hypersurface of degree d in X WD Pn, with
n � 3. Assume that nC 2 � d � 2nC 1 and that the singularities ofH are at most log canon-
ical (lc for short). By inversion of adjunction, it follows that the pair .X;H/ is lc as well
(see [45, Theorem 7.5]). Since nC1

d
< 1, it follows that .X; nC1

d
H/ is klt. But we also have

1
2
< nC1

d
, thus Theorem 8.1 implies that .X; 1

2
H/ admits a unique Kähler–Einstein metric.

Since H has even degree, we can construct a double cover p W Y ! X ramified along H ,
which satisfies KY D p�.KX C 1

2
H/, and Y is thus a Q-Fano variety with log terminal sin-

gularities and a Kähler–Einstein metric (invariant under the Galois group of p).
If the singularities of H are for instance at most ordinary double points (i.e. locally

analytically isomorphic to ¹
Pn
iD1 z

2
i D 0º, which are lc), then the singularities of the double

cover Y are also ordinary double points, and are not quotient singularities since ordinary double
points have a trivial local fundamental group in dimension n � 3. It follows that the Kähler–
Einstein metric of Y cannot be constructed by orbifold methods.

Proof of Theorem 8.1. Let us first fix some notation. Since D �Q �KX we have

�.KX C .1 � �/D/ �Q ��KX :

Let �0 be a reference smooth strictly psh metric on �KX , with curvature form !0 and
adapted probability measure �0. We use �� WD ��0 as a reference smooth strictly psh metric
on�.KXC.1��/D/, with curvature form!� and adapted measure��. Note that ' 7!  D �'

sets up an isomorphism PSH.X; !0/ ' PSH.X; !�/. Denoting by E� the energy functional
of E1.X; !�/, it is straightforward to check that

(8.1) E�. / D �E.'/:

By Proposition 4.11, we will be done if we can prove that functions  2 E1.X; !�/ satisfy
a Moser–Trudinger condition

ke� kLp.��/ � Ae
�E�. /

for some p > 1 and A > 0 (independent of  ).
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Since the Ding functional of X is assumed to be bounded below, we have an estimate

ke�'kL1.�0/ � Ae
�E.'/

for all ' 2 E1.X; !0/. By (8.1), it follows that

(8.2) ke� k
L�
�1
.�0/
� Ae�E�. /

for all  2 E1.X; !�/. On the other hand, it is immediate to check from the definition that
�� D e

�.1��/��0 for some quasi-psh function � which locally satisfies � D log jf j2 CO.1/,
where f is a local equation of D. Since .X;D/ is klt, we thus have e�� 2 Lq.�0/ for
some q > 1.

Now pick ı 2 �q�1.1 � �/; 1 � �Œ. By Hölder’s inequality we haveZ
X

e�.1�ı/�
�1 �� D

Z
X

e�.1�ı/�
�1 �.1��/� �0

�

�Z
X

e��
�1 �0

�1�ı�Z
X

e�ı
�1.1��/� �0

�ı
:

Since ı�1.1 � �/ < q and e�� 2 Lq.�0/, we have
R
X e
�ı�1.1��/� �0 < C1. We thus get

C > 0 and
p WD .1 � ı/��1 > 1

such that
ke� kLp.��/ � C ke

� 
k
L�
�1
.�0/

for all  2 E1.X; !�/. Combining this with (8.2) yields the desired Moser–Trudinger condi-
tion.

A. An Izumi-type estimate

Let X be a normal complex space with a given point x 2 X and let ' be a psh function
on X . Choose local generators .fi / of the maximal ideal mx of OX;x and define the slope of '
at x by

(A.1) s.'; x/ WD sup
²
s � 0

ˇ̌̌̌
' � s log

X
i

jfi j CO.1/

³
2 Œ0;C1Œ:

Since log
P
i jfi j only depends on the choice of generators up to a bounded term, it is clear

that s.'; x/ is independent of the choice of .fi /. For f 2 OX;x we have

s.log jf j; x/ D ordx.f / WD lim
m!1

1

m
ordx.f m/;

with
ordx.f / WD max¹k 2 N j f 2 mk

xº:

Remark A.1. By [27, p. 50, Corollaire 6.6] the non-decreasing function

�.t/ WD sup
¹
P
i jfi j<e

t º

'
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is convex (generalized three-circle theorem), and we have

s.'; x/ D lim
t!�1

�.t/

t
:

This implies in particular that the supremum in (A.1) is attained.

Izumi’s theorem [41] states that for every resolution of singularities � W QX ! X and
every prime divisor E � QX lying above x 2 X , there exists a constant C > 0 such that

ordE .f ı �/ � C ordx.f /

for all f 2 OX;x . Our goal here is to prove the following extension of this result to psh func-
tions:

Theorem A.2. Let � W QX ! X be any resolution of singularities and let E � QX be
a prime divisor above x 2 X . Then there exists C > 0 such that

�.' ı �;E/ � Cs.'; x/

for all psh functions ' on X .

Here
�.' ı �;E/ D min

p2E
�.' ı �; p/

is the generic Lelong number of ' ı � along E. Note that ordE .f ı �/ D �.' ı �;E/ with
' D log jf j.

Corollary A.3. If ' is a psh function with s.'; x/ D 0 for some x 2 X , then

�.' ı �; p/ D 0

for every resolution of singularities and every p 2 ��1.x/.

Proof. Let b W X 0 ! QX be the blow-up of QX at point p 2 QX . Then � 0 D �ıb W X 0 ! X

is yet another resolution of singularities. Set E D ˇ�1.p/. This is a prime divisor to which
we can apply Theorem A.2. The conclusion follows then by recalling the following classical
interpretation of Lelong number: �.' ı � ı b;E/ D �.' ı �; p/.

Proof of Theorem A.2. By Hironaka’s theorem we may assume that � W QX ! X domi-
nates the blow-up of X at x, so that the scheme-theoretic fiber ��1.x/ is an effective divisorP
i aiEi . Note that

P
i Ei is connected by Zariski’s “main theorem”.

Set bi WD �.��';Ei /. Using the Siu decomposition of the positive current T WD dd c��'
we may write T D RC B , where B D

P
i biEi is an effective R-divisor and R is a positive

current such that �.R;Ei / D 0 for all i . We first claim that

(A.2) s.'; x/ D min
i

bi

ai
:

Indeed, if we write mx D .fi / as above, then �� log
P
i jfi j has analytic singularities

described by the divisor ��1.x/, i.e. locally on X we have

�� log
X
i

jfi j D
X
i

ai log jzi j CO.1/;
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where zi is a local equation of Ei . We thus see that

' � s log
X
i

jfi j CO.1/ ” ��' �
X
i

sai log jzi j CO.1/

locally on QX , and the positivity of R D T � B shows that this holds if and only if

bi D �.�
�';Ei / � sai for all i ;

hence the claim.
In view of (A.2), the desired statement amounts to an estimate maxi bi � C mini bi for

some C > 0 independent of '. Thanks to Lemma A.4 below, this will hold if we can show that
�BjEi is pseudoeffective for all i . Since the restriction to each Ei of the cohomology class
of T D ��dd c' is trivial, we are reduced to showing that ¹RºjEi is pseudoeffective. Since
�.R;Ei / D 0, this follows from Demailly’s regularization theorem. Let us recall the standard
argument: by [28], after perhaps shrinking X slightly about 0 we may write R as a weak
limit of closed positive .1; 1/-currents Rk with analytic singularities such that ¹Rkº D ¹Rº,
Rk � �"k! for some "k ! 0 and Rk is less singular than R. In particular, �.Rk; Ei / D 0 for
all i , which means that the local potentials of Rk are not entirely singular along Ei , so that
RkjEi is a well-defined closed .1; 1/-current. We thus see that .¹Rº C "k¹!º/jEi is pseudo-
effective for all k, and the claim follows.

Lemma A.4. Let E D
P
i Ei be a reduced compact connected divisor on a Kähler

manifold M . Let B D
P
biEi be an effective R-divisor supported in E, and assume that

�BjEi is pseudoeffective for all i . Then there exists a constant C > 0 only depending on E
such that maxi bi � C mini bi .

The proof to follow is directly inspired from [14, Section 6.1].

Proof. Let ! be a Kähler form on M . Thanks to the connectedness of E, we may
index the Ei such that B D

PN
iD1 biEi with b1 D mini bi , br D maxi bi for 1 � r � N , and

Ei \EiC1 ¤ ; for all i D 1; : : : ; r � 1. For each i we have

.�BjEi / � .!jEi /
n�2
D �

X
j

bj ci;j � 0;

with
ci;j WD .Ei �Ej � !

n�2/;

hence

(A.3)
X
j¤i

bj ci;j � bi jci;i j:

Now ci;j � 0 if j ¤ i , and ci;iC1 > 0 for all i since Ei meets EiC1. It follows that

biC1 �
jci;i j

ci;iC1
bi

for all i , hence maxi bi D br � Cb1 D mini bi with C WD
Qr�1
iD1

jci;i j
ci;iC1
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Remark A.5. Besides the slope s.'; x/ considered above, Demailly introduced in [27]
a different generalization of Lelong numbers on normal complex spaces, defined as the inter-
section multiplicity

�.'; x/ WD .dd c'/ ^

�
dd c log

X
i

jfi j

�n�1
.¹xº/;

where .fi / are generators of mx , the definition being independent of that choice. When
a D .g1; : : : ; gr/ is an mx-primary ideal and ' D log

P
i jgi j, then �.'; x/ computes the

mixed (Hilbert–Samuel) multiplicity ha;mx; : : : ;mxi. In particular, for ' D  we have
�. ; x/ D m.X; x/, the multiplicity of X at x. By Demailly’s comparison theorem we have

�.'; x/ � s.'; x/m.X; x/;

and the inequality is strict in general. Using the notation of the proof of Theorem A.2 and
recalling that ���1.x/ is �-nef, we conjecture by analogy with the algebraic case that

�.'; x/ D .B � .���1.x//n�1/:

By Theorem A.2 this would imply in particular that conversely �.'; x/ � Cs.'; x/ for some
C > 0 independent of '.

B. Laplacian estimate

The goal of this section is to present an explicit version of the main result of [50], in order
to make it suitable to our purpose.

In what follows .X;!/ denotes a compact Kähler manifold,�D tr! dd c is the (analysts’)
Laplace operator with respect to the reference Kähler form !, and � � 0 is a semipositive
closed .1; 1/-form such that

R
X �

n > 0, where n D dimC X . We let Amp.�/ denote the ample
locus of (the cohomology class of) � .

Theorem B.1. Let � be a positive measure on X of the form � D e 
C� �dV with

 ˙ quasi-psh and e� 
�

2 Lp for some p > 1. Assume that ' is a bounded � -psh function
such that .� C dd c'/n D �. Then we have �' D O.e� 

�

/ locally in Amp.�/.
More precisely, assume given a constant C > 0 such that

(i) dd c C � �C ! and supX  
C � C ,

(ii) dd c � � �C ! and ke� 
�

kLp � C .

Let also U b Amp.�/ be a relatively compact open subset. Then there exists A > 0 only
depending on � , p, C and U such that

0 � � C dd c' � Ae� 
�

!

on U .

This result recovers in particular [70, Theorem 7, p. 398].

Proof. We may of course assume that ' is normalized. During the proof A;A1; : : : will
denote positive constants that may vary from line to line, but are under control in the sense that
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they only depend on � , p, C and U . Since U is contained in Amp.�/, we may choose a Zariski
open set � � U and a � -psh function  such that .� C dd c /j� is the restriction of a Kähler
form Q! on a higher compactification QX of �, so that

Q! � ı! on � for some ı > 0 and  ! �1 near à�:

The proof of Theorem B.1 is divided into two steps. In the first and main one, an a priori
estimate for smooth solutions of non-degenerate perturbations of the equation is established.
In the second step we conclude using a regularization argument.

Step 1: A priori estimates. For 0 < " � 1 we set !" WD Q! C " !, viewed as a Kähler
form on �. Note that !" � ı !, so that

(B.1) tr!".˛/ � ı
�1 tr!.˛/

for every positive .1; 1/-form ˛. Assume that  C and  � are smooth functions satisfying (i)
and (ii) of Theorem B.1, and assume given a smooth normalized �"-psh function '" such that

(B.2) .� C "! C dd c'"/
n
D e 

C� � dV:

The goal of Step 1 is to establish that j�'"j � Ae� 
�

on U with A > 0 under control. Since
we have !" � A! over U with A under control, it will be enough to prove that

!0" WD � C "! C dd
c'"

satisfies tr!".!
0
"/ � Ae

� � on U .
We first recall the Laplacian inequality obtained in [57, pp. 98–99]: if �; � 0 are two Kähler

forms on a complex manifold, then there exists a constant B > 0 only depending on a lower
bound for the holomorphic bisectional curvature of � such that

(B.3) �� 0 log tr� .� 0/ � �
tr� Ric.� 0/

tr� .� 0/
� B tr� 0.�/:

We remark that Siu’s argument uses the fact that � and � 0 are dd c-cohomologous. But the
general case is valid as well since Siu’s computations are purely local and any Kähler form is
even locally dd c-exact. This being said, let us apply this inequality to the two Kähler forms !"
and !0" on �.

Since Q! extends to a Kähler form on a higher compactification QX of �, the holomorphic
bisectional curvature of !" D Q! C " ! is obviously bounded over� by a constantB > 0 under
control, and (B.3) yields

(B.4) �!0" log tr!".!
0
"/ � �

tr!" Ric.!0"/
tr!".!0"/

� B tr!0".!"/:

On the other hand, applying dd c log to .!0"/
n D e 

C� �!n yields

�Ric.!0"/ D �Ric.!/C dd c C � dd c � � �A! � dd c �;

where A is under control thanks to (i). Using tr!".!/ � nı
�1 and the trivial inequality

(B.5) n � tr!".!
0
"/ tr!0".!"/;
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we thus infer from (B.4) that

(B.6) �!0" log tr!".!
0
"/ � �

�!" 
�

tr!".!0"/
� A tr!0".!"/

with A under control.
We next argue along the lines of [50, Lemma 3.2] to take care of the term�!" 

�. By (ii)
we have A!" C dd c � � 0 with A under control. Applying tr!" to the trivial inequality

0 � A!" C dd
c � � tr!0".A!" C dd

c �/!0"

yields
0 � AnC�!" 

�
� .A tr!0".!"/C�!0" 

�/ tr!".!
0
"/:

Plugging this into (B.6) and using again (B.5), we thus obtain

(B.7) �!0".log tr!".!
0
"/C  

�/ � �A tr!0".!"/;

where A is under control. Now set
�" WD '" �  ;

so that !0" D !" C dd
c�". We then have n D tr!0".!"/C�!0"�", and we finally deduce from

(B.7) that

(B.8) �!0".log tr!".!
0
"/C  

�
� A1�"/ � tr!0".!"/ � A2

on �, with A1; A2 under control.
We are now in a position to apply the maximum principle. On the one hand, �" D '" �  

tends toC1 near à�. On the other hand, tr!".!
0
"/ � ı

�1 tr!.!0"/ is bounded above on� since
!0" is smooth over X . The function

H WD log tr!".!
0
"/C  

�
� A1�"

therefore achieves its maximum at some x0 2 �, and (B.8) yields tr!0".!"/.x0/ � A2. On the
other hand, trivial eigenvalue considerations show that

tr�1.�2/ � n
�
�n2
�n1

�
tr�2.�1/

n�1

for any two Kähler forms �1; �2, whence

log tr!".!
0
"/ �  

C
�  � C log

�
!n

!n"

�
C .n � 1/ log tr!0".!"/C logn

by (B.2). Using ! � ı�1!" it follows that

H � A3 log tr!0".!"/C A4 � A1�";

where A3; A4 are under control, and we obtain

sup
�

H D H.x0/ � A5 � A1 inf
�
�" � A5 � A1 inf

X
'"

with A5 under control, since �" D '" �  and  � 0. By the L1-estimate provided by [34],
we now obtain

log tr!".!
0
"/C  

�
� A1�" D H � A

on � for some constant A under control. Since '" is normalized, we conversely have

�" � � � A6

over U b �, and we finally infer as desired tr!".!
0
"/ � Ae

� � on U .
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Step 2: Regularization. We now consider the set-up of Theorem B.1. By Demailly’s
regularization theorem [28], there exist two decreasing sequences of smooth functions ˙j such
that

� limj!1  ˙j D  
˙ on X ,

� dd c ˙j � �A! for some A > 0 under control.

In fact, the constant A > 0 depends in principle on the Lelong numbers of the quasi-psh
functions  ˙ according to Demailly’s result, but these Lelong numbers can be uniformly
bounded in terms of the lower bound �C! for dd c ˙ by a standard argument, see for
instance [12, Lemma 2.5].

For each 0 < " � 1 the closed .1; 1/-form � C " ! is Kähler, and Yau’s theorem [70]
yields smooth normalized �"-psh functions '";j such that

.�" C dd
c'";j /

n
D e 

C

j
� �

j
Cc";j!n;

where c";j 2 R is a normalizing constant. Since e 
C

j
� �

j � eC� 
�

is uniformly bounded
in Lp, c";j is under control and Step 1 of the proof shows that

(B.9) j�'";j j � Ae
� �

j

over U , with A > 0 under control.
Now for each fixed j it follows from [13, Lemma 5.3] that '";j converges weakly as

"! 0 to the normalized solution 'j of

.� C dd c'j /
n
D e 

C

j
� �

j
Ccj!n;

which therefore satisfies as well j�'j j � Ae
� �

j onU . But we also have e 
C

j
� �

j ! e 
C� �

inLp by dominated convergence, and it follows that 'j ! ' weakly onX by [34, Theorem A],
which concludes the proof of Theorem B.1.

C. A version of Berndtsson’s convexity theorem

The goal of this section is to extract from [9] the proof the following result.

Theorem C.1. Let X be a compact Kähler manifold and L a line bundle on X such
that

(i) h0.X;KX C L/ D 1 and h1.X;KX C L/ D 0,

(ii) L DM C�, where M is a semipositive Q-line bundle, � D
P
i aiDi is an effective

Q-divisor with SNC support and ai 2 .0; 1/.

Set S WD ¹t 2 C j 0 < Re t < 1º and consider a psh metric � on the pull-back of L to X � S
of the form � D � C ��, where

(iii) � is a bounded psh metric on the pull-back of M to X � S , with t 7! �t only depending
on Re t and Lipschitz continuous,

(iv) �� D
P
i ai log jsi j2 with si the canonical section of O.Di /, so that dd c�� D Œ��.
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For each generator u of H 0.X;KX C L/, viewed as an L-valued holomorphic n-form on X ,
the function

L.t/ D � log kuk2�t D � log
Z
X

in
2

u ^ Nu e��t

is then convex on .0; 1/. If it is further affine, then there exists a holomorphic vector field V
on ¹u ¤ 0º � X such that �

LV C
à
àt

�
dd cz �t D 0

on X � S , with LV the Lie derivative along V .

The situation here is a slight variant of [9, Section 6.2], which corresponds to the case
where u is nowhere zero (and hence L D �KX ). The arguments given in that part of the paper
are rather brief, and a more precise exposition of the proof is presented in [22, Appendix 1].
However, the latter still suffers from some minor oversights, having to do with the negative part
of the curvature in the regularization and the possibly non-uniform convergence of the curva-
ture formula. We therefore take the opportunity to present here a proof with full details. We
are very grateful to Bo Berndtsson who kindly answered our questions on his proof and care-
fully checked our arguments. We also mention [26, 71] for other illustrations of Berndtsson’s
technique.

In what follows we fix a reference Kähler metric ! on X .

Step 0: Preliminary facts. Assume for the moment that � is a fixed smooth metric
on L. The .1; 0/-part of the induced Chern connection is given by

(C.1) à� D à � à� ^ �

in any local trivialization of L. It is related to the adjoint à
�

� of à by the Kähler commutation
identity ià� D Œà

�

� ; ! ^ ��. For an L-valued .p; 0/-form v, this becomes

(C.2) ià�v D à
�

�.! ^ v/;

which shows in particular that the image of à� on .p; 0/-forms is orthogonal to the kernel
of à. For p D n � 1, v 7! ! ^ v is a pointwise isometry between L-valued .n � 1; 0/ and
.n; 1/-forms, and the Hodge star operator satisfies ?.! ^ v/ D i .n�1/

2

v. In particular,

(C.3) h! ^ v; ˛iL2.�/ D i
.n�1/2

Z
X

v ^ ˛

for any L-valued .n; 1/-form ˛.

Lemma C.2. For each L-valued .n; 0/-form � on X , there exists a unique L-valued
.n � 1; 0/-form v such that

(i) à�v D P�, the projection of � orthogonal to the kernel of à,
(ii) ! ^ àv D 0.

Proof. The image of à is closed, since it has finite codimension in Ker à. As a result,
P� 2 .Ker à/? D Im à�� may be uniquely written as P� D à��ˇ for an L-valued .n; 1/-form
ˇ 2 .Ker à��/? D Im à, and ˇ D ! ^ v for a unique L-valued .n � 1; 0/-form v.

Since we are assuming that Hn;1.X;C/ D H 1.X;KX C L/ D 0, ˇ above is in fact
unique in Ker à, which concludes the proof.
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Remark C.3. For later use, note that any L-valued .n � 1; 0/-form v for which (ii)
holds satisfies Z

X

v ^ P˛ e�� D 0

for all L-valued .n; 1/-form ˛, by (C.3).

Step 1: Regularization. As in [9, Section 2.3], we rely on [11] to write the bounded
psh metric � on the pull-back of M to X � S as the decreasing limit of a sequence of smooth
metrics �� over X � S� for a slightly smaller strip

S� D ¹t 2 C j ı� < Re t < 1 � ı�º

with ı� ! 0 such that
dd c�� � �"�!

on X � S� for some sequence "� ! 0. We denote by dd c the operator on the product; an
additional index z or t will indicate partial derivatives. Note that shrinking the time interval
is necessary in the regularization process, since we are working over the non-compact product
manifold X � S .

Since t 7! �t is Lipschitz continuous and only depends on Re t , we can further arrange
that t 7! ��t is uniformly Lipschitz continuous and only depends on Re t (by averaging).

We also introduce a regularization of �� by setting

��� WD
X
i

ai log.jsi j2 C ��1e i /

with  i a smooth metric on O.Di /. It satisfies:

(i) dd c��� � �C! for some uniform constant C > 0,

(ii) for each neighborhood U of supp�, there exists "�U ! 0 such that dd c��� � �"
�
U!

outside U .

Setting �� WD �� C ��� defines a smooth metric on the pull-back of L to X � S , only
depending on Re t , with time derivative P��t D P�

�
t 2 C

1.X/ uniformly bounded and converg-
ing a.e. to P�t .

Step 2: Hodge theoretic estimates. For each t; �, we denote by k�k��t the L2-norm of
an L-valued .p; q/-form � on X with respect to the fixed Kähler metric ! and the hermitian
metric ��t on L. We write P �t � for the projection of � orthogonal to the kernel of à, and à�

�
t
z for

the .1; 0/-part of the Chern connection associated to ��t . As explained in [9, Remark 3.2 and
Lemma 6.3], the equation in Lemma C.2 satisfies the following uniform estimate:

Lemma C.4. There exists a constant C > 0 such that for each t; � and each L-valued
.n; 0/-form �, the unique L-valued .n � 1; 0/-form v solving

(i) à�
�
t
z v D P �t �,

(ii) ! ^ àzv D 0.

satisfies kvk��t � Ck�k��t .

We will also rely on the following estimate, which follows from (the proof of)
[9, Lemma 6.5].
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Lemma C.5. For each ı > 0, there exists a neighborhood Uı � X of supp� such thatZ
Uı

jvj2��t
� ı

�
kvk2��t

C kàzvk2��t
�

for all L-valued .n � 1; 0/-forms v on X , all � and t 2 S� .

Combining these facts, we obtain the following key technical result.

Lemma C.6. For each �, there exists a unique smooth family v� D .v�t /t2S� of
L-valued .n � 1; 0/-forms such that

(i) à�
�
t
z v�t D P

�
t .
P��t u/,

(ii) ! ^ àzv�t D 0.

The L2-norm kv�t k��t is bounded independently of t and �. After perhaps passing to a sub-
sequence, we can further find a sequence of smooth cut-off functions 0 � �� � 1 on X (with
�� � 0 on some neighborhood of supp�) such that

(iii) ��dd c��t � �"�!,

(iv)
R
X .1 � ��/jv

�
t j
2
��t
� "�.1C kàzv�t k2��t /,

for some sequence "� > 0 converging to 0.

Step 3: Subharmonicity of L. Our goal here is to show that L.t/ D � log kuk2�t is
subharmonic on S . This function is the decreasing limit of

L�.t/ WD � log kuk2��t ;

which may be viewed as the weight of the L2-metric induced by ��t on the trivial line bundle
S� �H

0.X;KX C L/. By [9, Theorem 3.1] (see also [22, Lemma 14] for a direct computa-
tion), we thus have the curvature formula

(C.4) kuk2��t
dd ct L

�
D kàzv�t k

2
��t
idt ^ d Nt C

Z
X

‚� ;

where we have set

(C.5) ‚� WD i
n2dd c��t ^ w� ^ w�

with

(C.6) w� WD u � dt ^ v
�
t ;

and
R
X denotes fiber integration.
First, we observe that the left-hand coefficient satisfies

C�1 � kuk2��t
� C

for some uniform constant C > 0. This is a consequence of e��
�
t � e��t D e��t��� , since

e��� is integrable while e��t � Ce��t0 for any fixed t0 by Lipschitz continuity of t 7! �t .
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Next, as in [9, Section 6.2], we note that

(C.7)
Z
X

��‚� � �C"�idt ^ d Nt ;

thanks to the L2-bound kv�t k��t � C and the curvature lower bound ��dd c��t � �"�!. On
the other hand, the global curvature bound dd c��t � �C! combined with (iv) in Lemma C.6
yields Z

X

.1 � ��/‚� � �C

�Z
X

.1 � ��/jv
�
t j
2
��t

�
idt ^ d Nt(C.8)

� �C"�
�
1C kàzv�t k

2
��t

�
idt ^ d Nt :

Injecting these estimates in the curvature formula (C.4), we obtain

(C.9) dd ct L
�
�
�
ckàzv�t k

2
��t
� "�

�
idt ^ d Nt

for some uniform constant c > 0 and "� ! 0. In particular, we get as desired dd ct L � 0 in the
limit, thereby proving that L is subharmonic.

Step 4: Holomorphy of v. From now on, we assume that L is harmonic, so that
dd cL� ! 0 weakly on S . As a first consequence, we obtain the following estimates:

Lemma C.7. The following fiber integrals converge weakly to zero on S as � !1:

(i)
R
X jàzv

�
t j
2
��t

,

(ii)
R
X ��‚� ,

(iii)
R
X .1 � ��/‚� ,

(iv)
R
X .1 � ��/jv

�
t j
2
��t

.

Proof. Part (i) follows directly from (C.9). Another application of the curvature formula
(C.4) then yields

R
X ‚� ! 0. Now let f 2 C1c .S/ be a non-negative test function. Injecting (i)

in (C.8) yields
R
X�S f .1 � ��/‚� � �"

�
K , while (C.7) gives

R
X�S f��‚� � �"

�
K . Since the

sum converges to zero by what we just saw, we get (ii) and (iii). Finally, (iv) is a consequence
of (i) and point (iv) of Lemma C.6.

By the uniform L2-bound on v�t , the corresponding sequence v� on X � S is bounded
in L2loc (with respect to a smooth reference metric on L). After passing to a subsequence, we
may assume that v� converges weakly in L2loc.X � S/ to a section v. Our goal is to show that
v is in fact holomorphic on X � S .

As a direct consequence of estimate (i) in Lemma C.7, we have àzv D 0 weakly. The
hard part is to prove that àv=àNt D 0 holds weakly. We first observe that it is enough to show

(C.10) lim
�

Z
X�S

idt ^ d Nt ^
àv�

àNt
^ ˛t e

���
D 0

for all compactly supported Lipschitz continuous families ˛t of boundedL-valued .n; 1/-forms
on X . Indeed, choosing ˛t supported in a local coordinate chart in which L is trivialized and
identifying metrics on L with functions, we can write

v� D

nX
jD1

f �j .z; t/dz1 ^ � � � ^
bdzj ^ � � � ^ dzn;
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and it is then enough to choose ˛t of the form

˛t .z/ D e
�t .z/g.z; t/dz1 ^ � � � ^ dzn ^ d Nzj

with g 2 C1c .

Let K � S be a compact set such that ˛t D 0 for t … K. Using again Hn;1.X;L/ D 0,
we get for each t; � a unique L-valued .n; 0/-form ˇ�t , orthogonal to the kernel of àz and such
that

˛t D P
�
t ˛t C àzˇ

�
t :

By [9, Lemma 4.2], t 7! ˇ�t is uniformly Lipschitz continuous as a map from S to L2, again
with respect to any choice of a reference smooth metric on L. We will rely on the following
identity.

Lemma C.8. For each t; �, we haveZ
X�K

idt ^ d Nt ^
àv�

àNt
^ ˛t e

���
D .�1/n

Z
X�K

dd c�� ^ w� ^ ˇ
�
t e
��� :

Recall that we have set w� D u � dt ^ v� .

Proof. By construction, v� satisfies ! ^ àzv� D 0, and hence àz.àv
�

àNt / ^ ! D 0 as well.
As noted in Remark C.3, it follows thatZ

X

àv�

àNt
^ P �t ˛t e

���t D 0;

and hence

(C.11)
Z
X

àv�

àNt
^ N̨ t e

���t D

Z
X

àv�

àNt
^ àzˇ�t e

���t :

Next, we claim that

(C.12)
Z
X

àv�

àNt
^ àzˇ�t e

���t D .�1/n
Z
X

à�
�
t
z

�
àv�

àNt

�
^ ˇ�t e

���t :

Indeed, (C.3) gives

i .n�1/
2

Z
X

àv�

àNt
^ àzˇ�t e

���t D

�
àv�

àNt
^ !; àzˇ�t

�
L2.��t /

D

�
à
�

��

�
àv�

àNt
^ !

�
; ˇ�t

�
L2.��t /

D i

�
à�
�

z

�
àv�

àNt

�
; ˇ�t

�
L2.��t /

D in
2C1

Z
X

à�
�

z

�
àv�

àNt

�
^ ˇ�t e

���t ;

using the Kähler identity (C.2). The claim follows since in
2C1�.n�1/2 D .�1/n.
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Now, a simple computation shows that

(C.13) à�
�

z

�
àv�

àNt

�
D P �t u

�
t

with
u�t WD àz P�

�
t ^ v

�
C R��t u:

To see this, recall that ��t WD à
��

z v� � P��t u satisfies by construction àz��t D 0. Using the local
description

à�
�
t
z D àz � àz��t ^ � ;

we apply à=àNt to get
à��t
àNt
D à�

�
t
z

�
àv�

àNt

�
� àz P��t ^ v

�
� R��u:

The desired identity follows since the left-hand side is in the kernel of àz while

à�
�
t
z

�
àv�

àNt

�
D à
�

��t

�
àv�

àNt
^ !

�
is orthogonal to the kernel of àz . Finally, writing

dd c�� D R��t idt ^ d Nt C iàz P�
�
t ^ d Nt C idt ^ àz P�

�
t C dd

c
z �

�

and using the fact that ˇ�t has type .0; n/ on X shows that

dd c�� ^ w� ^ ˇ
�
t D idt ^ d Nt ^ u

�
t ^ ˇ

�
t :

As a result, we getZ
X�K

dd c�� ^ w� ^ ˇ
�
t e
���
D

Z
X�K

idt ^ d Nt ^ u�t ^ ˇ
�
t e
���

D

Z
X�K

idt ^ d Nt ^ P �t u
�
t ^ ˇ

�
t e
���

D

Z
X�K

idt ^ d Nt ^ à�
�

z

�
àv�

àNt

�
^ ˇ�t e

��� ;

where the second equality uses that ˇ�t is orthogonal to the kernel of àz and the third one comes
from (C.13). Lemma C.8 now follows in view of (C.11) and (C.12).

Thanks to the previous lemma, the desired estimate (C.10) boils down to the following.

Lemma C.9. For each non-negative f 2 C1c .S/,Z
X�S

f dd c�� ^ w� ^ ˇ
�
t e
���
! 0:

The proof will rely on the following special case of the Bochner–Kodaira–Nakano iden-
tity, referred to as the “one-variable Hörmander inequality” in [9, Section 4].
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Lemma C.10. Let S be a Riemann surface and let ' (resp. u) be a smooth real-valued
(resp. complex-valued, compactly supported) function on S . ThenZ

S

juj2e�'dd c' � i

Z
S

.àu � uà'/ ^ .àu � uà'/ e�' :

Proof. Pick any Kähler form ! on S , and view ' (resp. u) as a metric (resp. section)
of the trivial line bundle on M , so that à'u D àu � uà'. For bidegree reasons, the Bochner–
Kodaira–Nakano identity (cf. for instance [29, Section 13.2]) gives

kàuk2' D kà
'uk2' C hŒdd

c�;ƒ�u; uiL2.'/

with ƒ the pointwise adjoint of ! ^ �. For bidegree reasons again (compare (C.3)), we have

hŒdd c';ƒ�s; siL2.'/ D �hsdd
c'; s!iL2.'/ D �

Z
S

jsj2e�'dd c':

Proof of Lemma C.9. Because of the large negative part of the curvature dd c�� near
supp�, we cut the integral

R
X�S f dd

c�� ^ w� ^ ˇ
�
t e
��� into two pieces using �� . Note

that we may and do assume that f 2 C1c .S/ has been chosen so that f 1=2 is smooth.
First, the curvature bound ��.z/dd c�� C "�! � 0 and the Cauchy–Schwarz inequality

yield ˇ̌̌̌Z
X�S

f .t/.�� dd
c�� C "�!/ ^ w� ^ ˇ

�
t e
���

ˇ̌̌̌
�

�
in
2

Z
X�S

f .t/.�� dd
c�� C "�!/ ^ w� ^ Nw� e

���
�1=2

�

�
in
2

Z
X�S

f .t/.�� dd
c�� C "�!/ ^ ˇ

�
t ^ ˇ

�
t e
���

�1=2
:

The first right-hand factor

in
2

Z
X�S

f .t/.�� dd
c�� C "�!/ ^ w� ^ Nw� e

���

D

Z
X�S

f .t/��‚� C "�i
n2
Z
X�S

f .t/��! ^ w� ^ Nw� e
���

tends to 0 thanks to Lemma C.7 and the L2-bound on v�t . To show that the second fac-
tor is bounded, note that dd c�� ^ ˇ�t ^ ˇ

�
t D dd

c
t �

� ^ ˇ�t ^ ˇ
�
t , since ˇ�t is an .n; 0/-form

on X . Thanks to the Lipschitz bounds for t 7! ˇ�t 2 L
2, t 7! ��t and f .t/1=2, the one-variable

Hörmander inequality of Lemma C.10 yields a uniform bound upper bound forZ
X�S

f .t/�� dd
c�� ^ ˇ�t ^ ˇ

�
t e
���t ;

which shows that

in
2

Z
X�S

f .t/.�� dd
c�� C "�!/ ^ ˇ

�
t ^ ˇ

�
t e
���

is indeed bounded. We infer from the above thatZ
X�S

f�� dd
c�� ^ w� ^ ˇ

�
t e
���
! 0:
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Using now the global curvature bound dd c�� C C! � 0, we similarly writeˇ̌̌̌Z
X�S

f .1 � ��/.dd
c�� C C!/ ^ w� ^ ˇ

�
t e
���

ˇ̌̌̌
�

�Z
X�S

f .1 � ��/.dd
c�� C C!/ ^ w� ^ Nw� e

���
�1=2
��Z

X�S

f .1 � ��/.dd
c�� C C!/ ^ ˇ�t ^ ˇ

�
t e
���

�1=2
:

The first factor Z
X�S

f .1 � ��/.dd
c�� C C!/ ^ w� ^ Nw� e

���

�

Z
X�K

.1 � ��/‚� C C
0

Z
X�K

.1 � ��/jv
�
t j
2
��

tends to zero by Lemma C.7, and the second factor is bounded for the same reason as above,
thanks to the one-variable Hörmander inequality, and henceZ

X�S

f .1 � ��/.dd
c�� C C!/ ^ w� ^ ˇ

�
t e
���
! 0:

Since Z
X�S

f .1 � ��/! ^ w� ^ Nw� e
���
� C

Z
X�S

f .1 � ��/jv
�
t j
2
��

tends to 0, we conclude as desired thatZ
X�S

fdd c�� ^ w� ^ ˇ
�
t e
���

D

Z
X�S

f��dd
c�� ^ w� ^ ˇ

�
t e
���
C

Z
X�S

f .1 � ��/dd
c�� ^ w� ^ ˇ

�
t e
���

tends to 0.

Step 5: End of the proof. Recall that v, which is now known to be holomorphic
on X � S , is obtained as the weak L2loc limit on X � S of v� , and that u 2 H 0.X;KX C L/ is
the given non-zero holomorphic L-valued n-form.

Lemma C.11. The distributional equation àzàz�^v D àz P�t ^u is satisfied on X �S .

Proof. Set h� WD P �t . P�
�
t u/ �

P��t u, which satisfies àzh� D 0. These functions are uni-
formly bounded in L2loc.X � S/, since

R
X jh

�
t j
2
��t

is uniformly bounded thanks to the uniform
Lipschitz bound for t 7! ��t . We may thus assume that h� ! h weakly in L2loc.X � S/.

Since àzh D 0, the desired result will follow from the identity

(C.14) àzv � àz� ^ v D P�tuC h;

understood locally onX�S . Recall that all (pluri)subharmonic functions belong to the Sobolev
space W 1;1

loc , basically because the Newton kernel has the same property. In particular, (C.14)
is an equality in the space L1loc.X � S/, and it will thus be enough to argue on the open set
U WD .X n supp�/ � S where the psh function � is locally bounded.
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Rewrite à�
�

z v� D P �t .
P��t u/ as

àz.e��
�

v�/ D . P��t uC h
�/e��

�

D u
à
àt
.e��

�

/C h� e��
�

:

On U , we have e��
�

! e�� strongly in L2loc, and v� ! v and h� ! h weakly in L2loc. This is
enough to get

(C.15) àz.e��v/ D u
à
àt
.e��/C h e��

on U . Since the psh function � is locally bounded on U , it satisfies the chain rule

d.e��/ D e��d�;

see for instance [13, Lemma 1.9], and (C.14) thus follows from (C.15).

By Lemma C.6, v�t is uniquely determined by an equation whose only dependence on t
is through ��t . As a result, v�t is independent of Im t , and hence so is vt . Being holomorphic
in t , the latter is thus independent of t .

On the open set ¹u ¤ 0º, define a holomorphic vector field V by requiring that iV uD�v.
Since �t WD dd cz �t satisfies �t ^ u D 0 for bidegree reasons, we have

.iV �t / ^ u D �t ^ .iV u/ D ��t ^ v;

and Lemma C.11 thus gives

.iV �t C iàz P�t / ^ u D 0:

For bidegree reasons and since we are working over the locus where u does not vanish, it fol-
lows that iV �tC iàz P�t D 0. Using the Cartan identity LV D diV C iV d for the Lie derivative,
we obtain the desired equation �

LV C
à
àt

�
�t D 0;

thereby concluding the proof of Theorem C.1.
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