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Abstract Let L be a big line bundle on a compact complex manifold X.
Given a non-pluripolar compact subset K of X and a continuous Hermitian
metric e−φ on L, we define the energy at equilibrium of (K,φ) as the Monge-
Ampère energy of the extremal psh weight associated to (K,φ). We prove the
differentiability of the energy at equilibrium with respect to φ, and we show
that this energy describes the asymptotic behaviour as k → ∞ of the volume
of the sup-norm unit ball induced by (K, kφ) on the space of global holomor-
phic sections H 0(X, kL). As a consequence of these results, we recover and
extend Rumely’s Robin-type formula for the transfinite diameter. We also
obtain an asymptotic description of the analytic torsion, and extend Yuan’s
equidistribution theorem for algebraic points of small height to the case of a
big line bundle.
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1 Introduction

1.1 The setting

Let L be a holomorphic line bundle over a compact complex manifold X of
dimension n. By a weighted subset (K,φ) (resp. a weighted measure (μ,φ)),
we will mean the data of a non-pluripolar compact subset K of X (resp. a
probability measure with non-pluripolar support) together with the weight φ

of a continuous Hermitian metric e−φ on L (cf. Sect. 2.1 for more details
on the terminology). Using additive notation for tensor powers, we can then
endow the space of global sections s ∈ H 0(X, kL) of kL with the L∞-norm

‖s‖L∞(K,kφ) := sup
K

|s|kφ

and the L2-norm

‖s‖2
L2(μ,kφ)

:=
∫

X

|s|2kφdμ,

both of which are indeed norms under the standing assumption that suppμ

(resp. K) are non-pluripolar. Consider the special case where K and suppμ

are compact subsets of

C
n ⊂ P

n =: X
endowed with the ample line bundle O(1) =: L. Restricting to C

n identifies
H 0(Pn, O(k)) with the space of polynomials of total degree at most k. The
linear form X0 ∈ H 0(Pn, O(1)) cutting out the hyperplane at infinity induces
a singular Hermitian metric on O(1) with weight log |X0|, whose restriction
to C

n is smooth. A continuous weight φ on O(1) defined near K is thus
naturally identified with a continuous function (φ − log |X0|) with compact
support in C

n. On the other hand a plurisubharmonic (psh for short) function
on C

n with at most logarithmic growth at infinity gets identified with the
weight φ of a non-negatively curved (singular) Hermitian metric on L, which
will thus be referred to as a psh weight (note that the corresponding log-
homogeneous function on L∗ is psh).

In the general setting described above, the asymptotic study as k → ∞ of
H 0(X, kL) endowed with the above L2 or L∞-norms thus appears as a nat-
ural generalisation of the classical theory of orthogonal polynomials (cf. for
instance [52] and in particular Bloom’s appendix therein).
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Growth of balls of holomorphic sections and energy 339

These two norms on H 0(kL) are equivalently described by their unit balls,
which will respectively be denoted by

B2(μ, kφ), B∞(K, kφ) ⊂ H 0(kL).

The main goal of the present paper is to study the asymptotic behaviour of the
volume of these balls as k → ∞. As we shall see, it is related to a well-known
energy functional that we now describe.

1.2 The Monge-Ampère energy functional

We denote the curvature (1,1)-form of a smooth weight φ on L as ddcφ, and
define the Monge-Ampère operator on such weights as

MA(φ) := (ddcφ)n.

We have normalised as usual the operator dc so that ddc = i
π
∂∂ .

Integrating against this measure-valued operator induces a 1-form on the
(affine) space of smooth weights on L, and it is a remarkable fact that this
1-form is closed, hence exact. The primitive of this Monge-Ampère 1-form
will be denoted by φ �→ E (φ) and called the Monge-Ampère energy func-
tional. It is therefore characterised by the property

d

dt t=0
E ((1 − t)φ1 + tφ2) =

∫
X

(φ2 − φ1)MA(φ1). (1.1)

As is the case for any primitive, E is only defined up to a constant. We will
always assume that it is normalised by E (φ0) = 0 for some auxiliary weight
φ0 fixed once and for all. On the other hand, differences E (φ) − E (ψ) are
intrisically defined. An explicit formula for E can be obtained by integration
along line segments, which yields

E (φ) − E (ψ) = 1

n + 1

n∑
j=0

∫
X

(φ − ψ)(ddcφ)j ∧ (ddcψ)n−j . (1.2)

Note that the right-hand side involves the Bott-Chern secondary class attached
to the Chern character. The functional E seems to have been first explicitly
mentioned in an article in [46], where it is denoted by L. It is closely related
to the J -functional of [2], and it also corresponds to the functional I in [31,
38] and to minus F 0

ω0
on p. 59 of Tian’s book [58], where it is proved that

φ �→ E (φ) is non-decreasing and concave on smooth psh weights.
By the fundamental work of Bedford-Taylor, mixed Monge-Ampère oper-

ators can be extended to locally bounded psh weights φ. Since the difference
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340 R. Berman, S. Boucksom

of two such weights is a bounded function on X, we can use formula (1.2) to
define the Monge-Ampère energy E (φ) for a locally bounded weight φ. The
proofs of all the above properties, which only rely on integration by parts, are
then easily extended to this setting.

The locally bounded case is good enough for our purposes when L is am-
ple. The more general situation of a big line bundle is treated in Sect. 4 re-
lying on non-pluripolar products of currents and the appropriate integration-
by-parts formula proved in [25]. The end result is that E (φ) defined by (1.2)
for two psh weights φ,ψ with minimal singularities in the sense of Demailly
(cf. Sect. 2.2) still satisfies (1.1) above. It is non-decreasing and concave, and
is continuous along monotonic sequences of such weights.

1.3 Asymptotics of ball volumes and energy at equilibrium

Assume now that L is a big line bundle (which implies that X is Moishezon,
i.e. bimeromorphic to a projective manifold). Given a weighted subset (K,φ),
its equilibrium weight is defined as the following extremal weight:

PKφ := sup∗{ψ psh weight, ψ ≤ φ on K}, (1.3)

where the star denotes upper semi-continuous regularisation. The equilibrium
weight is itself a psh weight with minimal singularities (recall that K is as-
sumed to be non-pluripolar throughout). The equilibrium measure of (K,φ)

is the probability measure defined by

μeq(K,φ) := vol(L)−1MA(PKφ). (1.4)

The normalising factor is the volume of L, i.e.

vol(L) = lim
k→∞

n!
kn

Nk

where Nk := h0(kL) denotes the complex dimension of H 0(kL) (cf. Theo-
rem 2.2). Note that vol(L) > 0, precisely because L is big.

The measure μeq(K,φ) is concentrated on K , and PKφ = φ holds a.e. on
K with respect to this measure (cf. Proposition 2.10). We define the energy at
equilibrium of (K,φ) as

Eeq(K,φ) := vol(L)−1E (PKφ). (1.5)

The energy at equlibrium is well-defined only up to an overall additive con-
stant, but differences

Eeq(K1, φ1) − Eeq(K2, φ2)
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Growth of balls of holomorphic sections and energy 341

are intrinsically defined. Our choice of normalisation yields the scaling prop-
erty

Eeq(K,φ + c) = Eeq(K,φ) + c (1.6)

for each constant c ∈ R.
On the other hand we introduce the L-functionals

Lk(K,φ) := 1

2kNk

log volk B∞(K, kφ), (1.7)

and

Lk(μ,φ) := 1

2kNk

log volk B2(μ, kφ), (1.8)

where μ is a probability measure on X with non-pluripolar support. These
functionals are meant to be reminiscent of Donaldson’s L-functionals [38].
The volume volk denotes Lebesgue measure on the vector space H 0(kL),
and is thus only defined up to a multiplicative constant. As a consequence, the
functionals Lk are defined up to overall additive constants, but here again dif-
ferences Lk(K1, φ1) − Lk(K2, φ2) (resp. Lk(μ1, φ1) − Lk(μ2, φ2)) are well-
defined since they do not depend on the choice of volk . Since H 0(kL) has
real dimension 2Nk , our choice of normalisation yields

Lk(K,φ + c) = Lk(K,φ) + c (1.9)

for each constant c ∈ R (and similarly with μ in place of K) which should of
course be compared to (1.6). Equivalently Lk defines a single valued function
of (K,φ) relatively to a fixed reference weighted set, if volk is taken as the
Lesbegue measure which gives a unit mass to the corresponding reference
ball.

We now describe our first main result:

Theorem A Let X be a compact complex manifold and L be a big line bun-
dle, let (Kj ,φj ), j = 1,2 be two weighted subsets. Then as k → ∞ we have

(i)

Lk(K1, φ1) − Lk(K2, φ2) → Eeq(K1, φ1) − Eeq(K2, φ2).

(ii) If furthermore μj is a probability measure on Kj with the Bernstein-
Markov property with respect to (Kj ,φj ), j = 1,2, then we have

Lk(μ1, φ1) − Lk(μ2, φ2) → Eeq(K1, φ1) − Eeq(K2, φ2).
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342 R. Berman, S. Boucksom

Extending classical terminology we say that a probability measure μ on
K has the Bernstein-Markov property with respect to (K,φ) if the distor-
tion between the L∞(K, kφ)-norm and the L2(μ, kφ)-norm on H 0(kL) has
subexponential growth as k → ∞ (cf. Sect. 3). Assertion (ii) of Theorem A is
a rather direct consequence of (i), but conversely the proof of Theorem A set-
tles as first step the special case of (ii) where the φj ’s are smooth and the μj ’s
are smooth volume forms. It is indeed an easy consequence of the mean-value
inequality that μj has the Bernstein-Markov property with respect to (X,φj )

in that case (cf. Lemma 3.2)—and a much more precise estimate of the dis-
tortion is available in that case via Bergman kernels asymptotics. A crucial
ingredient in this first step is our second main result:

Theorem B Let L be a big line bundle on a compact complex manifold X,
and let K be a non-pluripolar compact subset of X. Then φ �→ Eeq(K,φ) is
concave and continuous on the space of continuous weights. It is Gâteaux
differentiable, with derivatives given by integration against the equilibrium
measure:

d

dt t=0
Eeq(K,φ + tv) = 〈v,μeq(K,φ)〉

for every continuous function v.

This result is a complex analogue of a result of Alexandrov in the setting
of convex geometry [1] (see also [53], p. 345). It bears a strong resemblance
with the differentiability property of the volume of divisors [27], which is in
some sense a non-archimedean analogue of the present result (compare [26]).

The differentiability property can be understood as a linear reponse prop-
erty for the energy at equilibrium. Theorem B is a key tool in the proof of the
arithmetic equidistribution result to be described below (Theorem D). It also
found applications in equidistribution theorems for Fekete points and related
results [10, 12, 14], in the proof of a large deviation principle for determi-
nantal point processes [7, 8] as well as in a variational approach to complex
Monge-Ampère equations [13].

1.4 From volumes of L2-balls to transfinite diameters

Given a basis S = (s1, . . . , sN) of H 0(L) let

detS ∈ H 0(XN,L�N)

be the determinant section, locally defined by

(detS)(x1, . . . , xN) := det(si(xj ))i,j .
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Growth of balls of holomorphic sections and energy 343

Given a weighted subset (K,φ) and a probability measure μ on K the L∞-
norm (resp. L2 norm ) of detS with respect to the induced probability measure
μN on KN and the induced weight

(x1, . . . , xN) �→ ψ(x1) + · · · + ψ(xN)

on L�N will simply be denoted by

‖detS‖L∞(K,φ) := sup
(x1,...,xN )∈KN

|det(si(xj ))|e−(φ(x1)+···+φ(xN ))

and

‖detS‖2
L2(μ,φ)

:=
∫

(x1,...,xN )∈XN

|det(si(xj ))|2e−2(φ(x1)+···+φ(xN ))μ(dx1) . . .μ(dxN).

In the classical case (X,L) = (Pn, O(1)) we may choose Sk as the set of
monomials of degree at most k. Given a weighted compact subset (K,φ) the
limit

lim
k→∞‖detSk‖1/kn+1

L∞(K,kφ)

provided it is shown to exist, coincides with Leja’s definition of the transfinite
diameter of (K,φ)—up to an exponent only depending on n. The existence
of the limit in the unweighted case was in fact only proved in 1975 by Zahar-
juta [60].

The basis Sk of monomials is orthonormal with respect to L2(ν,ψ), ν de-
notes the Haar measure on the compact torus T

n ⊂ C
n and ψ = log |X0| de-

notes the weight on O(1) induced by the section cutting out the hyperplane at
infinity. Since ν is known to have the Bernstein-Markov property with respect
to (Tn,ψ) ([47], cf. also Sect. 3), the next result generalizes in particular Za-
harjuta’s:

Corollary A Let (E,ψ) be a weighted subset and let ν be a probability
measure on E with the Bernstein-Markov property. For each k, let Sk be an
L2(ν, kψ)-orthonormal basis of H 0(kL).

(i) For every weighted subset (K,φ) we have

lim
k→∞

1

kNk

log‖detSk‖L∞(K,kφ) = Eeq(E,ψ) − Eeq(K,ψ).
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344 R. Berman, S. Boucksom

(ii) If μ is a probability measure with the Bernstein-Markov property for
(K,φ) then

lim
k→∞

1

kNk

log‖detSk‖L2(μ,kφ) = Eeq(E,ψ) − Eeq(K,ψ).

In the C
n case, the existence of the limit in (i) in the weighted case was

also independently obtained in [20] using [50].
Let us quickly explain how Corollary A relates to Theorem A. Since L2-

norms are induced by scalar products, ratios of L2-balls can be expressed as
Gram determinants:

vol B2(ν,ψ)

vol B2(μ,φ)
= det

(〈si, sj 〉L2(μ,φ)

)
i,j

, (1.10)

where S = (s1, . . . , sN) is an L2(ν,ψ)-orthonormal basis of H 0(L). On the
other hand a row and column expansion of the determinant shows that

‖detS‖2
L2(μ,φ)

= N !det
(〈si, sj 〉L2(μ,φ)

)
i,j

. (1.11)

We thus get

1

kNk

log‖detSk‖L2(μ,kφ) = Lk(ν, kψ) − Lk(μ, kφ) + 1

2kNk

logNk!

which shows that (ii) of Corollary A is equivalent to (ii) of Theorem A since
logNk! = O(kn log k) = o(kNk).

We give in Proposition 4.7 a recursion formula relating the Monge-Ampère
energy on X to that on a hypersurface Y . It shows that Corollary A con-
tains in particular Rumely’s Robin-type formula for the transfinite diameter
in C

n [50]. We also show how to recover DeMarco-Rumely’s results [32] in
Sect. 6.3.

1.5 Applications to analytic torsion and Arakelov geometry

In the last part of the paper, we give two further applications of Theorems A
and B related to Arakelov geometry. As a consequence of Theorem A, we
will first describe the asymptotic behaviour of the Ray-Singer analytic tor-
sion T (kφ) of large multiples of a smooth weight φ with arbitrary curvature
(computed with respect to a fixed Kähler metric ω), refining results of Bismut-
Vasserot [17]. More specifically we prove:

Theorem C If L is an ample line bundle and φ is a smooth weight on L with
arbitrary curvature, then

lim
k→∞

n!
2kn+1

T (kφ) = E (φ) − E (PXφ).
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Our second application is a generalisation of Yuan’s equidistribution the-
orem for points of small height [59] to the case of a big line bundle (but at
archimedean places only). Assume that X is a smooth projective variety de-
fined over a number field, say Q for simplicity. Let L be a big line bundle
on X/Q. Denoting by A the adèles of Q, H 0(kL)Q embeds as a co-compact
subgroup of

H 0(kL)A ⊂ H 0(kL)R × �pH 0(L)Qp

which enables us to normalise the Haar measure volAk on H 0(kL)A by

volAk H 0(kL)A/H 0(kL)Q = 1.

Suppose given a collection (φp) of continuous weights on LCp
over X(Cp)

for every prime p such that all but finitely of them are induced by a model of
X over Z. The superscript A will be used to indicate that an object implicitly
depends on (φp).

If φ is a continuous weight on LC over X(C) we define the adelic unit ball

BA(φ) := H 0(L)A ∩
(

B∞
R

(φ) × �p B∞
Qp

(φp)
)

(1.12)

and we can then consider the corresponding adelic L-functionals

LA

k (φ) := 1

kNk

log volAk BA(kφ). (1.13)

As opposed to the other L-functionals introduced so far, the adelic
L-functionals LA

k are well-defined without any further normalisation issue.
We now introduce the adelic energy at equilibrium as

E A
eq(φ) := lim sup

k→∞
LA

k (φ) ∈ [−∞,+∞].

The exponential of the right-hand side is called the sectional capacity in [51],
where it is proved that the limsup actually is a limit when L ample. Still
assuming that L is merely big, Theorems A and B together will enable us
to show (Lemma 7.4) that E A

eq(·) is differentiable at any weight φ where it
is finite, with derivative given by integration against the equilibrium measure
μeq(X(C), φ)

On the other hand, the above data allows to define the height hA
φ (x) of

any point x ∈ X(Q) (cf. (7.4)). If xj ∈ X(Q) is a generic sequence, that is a
sequence converging to the generic point of X in the Zariski topology, then it
is an easy consequence of the adelic Minkowski theorem (cf. Sect. 7.2) that
their heights admit the asymptotic lower bound

lim inf
j→∞ hA

φ (xj ) ≥ E A
eq(φ).
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Following the original variational principle first used by Szpiro, Ullmo and
Zhang [56], we will prove

Theorem D Using the above notations, suppose that xj ∈ X(Q) is a generic
sequence such that

lim
j→∞hφ(xj ) = E A

eq(φ) ∈ R.

Then the Galois orbits of the xj ’s equidistribute on X(C) as j → ∞ towards
the equilibrium measure μeq(X(C), φ).

1.6 Structure of the paper

• Sections 2 and 3 contain preliminary results on Monge-Ampère operators
and Bergman kernels asymptotics.

• Section 4 extends to our singular setting standard facts on the Monge-
Ampère energy functional, and contains the proof of Theorem B.

• Section 5 contains the proofs of Theorem A and Corollary A followed by
a sketch of an alternative argument in the ample case.

• Section 6 presents applications to the C
n setting.

• Finaly Sect. 7 presents applications to Arakelov geometry, in particular the
proof of Theorem D.

2 Mixed Monge-Ampère operators and equilibrium weights

The goal of this section is to collect some results on mixed Monge-Ampère
operators that are required to study the Monge-Ampère energy functional in
the case of a big line bundle L.

The reader primarily interested in the case of an ample line bundle will
realise that the results we mention are completely standard in that setting
(cf. for instance [40]), and proofs in the general case can be found in [25]

2.1 Weights vs. metrics

Let X be a complex manifold. We will use the additive notation for the Picard
group of line bundles on X, that is given line bundles L,M on X we will
write L + M := L ⊗ M and kL := L⊗k . Similarly we want to use an addi-
tive notation for singular Hermitian metrics on line bundles. This is formally
achieved through the following definition.

Definition 2.1 A weight φ on a line bundle L over X is a locally integrable
function on the complement of the zero-section in the total space of the dual
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Growth of balls of holomorphic sections and energy 347

line bundle L∗ satisfying the log-homogeneity property

φ(λv) = log |λ| + φ(v)

for all non-zero v ∈ L∗, λ ∈ C.

Setting

|w|h := |〈w,v〉|e−φ(v)

for every non-zero vector w ∈ L (resp. v ∈ L∗) establishes a bijection φ �→ h

between the set of weights φ on L and the set of singular hermitian metrics h

on L, and we will simply denote by h = e−φ the metric on L induced by φ.
If we let p : L∗ → X be the fibre projection then for every two weights φ1,

φ2 on L we have φ1 − φ2 = u ◦ p for a unique function u ∈ L1
loc(X). We will

simply identify φ1 − φ2 with the corresponding function on X, so that the set
of all weights on L becomes an affine space modelled on L1

loc(X).
A section s ∈ H 0(X,L) induces a weight on L denoted by log |s| and de-

fined by

log |s|(v) := log |〈s, v〉|
for v ∈ L∗. Note that the pointwise length of s in terms of the Hermitian
metric e−φ is equal to exp(log |s| − φ), i.e. we have

|s|φ = |s|e−φ.

The curvature current of the singular metric e−φ pulls-back to ddcφ un-
der the projection p : L∗ → X and we will somewhat abusively denote by
ddcφ the curvature current on X itself. One must be careful with this sugges-
tive notation, since the curvature current ddcφ is definitely not exact on X in
general. We have set as usual ddc =: i

π
∂∂ in order to ensure that the coho-

mology class of the closed current ddcφ coincides with the first Chern class
c1(L) ∈ H 2(X,R). With this normalisation the current ddc log |s| is equal
to the integration current on the zero-divisor of s as a consequence of the
Lelong-Poincaré formula.

We will say that a weight φ is plurisubharmonic (psh for short) if it is
psh as a function on the total space L∗. The curvature current ddcφ is thus
a positive (in the French sense of the word, i.e. non-negative) (1,1)-current.
This formalism relates to the notion of quasi-psh functions as follows. If θ is a
given closed (1,1)-form, a (usc, locally integrable) function u on X is said to
be θ -psh iff θ + ddcu ≥ 0. When the cohomology class of θ is the first Chern
class c1(L), there exists a smooth weight φ0 on L, unique up to a constant,
such that ddcφ0 = θ . It follows that φ �→ u = φ − φ0 establishes a bijection
between the set of psh weights φ on L and the set of θ -psh functions u on X,
and we have ddcφ = θ + ddcu.
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2.2 Big bundles and minimal singularities

Recall that a line bundle L on a compact complex manifold X is said to be
pseudo-effective (psef for short) iff it admits a psh weight. The line bundle L

is said to be big iff its volume

vol(L) := lim sup
k→∞

n!
kn

h0(kL)

is positive. Here we write as usual by h0 := dimH 0, and the lim sup is actu-
ally a limit as a consequence of Fujita’s theorem. A theorem independently
proved by Bonavero [22] and Ji-Shiffmann [41] asserts that L is big iff it ad-
mits a strictly psh weight, i.e. a singular weight φ whose curvature current
ddcφ dominates a (smooth) positive (1,1)-form.

It follows from Demailly’s regularisation theorem [34] that φ can then
be chosen to have analytic singularities, and in particular to be locally
bounded on a Zariski open subset � of X. Finally note that X is Moishezon,
i.e. bimeromorphic to a projective manifold, iff it admits a big line bundle.

Given two psh weights φ1, φ2 on L, one says that φ1 is more singular
than φ2 if φ1 ≤ φ2 + O(1). As has been observed by Demailly, any pseudo-
effective line bundle L admits psh weights with minimal singularities in this
sense. Indeed given a smooth weight φ on L the equilibrium weight

PXφ = sup{ψ,ψ psh weight on L,ψ ≤ φ}
is automatically (usc and) psh, and it plainly has minimal singularities. We
will at any rate come back to this construction in what follows.

Note that the difference between any two psh weights with minimal singu-
larities is a bounded function by definition. When L is ample, the psh weights
with minimal singularities are exactly the locally bounded psh weights, and
in the general case the former appear to share many of the nice properties the
latter exhibit in the setting of pluripotential theory.

When L is only big, there exists as we saw a strictly psh weight that is
locally bounded on a Zariski open subset � of X. It follows that every psh
weight with minimal singularities on L is locally bounded on this same �.

2.3 Mixed Monge-Ampère operators and comparison principle

As explained above, results in this section are standard when dealing with am-
ple line bundles. Indeed, they all follow from Bedford-Taylor’s local results
for locally bounded psh weights. The proofs in the general situation where
line bundles are merely big can be found in [25].

Let L be a big line bundle. By what we saw above, we can choose a Zariski
open subset � on which every psh weight with minimal singularities is locally
bounded.
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Now let φ1, . . . , φn be psh weights on L that are locally bounded on �. We
can then define the Bedford-Taylor wedge product

ddcφ1 ∧ · · · ∧ ddcφn

as a positive measure on �. Recall that this is done by locally setting
ddcu∧T := ddc(uT ) whenever u is a locally bounded psh function and T is
a closed positive current (which thus has measure coefficients). It was proved
by Bedford-Taylor [4] that the resulting measure ddcφ1 ∧ · · · ∧ ddcφn puts
no mass on pluripolar subsets of �. The following result is proved in [25]
using [24].

Theorem 2.2 Let φ1, . . . , φn (resp. ψ1, . . . ,ψn) be psh weights on L that are
locally bounded on a Zariski open subset �. If φj is less singular than ψj for
all j , then we have

∫
�

ddcψ1 ∧ · · · ∧ ddcψn ≤
∫

�

ddcφ1 ∧ · · · ∧ ddcφn ≤ vol(L).

Equality holds on the right-hand side when the φj ’s have minimal singulari-
ties.

This says in particular that ddcφ1 ∧ · · · ∧ ddcφn has finite total mass, and
we can thus introduce:

Definition 2.3 If φ1, . . . , φn are psh weights on L that are locally bounded
on a Zariski open subset, the non-pluripolar product

〈ddcφ1 ∧ · · · ∧ ddcφn〉
is defined as the trivial extension to X of the positive measure ddcφ1 ∧ · · · ∧
ddcφn on �. In particular, the Monge-Ampère measure of a psh weight φ

locally bounded on a Zariski open subset � is defined by

MA(φ) := 〈(ddcφ)n〉.
We stress that such non-pluripolar products 〈ddcφ1 ∧ · · · ∧ ddcφn〉 put no

mass on pluripolar subsets of X, and therefore do not depend on the choice
of �. By Theorem 2.2, the total mass

∫
X

〈ddcφ1 ∧ · · · ∧ ddcφn〉

only depends on the singularity classes of the φj ’s and is equal to vol(L)

when the φj ’s have minimal singularities.
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The non-pluripolar Monge-Ampère operator so defined satisfies the fol-
lowing generalised comparison principle, which will be a crucial ingredient
in the proof of Theorem B.

Corollary 2.4 Let φ1 and φ2 be two psh weights on L that are locally
bounded on a Zariski open subset. If φ1 ≤ φ2 + O(1), then we have

∫
{φ2<φ1}

MA(φ1) ≤
∫

{φ2<φ1}
MA(φ2).

Proof It is an important result of Bedford-Taylor [5] that u �→ (ddcu)n is lo-
cal in the plurifine topology for locally bounded psh functions u. By definition
of the non-pluripolar Monge-Ampère operator, it follows that φ �→ MA(φ)

defined above is also local in the plurifine topology (cf. [25]). Now let ε > 0.
The psh weight max(φ2, φ1 − ε) coincides with φ2 on the plurifine open sub-
set {φ2 > φ1 − ε} and with φ1 − ε on the plurifine open subset {φ2 < φ1 − ε}.
It follows that

∫
X

MA(max(φ2, φ1 − ε))

≥
∫

{φ2>φ1−ε}
MA(φ2) +

∫
{φ2<φ1−ε}

MA(φ1)

which is in turn

≥
∫

X

MA(φ2) −
∫

{φ2<φ1}
MA(φ2) +

∫
{φ2<φ1−ε}

MA(φ1).

On the other hand Theorem 2.2 yields
∫

X

MA(φ2) =
∫

X

MA(max(φ2, φ1 − ε))

since φ1 ≤ φ2 + O(1) implies

max(φ2, φ1 − ε) = φ2 + O(1),

and the result now follows by monotone convergence by letting ε → 0. �

We infer the following domination principle (cf. [25]):

Corollary 2.5 Let φ1 and φ2 be two psh weights on L and suppose that φ2
has minimal singularities. If φ1 ≤ φ2 holds a.e. wrt MA(φ2), then φ1 ≤ φ2
everywhere on X.
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The following continuity result is proved in [25].

Theorem 2.6 Let ψ0 be a fixed psh weight with minimal singularities on L.
Then the measure-valued operators

(φ1, . . . , φn) �→ 〈ddcφ1 ∧ · · · ∧ ddcφn〉
and

(φ0, . . . , φn) �→ (φ0 − ψ0)〈ddcφ1 ∧ · · · ∧ φn〉
are continuous along convergent sequence φ

(k)
j → φj of psh weights with

minimal singularities in the following three cases:

• φ
(k)
j decreases pointwise to φj .

• φ
(k)
j increases to φj a.e. wrt Lebesgue measure.

• φ
(k)
j converges to φj uniformly on X.

For the first operator considered, this is in fact straightforward: conver-
gence holds locally on the Zariski open subset � where weights are locally
bounded by Bedford-Taylor’s results, and it extends across the boundary of
� because the total mass is constant by Theorem 2.2. The case of the second
operator then follows quite easily.

The following integration-by-parts formula is more difficult to establish. Its
proof, given in [25], is an elaboration of the Skoda-El Mir extension theorem.

Theorem 2.7 Let u and v be two bounded functions on X, each being a
differences of quasi-psh functions that are locally bounded on a given Zariski
open subset �. Let also  be a closed positive current of bidimension (1,1)

on X. Then we have
∫

�

uddcv ∧  =
∫

�

v ddcu ∧  = −
∫

�

dv ∧ dcu ∧ .

2.4 Equilibrium weights

Let X be a compact complex manifold and L be a big line bundle. Given a
weighted subset (K,φ), we set

φK = sup{ψ,ψ psh weight on L,ψ ≤ φ on K}, (2.1)

so that the definition (1.3) of the equilibrium weight PKφ can be reformulated
as

PKφ = φ∗
K.
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In case K = X the inequality φX ≤ φ on X implies PXφ ≤ φ by continuity
of φ, and this means that PXφ = φX is already upper semi-continuous in that
case. This property however fails for more general weighted subsets. Extend-
ing the classical terminology, a weighted subset (K,φ) will be called regular
if φK is usc, i.e. if PKφ ≤ φ holds on K .

By Choquet’s lemma (cf. [44], p. 38) there exists an increasing sequence of
psh weights ψj such that ψj ≤ φ on K and limj→∞ ψj = PKφ a.e. on X wrt
Lebesgue measure, and we can furthermore assume that the ψj have minimal
singularities by replacing them by max(ψj , τ ) where τ is a psh weight with
minimal singularities such that τ ≤ φ on K .

The following ‘tautological maximum principle’ is a mere reformulation
of the definition of φK .

Proposition 2.8 (Maximum principle) Let (K,φ) be weighted subset. Then
for every psh weight ψ on L we have

sup
K

(ψ − φ) = sup
X

(ψ − φK).

In particular

‖s‖L∞(K,kφ) = ‖s‖L∞(X,kφK)

for every section s ∈ H 0(kL).

Note however that this fails with PKφ = φ∗
K in place of φK when (K,φ)

is not regular. Equilibrium weights behave nicely under pull-back:

Proposition 2.9 Let π : Y → X be a surjective morphism between two com-
pact complex manifolds of same dimension n, and let L be a big line bundle
on X (so that π∗L is also big). Let (K,φ) be a weighted subset of (X,L),
and consider the induced weighted subset (π−1K,π∗φ) of (Y,π∗L). Then
their respective equilibrium weights are related by

Pπ−1Kπ∗φ = π∗PKφ.

We stress that π is not assumed to have connected fibres (in which case
every psh weight ψ on π∗L is of the form ψ = π∗τ for some psh weight
on L).

Proof It is clear that Pπ−1Kπ∗φ ≥ π∗PKφ by definition. In order to prove
the converse inequality we argue as in the proof of [25] Proposition 1.12. Let
ψ be a psh weight on π∗L such that ψ ≤ π∗φ on π−1(K). Let φ0 be a fixed
smooth weight on L and set v := ψ − π∗φ0, which is a π∗θ -psh function on
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Y with θ := ddcφ0. Define a function u on X by

u(x) := max
y∈π−1(x)

v(y). (2.2)

We claim that u is a θ -psh function. Indeed it is standard to see that u is a
θ -psh function on the Zariski open subset U of regular values of π , and one
then checks that

u(x) = lim sup
y→x,y∈U

u(y)

using the fact that v is quasi-psh and π is proper, which proves the claim. Now
define τ := φ0 + u. It is a psh weight on L and it easily follows from (2.2)
that τ ≤ φ on K , thus τ ≤ PKφ. As a consequence we get π∗τ ≤ π∗PKφ. On
the other hand we have ψ ≤ π∗τ by (2.2) thus we have proved that every psh
weight ψ on L such that ψ ≤ π∗φ on π−1(K) satisfies ψ ≤ π∗PKφ, which
means that Pπ−1(K)π

∗φ ≤ π∗PKφ as desired. �

Recall from (1.4) that the equilibrium measure of (K,φ) is defined by

μeq(K,φ) := vol(L)−1MA(PKφ).

It is a probability measure by Theorem 2.2.

Proposition 2.10 If (K,φ) is a weighted subset, then μeq(K,φ) is concen-
trated on K and we have PKφ = φ on K a.e. with respect to this measure.

The technique of proof is pretty standard (see e.g. [36], p. 17), but we
provide details since this result plays a crucial role in the proof of Theorem B.

Proof Let � be as before a Zariski open subset of X such that every psh
weight of L with minimal singularities is locally bounded on �. Note that
μeq(K,φ) puts no mass on the Zariski closed subset X − � since the latter
is in particular pluripolar. In order to prove (i) we thus have to show that
μeq(K,φ) puts no mass on any given (small) open ball B ⊂ � − K .

By Choquet’s lemma there exists a non-decreasing sequence ψj of psh
weights with minimal singularities such that ψj ≤ φ on K and ψj → PKφ

a.e. wrt Lebesgue measure. Since ψj is bounded on B , by Bedford-Taylor we
can find a bounded psh function τj on B such that (ddcτj )

n = 0 and which
coincides with ψj on the boundary of B (here we identify psh weights on
L|B with psh functions, implicitly fixing a trivialisation of L|B ). Since τj can
be written as a Perron envelope, it follows that τj ≥ ψj and τj+1 ≥ τj on B .
Now let ψ̃j be the psh weight that coincides with ψj outside B and with τj

on B . We then have ψ̃j = ψj ≤ φ on K since the latter doesn’t meet B , hence

ψj ≤ ψ̃j ≤ φK ≤ PKφ
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by definition of φK . We thus see that PKφ is also the increasing limit a.e.
of the psh weights ψ̃j . Since we have MA(ψ̃j ) = 0 on B , it follows that
MA(PKφ) = 0 on B by continuity of Monge-Ampère along monotonic se-
quences, and we have thus proved that μeq(K,φ) is concentrated on K .

As a second step we prove that MA(PKφ) is also concentrated on the
closed subset {PKφ ≥ φ}. The argument is essentially the same, except that
we need to be slightly more careful to guarantee that ψ̃j ≤ φ on B . Let thus
x0 ∈ � such that PKφ(x0) < φ(x0) − ε with ε > 0. If B is a small open ball
centered at x0, we can identify weights on L|B with functions. If B is small
enough we have PKφ < φ(x0) − ε on B by upper semi-continuity of PKφ

and φ ≥ φ(x0) − ε by continuity of φ. If τj denotes as above the bounded
psh function on B such that (ddcτj )

n = 0 and which coincides with ψj on
the boundary of B , then ψj ≤ φ(x0) − ε on B implies τj ≤ φ(x0) − ε on the
boundary of B , hence

τj ≤ φ(x0) − ε ≤ φ

on B by pluri-subharmonicity of τj (since φ(x0) − ε is a constant). We thus
see that ψ̃j defined as above satisfies ψ̃j ≤ φ on K , and the same reasoning
as above yields MA(PKφ) = 0 on B as desired.

Finally observe that the same sequence ψj as above satisfies

∫
X

(ψj − φ)MA(PKφ) ≤ 0

since ψj ≤ φ on K and MA(PKφ) is concentrated on K by the first step of
the proof. It follows that

∫
X

(PKφ − φ)MA(PKφ) ≤ 0

since

lim
j→∞

∫
X

(ψj − φ)MA(PKφ) =
∫

X

(PKφ − φ)MA(PKφ)

by Theorem 2.6. But we have already shown that PKφ ≤ φ a.e. wrt
MA(PKφ), thus we get PKφ = φ a.e. wrt MA(PKφ) as desired. �

We now quote from [6] the following description of μeq(X,φ) for a smooth
weight φ on X, which plays a key role in the present paper (cf. the proof of
Theorem 3.1 below):

Theorem 2.11 If φ is a smooth weight on L then ddcPXφ has L∞
loc coeffi-

cients on a Zariski open subset �.
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This result has now been extended to the case of an arbitrary big cohomol-
ogy class in H 1,1(X,R) in [11]. As in [6, 11] we infer:

Corollary 2.12 If φ is a smooth weight on L then μeq(X,φ) is absolutely
continuous with respect to Lebesgue measure. In fact we have ddcφ ≥ 0
pointwise on the compact subset E := {PXφ = φ}, and

μeq(X,φ) = vol(L)−11E(ddcφ)n.

Proof Since ddcPXφ has L∞
loc coefficients on � a local convolution argu-

ment shows that the Bedford-Taylor measure (ddcPXφ)n has L∞
loc density

with respect to Lebesgue measure on � and coincides with the pointwise
n-th exterior power of ddcPXφ (compare for instance [36], p. 16).

If ddcφ < 0 at a point x0 ∈ X then the function PXφ −φ ≤ 0 is strictly psh
in a neighbourhood of x0, so it cannot vanish at x0 by the maximum principle.
This shows that ddcφ ≥ 0 pointwise on E.

Since both μeq(X,φ) and (ddcφ)n put no mass on X − � there remains
to show that u := PXφ − φ satisfies ∂u

∂zi∂zj
= 0 Lebesgue-a.e. on E ∩ B for

each ball B in a coordinate chart centered at a point of E. Since ddcu has
L∞

loc-coefficients we have in particular �u ∈ L1
loc hence u ∈ W

2,1
loc by ellip-

tic regularity. The result now follows by successively applying Lemma 2.13
below to u and its first partial derivatives. �

Lemma 2.13 Let A be a measurable subset of R
m and let v ∈ W

1,1
loc (Rm)

such that v = 0 a.e. on A. Then ∂v/∂xi = 0 a.e. on A for i = 1, . . . ,m.

See for instance [43], p. 53 for a proof.

2.5 Approximation by pluri-subharmonic envelopes of smooth weights

Let K be a given compact non-pluripolar subset of X. We first record the
following straightforward properties of the projection operator PK .

Lemma 2.14 The projection operator PK is non-decreasing, concave and
continuous along decreasing sequences of continuous weights on L|K . It is
also 1-Lipschitz continuous:

sup
X

|PKφ1 − PKφ2| ≤ sup
K

|φ1 − φ2|

for any two continuous weights φ1, φ2 on L|K .

The following approximation result will allow us to reduce the proof of
Theorem A to the case of smooth weights.
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Proposition 2.15 Let L be a big line bundle.

• Let ψ be a psh weight on L. Then there exists a decreasing sequence of
smooth weights φj on L such that limj→∞ PXφj = ψ pointwise on X.

• Let (K,φ) be a weighted subset. Then there exists an increasing sequence
φj of smooth weights on L such that limj→∞ PXφj = φK almost every-
where wrt Lebesgue measure.

Proof Since ψ is in particular upper semi-continuous, we can find a decreas-
ing sequence φj of smooth weights such that φj → ψ pointwise on X. Since
ψ ≤ φj is psh, we infer ψ ≤ PXφj ≤ φj , and it follows that PXφj also de-
creases pointwise to ψ , which proves the first point.

Let us now prove the second point. We first claim that

φK = sup{PXτ, τ continuous weight on L,PXτ ≤ φ on K}.

Indeed let ψ be psh weights such that ψ ≤ φ on K and let ε > 0. By the first
part of the proof, there exists a decreasing sequence φj of smooth weights
such that PXφj decreases pointwise to ψ − ε as j → ∞. By Dini’s lemma,
it follows that the usc function PXφj − φ is ≤ 0 on the compact set K for
j � 1 large enough, and we thus get

ψ − ε ≤ PXφj ≤ φK

for j large enough, hence the claim. Since the family of psh weights PXτ

as above is clearly stable by max, Choquet’s lemma thus shows that there
exists an increasing sequence τj of continuous weights such that τj ≤ φ on
K and PXτj → φK a.e. To conclude the proof we simply take an increasing
sequence of smooth weights φj such that

τj − 1/j ≤ φj ≤ τj . �

Remark 2.16 When L is ample one can show using Demaily’s regularisation
theorem [34] that the smooth weights φj in both parts of Proposition 2.15
can furthermore be taken to be strictly psh, and in particular PXφj = φj . This
shows in particular that

φK = sup{ψ,ψ continuous psh weight on L,ψ ≤ φ on K},

which is thus always lower semi-continuous in that case. It follows that (K,φ)

is regular iff φK is continuous when L is ample, which corresponds to the
classical definition (cf. [44]).
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3 The Bergman distortion function and the Bernstein-Markov property

3.1 Bergman kernels

Let (μ,φ) be a weighted measure, and let E be the support of μ, which is
non-pluripolar by our standing assumptions. The Bergman distortion func-
tion ρ(μ,φ) is defined at a point x ∈ E as the squared operator norm of the
evaluation operator

evx : H 0(L) → Lx,

in other words

ρ(μ,φ)(x) = sup
s∈H 0(L)−{0}

|s(x)|2φ/‖s‖2
L2(μ,φ)

. (3.1)

Since μ is a probability measure we have

‖s‖L2(μ,φ) ≤ ‖s‖L∞(E,φ),

which shows that

sup
E

ρ(μ,φ)1/2

is exactly the distortion between the L2(μ,φ) and L∞(E,φ)-norms on
H 0(L).

If S = (s1, . . . , sN) denotes an L2(μ,φ)-orthonormal basis of H 0(L), then
it is well-known that

ρ(μ,φ) =
N∑

j=1

|sj |2φ.

The Bergman measure associated to (μ,φ) is now defined as

β(μ,φ) := N−1ρ(μ,φ)μ. (3.2)

Note that it is a probability measure since we have
∫

X

ρ(μ,φ)μ =
∑
j

‖sj‖2
L2(μ,φ)

= N.

If we now replace φ by kφ, then the relation

sup
K

ρ(μ, kφ) ≥ Nk

shows that the distortion between the L2(μ, kφ) and L∞(E, kφ)-norms on
H 0(kL) grows at least like kn/2 as k → ∞.
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Assume now that μ is a smooth positive volume form on X and that φ is
smooth, so that E = X in particular. When φ has strictly positive curvature,
the celebrated Bouche-Catlin-Tian-Zelditch theorem [23, 28, 57, 61] asserts
that β(μ, kφ) admits a full asymptotic expansion in the space of smooth vol-
ume forms, with the probability measure μeq(X,φ) as the dominant term.

As was shown by the first named author (in [9] for the P
n case and in [6]

for the general case), part of this result still holds when the positive curvature
assumption on φ is dropped.

Theorem 3.1 Let L be a big line bundle, μ be a smooth positive volume form
on X and φ be a C2 weight on L. Then we have

• supX ρ(μ, kφ) = O(kn).

• limk→∞ β(μ, kφ) = μeq(X,φ) in the weak topology of measures.

Since this result plays a crucial role in what follows, we will sketch its
proof for the convenience of the reader, and refer to [6] for the complete
proof—a slightly more involved one in fact since Fujita’s theorem is not used
there but rather given a direct proof by analytic means.

Proof By an elementary argument locally replacing φ by its second order
Taylor expansion at the centre of a ball and using the mean value inequality,
one shows that supX ρ(μ, kφ) = O(kn), i.e. the first assertion, and

lim sup
k→∞

N−1
k ρ(μ, kφ) ≤ vol(L)−1(ddcφ)n/μ

pointwise on the set where ddcφ ≥ 0 (compare [15], Theorem 2.1).
We now sketch the proof of the second point. Since we are dealing with

probability measures, it is enough to show by weak compactness that if ν

is a given accumulation point of the sequence of measures β(μ, kφ), then
necessarily ν ≤ μeq(μ,φ).

Now set E := {PXφ = φ}, so that ddcφ ≥ 0 on E and

μeq(X,φ) = vol(L)−11E(ddcφ)n

by Corollary 2.12 recalled above from [6, 11]. Since we automatically have

ρ(μ, kφ) ≤ exp (k(PXφ − φ)) sup
X

ρ(μ, kφ)

by Proposition 2.8, the first assertion shows that N−1
k ρ(μ, kφ) tends to 0

(exponentially fast) pointwise on X − E.
Putting all this together yields

lim sup
k→∞

N−1
k ρ(μ, kφ)μ ≤ μeq(X,φ)
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a.e. on X, and Lebesgue’s dominated convergence finally implies that

ν ≤ μeq(X,φ)

for any accumulation point ν as desired. �

3.2 The Bernstein-Markov property

Let μ be a positive volume form on X. By the first part of Theorem 3.1, if φ

is a C2 weight on L then the distortion

sup
X

ρ(μ, kφ)1/2

between the L2(μ, kφ) and L∞(X, kφ)-norms on H 0(kL) grows precisely
like kn/2, which is the minimal possible growth.

This fact is no longer true if we drop the smoothness assumption on φ. Ar-
guing as in [15], p. 3 one can for instance show that the distortion is O(kn/α)

when φ is of class Cα with 0 < α < 2, and this estimate is optimal. For gen-
eral C0 weights we have the following elementary fact:

Lemma 3.2 Let μ be a smooth positive volume form. If φ is a C0 weight
on L, then the distortion has at most sub-exponential growth, i.e. for every
ε > 0 we have

sup
X

ρ(μ, kφ)1/2 = O(eεk).

Proof Given ε > 0 we can cover X by a finite number of small balls Bj on
which L is trivialised and φ is ε-close to its value φj at the centre of the
ball. We can also assume that X is still covered by smaller balls B ′

j relatively

compact in Bj . A section s ∈ H 0(kL) is identified with a holomorphic section
on Bj , and the desired inequality

|s(x)|2e−2kφ ≤ Ce2εk

∫
Bj

|s|2e−2kφdμ

for x ∈ B ′
j is thus an immediate consequence of the mean value inequality

applied to the psh function |s|2e−2kφj on Bj . �

We introduce the following extension of standard terminology (see [19]):

Definition 3.3 Let (K,φ) be a weighted subset. We say that a probability
measure μ on K has the Bernstein-Markov property wrt (K,φ) if the dis-
tortion between the L2(μ, kφ) and L∞(K, kφ)-norms on H 0(kL) has sub-
exponential growth.
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The following result is shown in [14], generalising results of Siciak [54].

Theorem 3.4 Let (K,φ) be a weighted subset and let μ be a probability
measure on K putting no mass on pluripolar sets. Assume that:

• (K,φ) is regular, i.e. PKφ ≤ φ holds on K .
• μ is determining for (K,φ), i.e. for every psh weight ψ on L, ψ ≤ φ

a.e. wrt μ already implies ψ ≤ φ on K .

Then μ has the Bernstein-Markov property wrt (K,φ).

This somewhat technical looking criterion actually shows that a host of
reasonable measures satisfy the Bernstein-Markov property. On the one hand
if K is for instance either (the closure of) a smoothly bounded domain or
a real analytic totally real n-submanifold of X, then (K,φ) is regular for
any continuous weight φ. On the other hand if (K,φ) is regular then it is
shown in [14] that any probability measure on K with support equal to K is
determining for (K,φ), and the domination principle (Corollary 2.5) shows
that the equilibrium measure of (K,φ) is determining as well (its support is
equal to the Šilov boundary of (K,φ)).

In the present article, we shall actually only use the following two spe-
cial cases of Theorem 3.4: either μ and φ are both smooth (in which case
the Bernstein-Markov property is a trivial consequence of the mean value in-
equality, as already noticed), or μ is the Haar measure on the unit compact
torus T

n ⊂ (C∗)n ⊂ P
n (in which case the Bernstein-Markov property was

established in [47]).
The next lemma will allow us to replace L∞-balls by L2-balls whenever

convenient.

Lemma 3.5 Let (K,φ) be a weighted subset and let μ be a probability mea-
sure on K . Then we have

0 ≤ Lk(μ,φ) − Lk(K,φ) ≤ 1

2k
log sup

K

ρ(μ, kφ).

In particular if μ has the Bernstein-Markov property wrt (K,φ) then

lim
k→∞ Lk(μ,φ) − Lk(K,φ) = 0.

Proof If we set

Ck := 1

2k
log sup

K

ρ(μ, kφ)

then we have

‖s‖L2(μ,kφ) ≤ ‖s‖L∞(K,kφ) ≤ ekCk‖s‖L2(μ,kφ)
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for all k and all sections s ∈ H 0(kL). Since the volume form volk is homoge-
neous of degree 2Nk = dimR H 0(kL) on H 0(kL) we get

0 ≤ log
volk B2(μ, kφ)

volk B∞(K, kφ)
≤ 2kNkCk

and the result follows by definition (1.7) and (1.8) of the L-functionals. �

4 The Monge-Ampère energy functional

In this section L denotes a big line bundle on X. We have chosen to use the
language of weights in this section since the rest of the article is naturally
expressed in this language, but it is of course immediate to extend the results
of this section (and Theorem B in particular) to the more general case of
θ -psh functions, where θ is a closed smooth (1,1)-form with big cohomology
class.

4.1 The energy functional on psh weights

Let us first fix a psh weight ψ0 with minimal singularities. As explained in
the introduction, we define the Monge-Ampère functional E on psh weights
with minimal singularities by the formula

E (φ) = 1

n + 1

n∑
j=0

∫
X

(φ − ψ0)〈(ddcφ)j ∧ (ddcψ
n−j

0 )〉.

This normalises E by the condition E (ψ0) = 0.
As in Sect. 2.3, the brackets denote non-pluripolar products. Concretely

this means that the integrals are only extended over a Zariski open subset �

of X on which all psh weights are locally bounded, so that Bedford-Taylor
wedge products are well-defined on �.

We now verify that E remains a primitive of the Monge-Ampère operator
in our singular setting.

Proposition 4.1 For any two psh weights φ1, φ2 with minimal singularities
we have

d

dt t=0+
E ((1 − t)φ1 + tφ2) =

∫
X

(φ2 − φ1)MA(φ1).

Proof The function u := φ2 − φ1 is bounded. We compute

(n + 1)E ((1 − t)φ1 + tφ2)
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=
∫

�

(φ1 − ψ0 + tu)

n∑
j=0

((1 − t)ddcφ1 + tddcφ2)
j ∧ (ddcψ0)

n−j

=
∫

�

(φ1 − ψ0)

n∑
j=0

(ddcφ1)
j ∧ (ddcψ0)

n−j

+ t

∫
�

u

n∑
j=0

(ddcφ1)
j ∧ (ddcψ0)

n−j

+ t

∫
�

(φ1 − ψ0)

n∑
j=1

j (ddcφ1)
j−1 ∧ ddcu ∧ (ddcψ0)

n−j + O(t2).

By integration-by-parts (Theorem 2.7) we have

∫
�

(φ1 − ψ0)

n∑
j=1

j (ddcφ1)
j−1 ∧ ddcu ∧ (ddcψ0)

n−j

=
∫

�

uddc(φ1 − ψ0)

n∑
j=1

j (ddcφ1)
j−1 ∧ (ddcψ0)

n−j

=
∫

�

u

n∑
j=1

j (ddcφ1)
j ∧ (ddcψ0)

n−j

−
∫

�

u

n−1∑
j=0

(j + 1)(ddcφ1)
j ∧ (ddcψ0)

n−j .

Now

n∑
j=0

(ddcφ1)
j ∧ (ddcψ0)

n−j +
n∑

j=1

j (ddcφ1)
j ∧ (ddcψ0)

n−j

−
n−1∑
j=0

(j + 1)(ddcφ1)
j ∧ (ddcψ0)

n−j

= (ddcφ1)
n + n(ddcφ1)

n.

It follows that

E ((1 − t)φ1 + tφ2) = E (φ1) + t

∫
�

u(ddcφ1)
n + O(t2)

as desired. �
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As a consequence, we see that (1.2) always holds, that is:

Corollary 4.2 For any two psh weights with minimal singularities φ,ψ we
have

E (φ) − E (ψ) = 1

n + 1

n∑
j=0

∫
X

(φ − ψ)〈(ddcφ)j ∧ (ddcψ)n−j 〉.

Proof We fix ψ and temporarily denote by F (φ) the right-hand side expres-
sion. We can then apply Proposition 4.1 with ψ in place of φ0 to get

d

dt
F ((1 − t)φ + tψ) =

∫
X

(ψ − φ)MA((1 − t)φ + tψ)

= d

dt
E ((1 − t)φ + tψ),

and the result follows since F (·) and E (·) − E (ψ) both vanish at ψ . �

4.2 General properties of the energy

Theorem 2.6 implies the following continuity properties of the energy:

Proposition 4.3 The map φ �→ E (φ) is continuous along converging se-
quences φj → φ of psh weights with minimal singularities in the following
three cases.

• φj decreases to φ pointwise.
• φj increases to φ a.e. for the Lebesgue measure.
• φj converges to φ uniformly on X.

Proposition 4.4 The map φ �→ E (φ) is non-decreasing and concave on psh
weights with minimal singularities.

Proof The first point follows from Corollary 4.2. To prove concavity, let
φ1, φ2 be two psh weights with minimal singularities and set

g(t) := E (tφ1 + (1 − t)φ2).

By Proposition 4.1, we have

g′(t) =
∫

X

uMA((1 − t)φ1 + tφ2)
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with u := φ2 − φ1. Computing the second derivative yields

g′′(t) = n

∫
�

uddcu ∧ ((1 − t)ddcφ1 + tddcφ2)
n−1

= −n

∫
�

du ∧ dcu ∧ ((1 − t)ddcφ1 + tddcφ2)
n−1 ≤ 0

by Theorem 2.7 again, and the proof is complete. �

Remark 4.5 More generally one can consider variations along a 1-parameter
family φt (with t in the unit-disc � in C) of weights on L with minimal sin-
gularities. Under suitable regularity assumptions on (t, x) �→ φt(x) a simple
modification of the previous proof yields

ddc
t E (φt ) =

∫
x∈X

(ddc
(x,t)φt (x))n+1. (4.1)

In the smooth case at least, this formula is well-known in Kähler geometry.
When L is ample the operator that maps a curve φt of smooth strictly psh
weights to the Monge-Ampère measure (ddc

(x,t)φt (x))n+1 may be identified
with the geodesic curvature of the curve ddc

xφt in the space of all Kähler
metrics K(X,L) on X lying in the first Chern class c1(L). The geodesic cur-
vature is defined with respect to the Riemannian metric on K(X,L) naturally
defined at φ by taking L2 norms of tangent vectors with respect to the volume
form (ddc

xφ)n [31]. Formula (4.1) thus shows that E is affine along geodesic
segments in K(X,L).

It is also interesting to note that

kn+1

(n + 1)!
∫

X

(ddc
(x,t)φ)n+1

is the leading term of the (1,1)-part of the pushed-forward form
∫

X

chX×�(kL, kφ)td(TX,ω),

which coincides with the curvature of the Quillen metric on detH •(kL) by
the main result of [18] (see also [55], Theorem 4, p. 132).

Remark 4.6 As a consequence of Proposition 4.4, we may extend as in [25]
the definition of E (φ) to an arbitrary psh weight on L as follows:

E (φ) = inf
ψ≥φ

E (ψ) ∈ [−∞,+∞[
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for ψ ranging over all psh weights with minimal singularities such that
ψ ≥ φ. It is straightforward to see that φ �→ E (φ) so defined remains non-
decreasing and concave on all psh weights. It is shown in [25] that it is also
upper semi-continuous in the weak topology and that Corollary 4.2 remains
true if both E (φ) and E (ψ) are finite.

The following result relates the Monge-Ampère energy EX on X to the
energy EY on a hypersurface Y of X. We assume here that L is ample and Y

is smooth for simplicity.

Proposition 4.7 Let L be an ample line bundle, and assume that Y is a
smooth hypersurface of X cut out by a section s ∈ H 0(X,L). If φ,ψ are
locally bounded psh weights on L then we have

n(EY (φ|Y ) − EY (ψ |Y )) = (n + 1)(EX(φ) − EX(ψ))

+
∫

X

log |s|φMA(φ) −
∫

X

log |s|ψMA(ψ).

Proof Consider the following simple algebraic formula

(ddcφ)n − (ddcψ)n = ddc

(
(φ − ψ)

n−1∑
j=0

(ddcφ)j ∧ (ddcψ)n−1−j

)
. (4.2)

From the point of view of Bott-Chern secondary characteristic classes, it may
be interpreted as a double transgression formula (compare [37, 55]). At any
rate, multiplying (4.2) by

uε := log(|s|φ + ε)

and using integration by parts gives

∫
X

uε(ddcφ)n − uε(ddcψ)n

+ (ddcφ) ∧ (φ − ψ)

n−1∑
j=0

(ddcφ)j ∧ (ddcψ)n−1−j

=
∫

X

(φ − ψ)ddc(uε + φ) ∧
n−1∑
j=0

(ddcφ)j ∧ (ddcψ)n−1−j .
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Now uε + φ decreases to log |s| as ε → 0 and ddc(uε + φ) converges to the
integration current [Y ] by the Lelong-Poincaré formula, and we get

∫
X

log |s|φMA(φ) −
∫

X

log |s|ψMA(ψ) + (n + 1)(EX(φ) − EX(ψ))

= n(EY (φ|Y ) − EY (ψ |Y ))

as desired. �

The following pull-back formula is straightforward using Proposition 2.9.

Proposition 4.8 Let π : Y → X be a surjective morphism between compact
complex manifolds of same dimension n and denote by e its (topological)
degree. Let L be a big line bundle on X, and let φ,ψ be two psh weights with
minimal singularities on L. Then we have

EY (π∗φ) − EY (π∗ψ) = e (EX(φ) − EX(ψ)) .

4.3 Proof of Theorem B

In this section we prove Theorem B. Let thus K be a non-pluripolar compact
subset of X. We first prove that

φ �→ Eeq(K,φ) = vol(L)−1E ◦ PK(φ)

is concave and continuous. Concavity is an immediate consequence of Propo-
sition 4.4: for any weights φ1, φ2 on L|K we have

PK((1 − t)φ1 + tφ2) ≥ (1 − t)PKφ1 + tPKφ2

by concavity of PK (Lemma 2.14) hence

E (PK((1 − t)φ1 + tφ2)) ≥ E ((1 − t)PKφ1 + tPKφ2)

(since E is non-decreasing)

≥ (1 − t)E (PKφ1) + t E (PKφ2)

(since E is concave). Continuity of φ �→ Eeq(K,φ) follows from Lemma 2.14
and the third case of Proposition 4.3.

Given a continuous weight φ on L|K and u ∈ C0(K), the concave function
E ◦ PK admits a directional derivative at φ in the direction u, and our goal is
to show that it is given by

d

dt t=0+
E ◦ PK(φ + tu) = 〈λ,u〉
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where λ is the linear form on C0(K) defined by

〈λ,u〉 =
∫

K

uMA(PKφ).

Note that λ computes the directional derivatives of E at PKφ according to
Proposition 4.1.

As a preliminary remark, we show:

Lemma 4.9 In order to prove Theorem B one may assume that u is a C∞
function on X.

Proof Theorem B admits the following integral reformulation

E ◦ PK(φ + u) − E ◦ PK(φ) =
∫ 1

t=0

∫
K

uMA(PK(φ + tu))dt.

If we let uj be a sequence of smooth functions on X converging uniformly to
u on K , then PK(φ + tuj ) → PK(φ + tu) uniformly on X by Lemma 2.14.
By Proposition 4.3, we deduce that

lim
j→∞ E ◦ PK(φ + uj ) = E ◦ PK(φ + u).

On the other hand for each t we have
∫

K

uj MA(PK(φ + tuj )) −
∫

K

uMA(PK(φ + tu))

=
∫

K

(uj − u)MA(PK(φ + tuj )) +
∫

K

u(MA(PK(φ + tuj )

− MA(PK(φ + tu))).

The first term is bounded by vol(L) supK |uj − u| by Theorem 2.2, whereas
the second one converges to 0 by Theorem 2.6. We thus see that

lim
j→∞

∫
K

uj MA(PK(φ + tuj )) =
∫

K

uMA(PK(φ + tu))

for all t , and we infer

lim
j→∞

∫ 1

t=0

∫
K

uj MA(PK(φ + tuj ))dt =
∫ 1

t=0

∫
K

uMA(PK(φ + tu))dt

by dominated convergence, which shows our claim. �
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From now on we will thus assume that u is the restriction to K of a C∞
function on X, that we also denote by u.

The problem at hand is an instance of a differentiability property for the
optimal value of a concave optimisation problem with parameter. Indeed since
E is non-decreasing we have

E ◦ PK(φ) = sup{E (ψ),ψ psh weight with minimal singularities

ψ ≤ φ on K}
by Choquet’s lemma and continuity of the energy along non-decreasing se-
quences.

There has been a certain amount of work on differentiability of such opti-
mal values in an abstract setting, but it seems that what we are trying to prove
doesn’t follow formally from such general results. On the other, the proof of
Lemma 4.10, though pretty elementary, was inspired by more delicate con-
siderations in [45].

The next lemma enables us to replace E by its linearisation λ at PKφ.

Lemma 4.10 We have

d

dt t=0+
E ◦ PK(φ + tu) = d

dt t=0+
〈λ,PK(φ + tu) − PKφ〉.

Proof Set for simplicity

a := d

dt t=0+
〈λ,PK(φ + tu) − PKφ〉,

which exists since λ ◦ PK is concave. On the one hand, concavity of E yields

E ◦ PK(φ + tu) ≤ E ◦ PK(φ) + 〈λ,PK(φ + tu) − PKφ〉,
hence

d

dt t=0+
E ◦ PK(φ + tu) ≤ a.

On the other hand, given ε > 0 we can fix δ > 0 small enough such that

〈λ,PK(φ + δu) − PK(φ)〉 ≥ δa − δε. (4.3)

For t > 0 small enough we then have

E ((1− t)PKφ + tPK(φ + δu)) ≥ E ◦PK(φ)+ t〈λ,PK(φ + δu)−PKφ〉− tδε

by Proposition 4.1

≥ E ◦ PK(φ) + tδa − 2tδε
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by (4.3). But since

PK(φ + tδu) ≥ (1 − t)PKφ + tPK(φ + δu)

by concavity of PK , we finally infer that

E ◦ PK(φ + tδu) ≥ E ◦ PK(φ) + tδa − 2tδε

for all t > 0 small enough by monotonicity of E . It follows that

d

dt t=0+
E ◦ PK(φ + tu) ≥ a − 2ε

for each ε > 0, and the result follows. �

We are now reduced to proving the linearised version of the problem, to
wit

Lemma 4.11 The super-differential at φ of the linearised problem is reduced
to λ. In other words, we have

d

dt t=0+
〈λ,PK(φ + tu) − PKφ〉 = 〈λ,u〉

for each u ∈ C0(K).

Recall that the super-differential of a concave function f at a point x0 of
an open convex subset U of a locally convex topological vector space V is
defined as the set of all continuous linear forms l ∈ V ∗ such that

f (x0) + 〈l, x − x0〉 ≥ f (x)

for all x ∈ U , which means that l defines at support hyperplane at (x0, f (x0))

to the graph of f (cf. e.g. [49] for more details). A crucial ingredient here is
the following orthogonality relation

〈λ,PKφ − φ〉 = 0,

which follows from Proposition 2.10. Since PK(φ +u) ≤ φ +u, this property
implies

〈λ,PK(φ + u) − PK(φ)〉 ≤ 〈λ,u〉,
which means that the linear form λ belongs to the super-differential at 0 of
the continuous concave function

u �→ 〈λ,PK(φ + u) − PKφ〉.
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At this point, we also see that Theorem B reduces to the differentiability
part of the assertion, since the differential then has to coincide with λ.

Proof We now prove Lemma 4.11. Our goal is to show that

〈λ,PK(φ + tu) − PKφ − tu〉 = o(t).

Since on the one hand

PK(φ + tu) ≤ φ + tu = PKφ + tu

λ-a.e. and on the other hand

sup
X

|PK(φ + tu) − PKφ − tu| = O(t)

by Lemma 2.14, it will be enough to show that

lim
t→0+

∫
{PK(φ+tu)<PKφ+tu}

λ = 0. (4.4)

We are going to show this by applying the comparison principle (Corol-
lary 2.4). We now fix a strictly psh weight φ+ with analytic singularities
on L. Since u is assumed to be smooth according to Lemma 4.9, it follows
that φ+ + εu is psh for ε > 0 small enough. Upon scaling u, we may assume
that ε = 1.

Since PKφ − PK(φ + tu) is bounded by Lemma 2.14, it follows in partic-
ular that

PK(φ) + tφ+ + tu

and

PK(φ + tu) + tφ+
are both psh wieights on the same R-line bundle (1 + t)L with equivalent
singularities (use the language of quasi-psh functions to make sense of the
notion of psh weight on an R-line bundle). The generalised comparison prin-
ciple (Corollary 2.4) thus yields

∫
Ot

MA(PK(φ) + t (u + φ+)) ≤
∫

Ot

MA(PK(φ + tu) + tφ+)

with

Ot := {PK(φ + tu) < PK(φ) + tu}.
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Now the binomial formula yields

MA(PK(φ + tu) + tφ+)

= MA(PK(φ + tu))

+
n∑

j=1

(
n

j

)
tj (ddcPK(φ + tu))n−j ∧ (ddcφ+)j (4.5)

on the Zariski open subset where all psh weights with minimal singularities
are locally bounded. Since t (u + φ+) is a psh weight on tL by assumption,
we have ∫

Ot

MA(PKφ) ≤
∫

Ot

MA(PK(φ) + t (u + φ+)),

which is in turn

≤
∫

Ot

MA(PK(φ + tu)) + O(t)

by (4.5) and Theorem 2.2. But PKφ ≤ φ implies that

Ot ⊂ {PK(φ + tu) < φ + tu},

and we infer that ∫
Ot

MA(PK(φ + tu)) = 0

by Proposition 2.10 again. We thus conclude that

∫
Ot

MA(PKφ) = O(t),

and the proof of Lemma 4.11 is thus complete. �

We now show that the energy at equilibrium is C1,1 in the following sense:

Proposition 4.12 Let (K,φ) be a weighted subset and let u be a smooth
function on X. Then the directional derivative of φ �→ Eeq(K,φ) at φ in the
direction u is Lipschitz continuous with respect to the sup-norm on K .

Proof By Lemma 2.14 and Theorem B it is enough to show that

φ �→
∫

X

uMA(φ)
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is Lipschitz continuous on the space of psh weights with minimal singular-
ities endowed with the sup-norm. By (4.2) above and integration by parts
(Theorem 2.7) yield

∫
X

uMA(φ) −
∫

X

uMA(ψ) =
∫

X

(φ − ψ)ddcu ∧ 

where the positive current

 :=
n−1∑
j=1

〈(ddcφ)j ∧ (ddcψ)n−j 〉

has uniformly bounded mass by Theorem 2.2, and the result follows. �

5 Volume growth and transfinite diameter

5.1 Proof of Theorem A

Let (K1, φ1) and (K2, φ2) be two weighted subsets. Our goal is to prove that

lim
k→∞ Lk(K1, φ1) − Lk(K2, φ2) = Eeq(K1, φ1) − Eeq(K2, φ2). (5.1)

If this formula holds for all (K1, φ1) and a fixed (K2, φ2), then it also holds
for any (K2, φ2) by taking differences. We can thus assume that K2 = X and
that φ2 is a fixed smooth weight on X.

Step 1. As a first step, we also assume that K1 = X and φ1 is smooth. Let
μ be a smooth positive volume form, so that both weighted measures (μ,φi),
i = 1,2 satisfy the BM property by Lemma 3.2. By Lemma 3.5, (5.1) is thus
equivalent in that case to

lim
k→∞ Lk(μ,φ1) − Lk(μ,φ2) = Eeq(X,φ1) − Eeq(X,φ2). (5.2)

As mentioned in (1.10), the volume ratio of L2-balls can be expressed as a
Gram determinants. As a consequence, we will prove:

Lemma 5.1 The directional derivatives of Lk(μ, ·) at a smooth weight φ are
given by integration against the Bergman measure β(μ, kφ).

Proof Let v be a given smooth function. By (1.10) we have

Lk(μ,φ + tv) − Lk(μ,φ) = − 1

2kNk

log detHk(t)
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with the Gram matrix

Hk(t) :=
(∫

X

s
(k)
i s

(k)
j e−2k(φ+tv)dμ

)
1≤i,j≤N

,

Sk = (s
(k)
j )j being a fixed orthonormal basis of H 0(kL) with respect to

L2(μ, kφ). Since Hk(0) = id, it follows that

d

dt t=0
Lk(μ,φ + tv) = − 1

2kNk

d

dt t=0
trHk(t)

= − 1

2kNk

∫
X

∑
j

|s(k)
j |2(−2kv)e−2kφμ

= 1

Nk

∫
X

vρ(μ, kφ)μ

and the result follows by definition (3.2) of β(μ, kφ). �

By Theorem 3.1 we have

lim
k→∞β(μ, kφ) = μeq(X,φ) (5.3)

for any smooth weight φ. Now the right-hand side is the derivative of Eeq(X, ·)
by Theorem B, so in view of Lemma 5.1 we get (5.2) by integrating (5.3)
along the segment between φ1 and φ2. More precisely, Lemma 5.1 implies

Lk(μ,φ1) − Lk(μ,φ2) =
∫ 1

t=0
dt

∫
X

(φ1 − φ2)β(μ, kφt )

with

φt := tφ1 + (1 − t)φ2.

By (5.3) we have
∫

X

(φ1 − φ2)β(μ, kφt ) →
∫

X

(φ1 − φ2)μeq(X,φt )

for each t ∈ [0,1]. Since
∫

X

(φ1 − φ2)β(μ, kφt ) ≤ sup
X

|φ1 − φ2|

for each k and each t , it follows by dominated convergence that

lim
k→∞ Lk(μ,φ1) − Lk(μ,φ2)
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=
∫ 1

t=0
dt

∫
X

(φ1 − φ2)μeq(X,φt )

=
∫ 1

t=0

d

dt
Eeq(X,φt ) = Eeq(X,φ1) − Eeq(X,φ2)

by Theorem B, as desired.

Remark 5.2 The argument just presented is similar to Donaldson’s proof of
Proposition 2 in [38]. In particular, Lemma 5.1 is a variant of Lemma 2 of [38]
(cf. also Lemma 3.1 of [16]).

Step 2. We now consider the general case. We first note that

Lk(K,φ) = Lk(X,φK) (5.4)

as a consequence of Proposition 2.8, and that Lk(X, ·) is non-decreasing. By
Proposition 2.15 we can find two sequences φ±

j of smooth weights on L such
that

PXφ−
j ≤ φK ≤ PKφ ≤ PXφ+

j (5.5)

where PXφ−
j (resp. PXφ+

j ) increases (resp. decreases) to PKφ almost every-
where (resp. everywhere) on X when j tends to infinity. By Step 1, we get

E (PXφ−
j ) − Eeq(X,φ2)

= lim
k→∞ Lk(X,PXφ−

j ) − Lk(X,φ2)

≤ lim inf
k→∞ Lk(X,φK) − Lk(X,φ2)

≤ lim sup
k→∞

Lk(X,φK) − Lk(X,φ2)

≤ lim
k→∞ Lk(X,PXφ+

j ) − Lk(X,φ2)

by (5.5) and monotonicity of Lk(X, ·)
= E (PXφ+

j ) − Eeq(X,φ2)

by Step 1 again. Now

Eeq(X,φ±
j ) = vol(L)−1E (PXφ±

j )

tends to

vol(L)−1E (PKφ) = Eeq(K,φ)
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by continuity of the energy along monotonic sequences (Proposition 4.3), and
putting all this together concludes the proof of Theorem A.

5.2 Proof of Corollary A

We start the proof with some algebraic preliminaries. Let (μ,φ) be a weighted
measure on (X,L). For each m ∈ N the Hilbert space structure on H 0(X,L)

defined by the L2(μ,φ)-scalar product induces a Hilbert space structure
on both H 0(X,L)⊗m and H 0(X,L)∧m respectively. If (sj ) is an L2(μ,φ)-
orthonormal basis of H 0(X,L) then si1 ⊗ · · · ⊗ sim , 1 ≤ i1, . . . , im ≤ N and
si1 ∧· · ·∧ sim , 1 ≤ i1 < · · · < im ≤ N , are respective orthonormal basis, which
shows that the vector space embedding

�m : H 0(X,L)∧m → H 0(X,L)⊗m

induced by the anti-symmetrisation operator

s1 ⊗ · · · ⊗ sm �→
∑
σ∈Sm

sgn(σ )sσ(1) ⊗ · · · ⊗ sσ(m)

satisfies

‖�m(v)‖2 = m!‖v‖2. (5.6)

On the other hand H 0(Xm,L�m) is endowed with the L2-scalar product
induced by the probability measure μm and the weight

(x1, . . . , xm) �→ φ(x1) + · · · + φ(xm).

We claim that the usual vector space isomorphism

H 0(X,L)⊗m � H 0(Xm,L�m)

is an isometry with respect to the Hilbert space structures. Indeed this
amounts to saying that given an L2(μ,φ)-orthonormal basis (sj ) of H 0(X,L)

the Nm sections of H 0(Xm,L�m) defined by

(x1, . . . , xm) �→ si1(x1) ⊗ · · · ⊗ sim(xm), 1 ≤ i1, . . . , im ≤ N,

are orthonormal, which is an immediate consequence of Fubini’s theorem.
Now recall from the introduction that given a basis S = (s1, . . . , sN) of

H 0(L) we define the determinant section detS ∈ H 0(XN,L�N) by

(detS)(x1, . . . , xN) := det(si(xj ))i,j . (5.7)
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Given a weighted subset (K,φ) and a probability measure μ on K the corre-
sponding L∞-norm (resp. L2 norm ) of detS will simply be denoted by

‖detS‖L∞(K,φ) := sup
(x1,...,xN )∈KN

|det(si(xj ))|e−(φ(x1)+···+φ(xN )) (5.8)

and

‖detS‖2
L2(μ,φ)

:=
∫

(x1,...,xN )∈XN

|det(si(xj ))|2e−2(φ(x1)+···+φ(xN ))μ(dx1) . . .μ(dxN).

(5.9)

We will rely on the following formula for this L2-norm, which is well-known
in the context of determinantal point processes (compare [33], p. 103, [42],
Proposition 2.10) and is also familiar in quantum mechanics (Slater determi-
nants).

Lemma 5.3

‖detS‖2
L2(μ,φ)

= N !det(〈si, sj 〉L2(μ,φ))i,j .

Proof Let S′ be an L2(μ,φ)-orthonormal basis and write

sj =
N∑

i=1

aij s
′
i .

The matrix A = (aij ) satisfies

det(〈si, sj 〉L2(μ,φ))i,j = |detA|2

thus (5.9) yields

‖detS‖2
L2(μ,φ)

= det(〈si, sj 〉L2(μ,φ))i,j‖detS′‖2
L2(μ,φ)

.

We may thus assume that S = S′ is an L2(μ,φ)-orthonormal basis and we
then have to show that

‖detS‖2
L2(μ,φ)

= N ! (5.10)

But comparing definitions shows that

detS = �N(s1 ∧ · · · ∧ sN),
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where s1 ∧ · · · ∧ sN is a length-one generator of the determinant line

detH 0(X,L) := H 0(X,L)∧N

and

�N : H 0(X,L)∧N → H 0(X,L)⊗N � H 0(XN,L�N)

is the anti-symmetrisation operator. The result now follows from (5.6). �

Now let as in Corollary A (E,ψ) be a weighted subset and ν be a proba-
bility measure with the Bernstein-Markov property for (E,ψ). For each k let
Sk = (s

(k)
j ) be an L2(ν, kψ)-orthonormal basis of H 0(kL). Given a weighted

subset (K,φ) we set

Dk(K,φ) := 1

kNk

log‖detSk‖L∞(K,kφ)

with Nk := h0(kL) and our goal is thus to show that

lim
k→∞ Dk(K,φ) = Eeq(E,ψ) − Eeq(K,φ).

Step 1. We will first show that (ii) of Corollary A is actually equivalent
to (ii) of Theorem A. Let thus μ be a probability measure on K with the
Bernstein-Markov property for (K,φ). Since the L2-norms L2(μ, kφ) and
L2(ν, kψ) are induced by scalar products on H 0(X, kL) the ratio of their
unit-ball volumes can be expressed as a Gram determinant:

vol B2(ν, kψ)

vol B2(μ, kφ)
= det

(
〈s(k)

i , s
(k)
j 〉L2(μ,kφ)

)
i,j

.

By Lemma 5.3 we thus get

‖detSk‖2
L2(μ,kφ)

= Nk!vol B2(ν, kψ)

vol B2(μ, kφ)
,

or in other words

1

kNk

log‖detSk‖L2(μ,kφ) = Lk(ν,ψ) − Lk(μ,φ) + logNk!
2kNk

.

Now Nk = O(kn) implies

logNk! = O(kn log k) = o(kNk),

and we thus see that (ii) of Corollary A is equivalent to (ii) of Theorem A.
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Step 2. We now prove (i) of Corollary A assuming that there exists a prob-
ability measure μ with the Bernstein-Markov property with respect to (K,φ)

(which is not the general case). We have to show that

log‖detSk‖L∞(K,kφ) = log‖detSk‖L2(μ,kφ) + o(kNk). (5.11)

Let ε > 0. By the Bernstein-Markov property of μ with respect to (K,φ)

there exists C > 0 such that

|s(x)|2kφ ≤ Cekε

∫
X

|s|2kφdμ (5.12)

for every k, every section s ∈ H 0(X, kL) and every x ∈ X. Now if x1, . . . , xNk

are points of X, then for each j

x �→ detSk(x1, . . . , xj−1, x, xj+1, . . . , xNk
)

is a holomorphic section in H 0(X, kL). A successive application of (5.12)
thus yields

‖detSk‖2
L∞(X,kφ) ≤ CNkekNkε‖detSk‖2

L2(μ,kφ)
,

and (5.11) follows.
Step 3. We finally show (i) of Theorem A for an arbitrary weighted sub-

set (K,φ). Note that Step 2 shows in particular that (i) of Corollary A holds
when K = X, since any smooth volume form has the Bernstein-Markov prop-
erty with respect to (X,φ) by Lemma 3.2. We remark that Dk(X, ·) is non-
increasing, and a successive application of Proposition 2.8 to each variable of
the holomorphic section detSk shows that

Dk(K,φ) = Dk(X,φK),

which is the analogue of (5.4). We may then conclude by using exactly the
same arguments as in Step 2 of the proof of Theorem A, simply replacing Lk

with −Dk .

5.3 Alternative arguments for an ample line bundle

The case of an ample line bundle L already covers the C
n case. For read-

ers primarily interested in this situation we stress that all preliminary results
on mixed Monge-Ampère operators in Sect. 2 are then standard (cf. for in-
stance [35, 36]), since psh weights with minimal singularities are in fact lo-
cally bounded when L is ample.

As we are going to show, somewhat simpler proofs of Theorems A and B
can be provided when L is ample. The main point is that Theorem A can then
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be obtained as direct consequence of the usual Bouche-Catlin-Tian-Zelditch
theorem without relying on [6, 7], whereas Theorem B can be deduced by
combining Theorem A with [6, 7].

Proof of Theorem A Using the same reasoning as in Step 2 of the proof of
Theorem A above, we are reduced to showing that

Lk(X,φ1) − Lk(X,φ2) → E (PXφ1) − E (PXφ2) (5.13)

when φ1, φ2 are smooth weights. By taking differences it is even enough to
treat the case where φ2 is smooth and strictly psh, the existence of such a
weight φ2 being guaranteed by the assumption that L is ample.

Since PXφ1 is a continuous psh weight Richberg’s regularisation theorem
([48], see also [35], p. 52) yields a sequence of smooth strictly psh weights
ψj such that

εj := sup
X

|PXφ1 − ψj |

tends to 0 as j → ∞. Since Lk(X, ·) is non-decreasing and satisfies the scal-
ing property it follows that

|Lk(X,ψj ) − Lk(X,PXφ1)| ≤ εj ,

i.e.

Lk(X,ψj ) → Lk(PX,φ1) = Lk(X,φ1)

as j → ∞ uniformly with respect to k. Since we also have E (ψj ) → E (PXφ1)

we are thus reduced to the case where φ1 is smooth strictly psh as well.
We now fix a smooth volume form μ. Since μ has the BM property with re-

spect to both (X,φ1) and (X,φ2), Lemma 3.5 shows that (5.13) is equivalent
to

Lk(μ,φ1) − Lk(μ,φ2) → E (φ1) − E (φ2).

But this is just an integrated version of the Bouche-Catlin-Tian-Zelditch the-
orem (cf. [15] for a particularly simple proof of a weak version suficient for
our purpose). Indeed the latter says that the derivative of Lk(μ, ·) at a smooth
strictly psh weight (which is equal to β(μ, kφ) by Lemma 5.1) converges to
E ′(φ) = μeq(X,φ) as k → ∞.

A special case of Theorem B Here we assume that K = X. If φ1, φ2 are
smooth weights and μ is a smooth volume form Theorem A implies that

lim
k→∞ Lk(μ,φ1) − Lk(μ,φ2) = Eeq(X,φ1) − Eeq(X,φ2).
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On the other hand the differential of Lk(μ, ·) at a smooth weight φ is given by
integration against β(μ, kφ) by Lemma 5.1 and [7] (i.e. Theorem 3.1) implies
that

lim
k→∞β(μ, kφ) = μeq(X,φ).

Integrating along the line segment between φ1 and φ2 yields

Eeq(X,φ1) − Eeq(X,φ2) =
∫ 1

t=0
dt

∫
X

(φ1 − φ2)μeq(X, tφ1 + (1 − t)φ2),

which is equivalent to Theorem B (for K = X).

6 Applications to logarithmic pluri-potential theory

In this section, we will reinterpret our general results in the special case where
(X,L) = (Pn, O(1)) and the compact subsets considered lie in the affine
piece C

n. As explained in the introduction, this corresponds to weighted log-
arithmic pluri-potential theory in C

n.
We choose homogeneous coordinates [Z0 : · · · : Zn] on P

n such that
Z0 = 0 cuts out the hyperplane at infinity, so that zj := Zj/Z0 define the
Euclidean coordinates on C

n. The linear form Z0 can be seen as the section
in H 0(Pn, O(1)) inducing the constant polynomial 1 on C

n, and this section
enables us to identify weights on O(1) over C

n to functions on C
n by

φ �→ v := φ − log |Z0| = − log |Z0|φ.

We then have ddcφ = ddcv on C
n by the Lelong-Poincaré formula, and φ

extends to a psh weight (resp. with minimal singularities) on O(1) over P
n iff

v is a psh function on C
n such that v ≤ log+ |z| + O(1) (resp. v = log+ |z| +

O(1)) on C
n.

If K is a compact subset of C
n, μ is a probability measure on K and

v ∈ C0(K) is a continuous function on K , then we will talk about the
weighted subset (K,v) and the weighted measure (μ, v). The equilibrium
weight of (K,v) is then identified with the usc regularisation of Siciak’s ex-
tremal function attached to (K,v), and will be denoted by PKv. It is thus a
psh function on C

n such that PKv = log+ |z| + O(1).

6.1 Leja’s transfinite diameter as an energy

Denote by T ⊂ (C∗)n ⊂ P
n the unit compact torus induced by the toric Kähler

structure of P
n. As is well-known, the equilibrium function of (T ,0) is then

max
1≤j≤n

log+ |zj |
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and the equilibrium measure

μT := μeq(T ,0)

is then the Haar probability measure on T . For each k, let Sk denote
the family of all monomials on C

n of degree at most k, which is an
L2(μT ,0)-orthonormal basis. Comparing definitions, Leja’s transfinite diam-
eter d∞(K,v) (cf. [52]) is then seen to be defined by

logd∞(K,v) = lim
k→∞

(n + 1)!
nkn+1

log‖detSk‖L∞(K,kv)

provided the limit exists. In the unweighted case (v = 0), the limit has been
proved to exist by Zaharjuta [60]. Corollary A shows that the limit also exists
in the weighted case, and unravelling definitions we get

logd∞(K,v) = 1

n

n∑
j=0

∫
Cn

(
max

i
log+ |zi | − PKv

)
(ddcPKv)j

∧
(
ddc max

i
log+ |zi |

)n−j

(6.1)

(compare [32, 50] for the unweighted case).

6.2 A weighted iterated Robin formula

As a corollary of the recursion formula (4.7) we get the following weighted
generalisation of Rumely’s Robin-type formula [50]:

Corollary 6.1 Let (K,v) be a weighted compact subset of C
n. Then its trans-

finite diameter satisfies

logd∞(K,v) = 1

n

n∑
j=0

∫
Yj

(log
∣∣Zj

∣∣ − PKv)(ddcPKv)n−j

where [Z0 : · · · : Zn] denote homogeneous coordinates in P
n, Y0 = P

n and
Yj = {Z0 = · · · = Zj−1 = 0} when j ≥ 1.

Proof Let T0 := T , φ0 = log |Z0| and ψ := log |Z0| + v. By (6.1) we then
have

n logd∞(K,v) = (n + 1)
(

EY0(PT0φ0) − EY0(PKψ)
)

with

PT φ = max
0≤j≤n

log |Zj |.
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We thus see that PT φ|Y1 coincides with the similarly defined weight PT1φ1
on Y1. On the other hand |Z0|φ ≡ 1 on T and Proposition 4.7 thus implies

(n + 1)(EY0(PT0φ0) − EY0(PKψ))

= n(EY1(PT1φ1) − EY1(PKψ |Y1))

+
∫

Y0

(log |Z0| − PKψ)(ddcPKψ)n,

and the formula follows by induction on n. �

In case n = 1, this formula relates the weighted Robin constant

γ (K,v) := lim|z|→∞
(
v∗
K(z) − log |z|)

to the weighted transfinite diameter by

− logd∞(K,v) = γ (K,v) +
∫

K

(PKv)ddc(PKv),

the weighted version of Robin’s formula (cf. [52]).

6.3 Pull-back, the resultant and dynamics

We first consider the following general dynamics situation. Let (X,L) be a
projective manifold endowed with an ample line bundle and let f : X → X

be an endomorphism such that f ∗L = dL in the Picard group of X for some
integer d , called the (first) algebraic degree of f . These assumptions imply
in particular that f is a finite morphism, and its topological degree is e = dn.
We also assume that d ≥ 2, so that f is not an automorphism.

We would like to consider the action of d−1f ∗ on the space of weights
on L. However the equality f ∗L = dL, which holds in Pic(X), only means
that f ∗L and dL are isomorphic, and a specific choice of isomorphism is
required in order to identify weights on f ∗L with weights on dL. Such a
choice is equivalent to that of a lifting of f to a map F : L → L that is
homogeneous of degree d on the fibres.

The choice of a lift F enables to consider the action of d−1f ∗ on weights
of L, and the dynamical Green weight may then be defined by

gF := lim
m→∞(d−1F ∗)mφ

where φ is any given continuous psh weight on L. The Green weight gF is a
continuous psh weight, and is the unique fixed point of d−1F ∗ in the space of
continuous weights on L (cf. for instance Sibony’s survey in [29]). The Green
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weight gF depends on the specific choice of a lift F and not just on f . Indeed
we have

gλF = gF + 1

d − 1
log |λ| (6.2)

for each λ ∈ C
∗.

Now let (E,φ) be a reference weighted subset of X, and define the trans-
finite diameter (with respect to (E,φ)) of a weighted subset (K,ψ) by

d∞(K,ψ) := exp

(
n + 1

n
(E (PEφ) − E (PKψ))

)
,

so that this coincides with Leja’s transfinite diameter for weighted compact
subsets of C

n if (E,φ) = (T ,0). We then prove the following general pull-
back formula:

Theorem 6.2 There exists a constant c > 0 such that for any weighted subset
(K,ψ) we have

d∞(f −1K,d−1f ∗ψ) = c d∞(K,ψ)1/d

and in fact

c = exp

(
(n + 1)(d − 1)

nd
(E (PEφ) − E (gF ))

)
.

Proof Let τ be a psh weight with minimal singularities on L. We have

E (PEφ) − E (d−1f ∗τ)

= E (PEφ) − E (d−1f ∗PEφ) + E (d−1f ∗PEφ) − E (d−1f ∗τ)

= E (PEφ) − E (d−1f ∗PEφ) + d−1 (E (PEφ) − E (τ ))

by Proposition 4.8. On the other hand Proposition 2.9 shows that the equi-
librium weight of (f −1K,d−1f ∗ψ) is d−1f ∗PKψ , hence applying this to
τ := PKψ proves the first assertion with

c := exp

(
n + 1

n

(
E (PEφ) − E (d−1f ∗PEφ)

))
.

On the other hand, applying the above relation to τ := gF yields

E (PEφ) − E (d−1f ∗PEφ) = d − 1

d
(E (PEφ) − E (gF )),

hence the second assertion. �
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We now specialise this transformation formula to P
n and show how to

recover DeMarco-Rumely’s result [32].

Corollary 6.3 Let f : P
n → P

n be an endomorphism of degree d ≥ 2, and
let F : C

n+1 → C
n+1 be a lifting of f to a d-homogeneous polynomial map.

Then for every weighted compact subset (K,ψ) we have

d∞(f −1K,d−1f ∗ψ) = d∞(K,ψ)
1
d |Res(F )|−1/ndn+1

where Res(F ) denotes the resultant of F .

Proof Our arguments mostly follow [3] and [32] with some simplifications.
The space of all d-homogeneous polynomial maps F : C

n+1 → C
n+1 is an

affine space C
N+1 of dimension

N + 1 := (n + 1)

(
n + d

d

)
.

Each such map F induces a rational map f : P
n ��� P

n. By [39] (p. 105
and p. 427) there exists an irreducible hypersurface H of P

N of degree
(n + 1)dn such that f is an endomorphism iff F ∈ π−1(PN − H), where
π : C

N+1 − {0} → P
N denotes the quotient map. The variety of all degree

d endomorphisms f of P
n is thus identified with the smooth affine variety

P
N − H . The irreducible homogeneous polynomial of degree (n + 1)dn in

N + 1 variables cutting out H is called the resultant and is denoted by Res.
It is normalised by the condition Res(F0) = 1 for

F0(Z0, . . . ,Zn) = (Zd
0 , . . . ,Zd

n).

The transformation formula (6.2) above implies

E (gλF ) = E (gF ) + 1

d − 1
log |λ|,

so that F �→ (d − 1)E (gF ) descends to a weight τ on O(1) over P
N − H .

The main point is now Theorem 4.5 of [3], which says that ddcτ ≡ 0
on P

N − H . On the other hand Remark 1.3 of [3] implies that τ is locally
bounded from above near each point of H , hence extends to a psh weight on
O(1) over P

N . The closed positive (1,1)-current ddcτ on P
N is supported on

the irreducible hypersurface H , thus the Support Theorem for closed positive
currents (see [35], Corollary 2.14, p. 165) implies

ddcτ = c[H ]
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for some c > 0, and in fact c = 1/(n + 1)dn since H has degree (n + 1)dn.
This means in turn that there exists a constant C > 0 such that

E (gF ) = 1

(n + 1)(d − 1)dn
log |Res(F )| + C (6.3)

for all F . This corresponds to Proposition 4.9 of [3], whose proof has been
reformulated here. Now the Green weight of the above map F0 is easily seen
to be

gF0 = max
j

log |Zj |,

which is also the equilibrium weight PTn0 of (Tn,0). Since we have
Res(F0) = 1, we infer that C = Eeq(T ,0), so that (6.3) becomes

exp

(
(n + 1)(d − 1)

nd
(E (PT 0) − E (gF ))

)
= |Res(F )|−1/ndn+1

,

and the result follows. �

7 Analytic torsion and equidistribution of small points

7.1 Asymptotics of the analytic torsion

Let X be a compact Kähler manifold equiped with a fixed Kähler form ω and
induced measure ωn. If L is a line bundle over X, recall that the complex line

detH •(L) :=
∑
q≥0

(−1)q detHq(L)

(in our additive notation for tensor products of lines) is called the determinant
of cohomology of L. If φ is a smooth weight on L, then detH •(L) can be
equiped with a natural L2 Hermitian metric | · |L2(φ), induced by the L2 metric
associated with φ and the measure ωn at the level of harmonic representatives.
If ψ is another smooth weight on L, the quotient of the corresponding L2

metrics on detH •(L) yields a number

log
| · |2

L2(ψ)

| · |2
L2(φ)

=
∑
q≥0

(−1)q log
vol B2

q(φ)

vol B2
q(ψ)

,

where we denote by B2
q the L2-ball of Hq(X,L) for any q ≥ 0.
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The Ray-Singer analytic torsion is defined by

T (φ) :=
∑
q≥0

(−1)qq log det>0�
′′
q,

where �′′
q denotes the anti-holomorphic Laplacian ∂∂

∗ + ∂
∗
∂ acting on

smooth L-valued (0, q)-forms on X, and det>0 denotes the zeta-regularised
product of its non-zero eigenvalues 0 < λ1 ≤ λ2 ≤ · · ·, i.e. the derivative at
z = 0 of the meromorphic continuation to C of the zeta-function

∑
j λ−z

j .
The Quillen metric on the complex line detH •(L) is then the twisted met-

ric

| · |2Q(φ) := | · |2
L2(φ)

e−T (φ).

Theorem 1.2.3 of [18] (cf. also [55], Corollary 1, p. 132) expresses varia-
tions of Quillen metrics in terms of secondary Bott-Chern forms. It implies in
particular in our case that

∑
q≥0

(−1)q log
vol B2

q(φ)

vol B2
q(ψ)

+ T (φ) − T (ψ) =
∫

X

c̃h(φ,ψ) ∧ td(ω) (7.1)

for any two smooth weights φ,ψ on L, where td(ω) = 1 + Ricci(ω)/2 +
(higher degree terms) is the Todd form of the Hermitian bundle (TX,ω) and
c̃h denotes the secondary form of the Chern character. Formula (4.2) shows
that

E (φ) − E (ψ) = n!
2

∫
X

c̃h(φ,ψ). (7.2)

If L is furthermore ample, then the higher cohomology of kL vanishes for
k � 1, thus (7.1) and (7.2) imply

log
vol B2(kφ)

vol B2(kψ)
+ T (kφ) − T (kψ) = 2kn+1

n! (E (φ) − E (ψ)) + O(kn). (7.3)

If φ is a smooth weight such that ddcφ > 0 (hence L is ample), the main
result of [17] is the following two-term asymptotic expansion of the analytic
torsion:

T (kφ) = 1

2

∫
X

log
(kddcφ)n

ωn
exp(kddcφ) + o(kn)

= kn log k

2(n − 1)! vol(L) + kn

2n!
∫

X

log

(
ddcφ)n

ωn

)
(ddcφ)n + o(kn),

and in particular T (kφ) = o(kn+1).
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On the other hand, if L is still ample but φ has arbitrary curvature, Theo-
rem 10 of [17] merely says that T (kφ) = O(kn+1). We will now explain how
to refine this estimate using our results:

Theorem 7.1 Let ω be a Kähler metric on X. If L is an ample line bundle
and φ is a smooth weight on L with arbitrary curvature, then

lim
k→∞

n!
2kn+1

T (kφ) = E (φ) − E (PXφ).

Proof Since L is ample, we can choose another smooth weight ψ on L with
ddcψ > 0, so that T (kψ) = o(kn+1) by the result of [17] recalled above. On
the other hand Lemma 3.5 implies

log
vol B2(kφ)

vol B2(kψ)
= log

vol B∞(X, kφ)

vol B∞(X, kψ)
+ o(kn+1),

and (7.3) thus yields

log
vol B∞(X, kφ)

vol B∞(X, kψ)
+ T (kφ) = 2kn+1

n! (E (φ) − E (ψ)) + o(kn+1).

Theorem A now yields the result. �

Remark 7.2 We see that for a smooth metric on an ample line bundle Theo-
rem A is in fact equivalent to the above estimate for the analytic torsion.

As a consequence of their result on the asymptotics of the analytic torsion,
Bismut-Vasserot gave in Theorem 10 of [17] an asymptotic comparison result
for L2 metrics induced by two different volume forms. We now give a simple
proof of (a generalisation of) that result:

Theorem 7.3 Let L be a big line bundle and φ be an arbitrary smooth weight
on L. For any two positive measures μ,ν on X, we then have

lim
k→∞

1

Nk

log
vol B2(ν, kφ)

vol B2(μ, kφ)
=

∫
X

log
(μ

ν

)
μeq(X,φ).

Proof Note that if f is a function on X we have B2(e−f μ,φ) = B2(μ,

φ + 2f ). Now let f := log(μ/ν) and μt := e−tf μ for t ∈ R, so that μ0 = μ

and μ1 = ν. By the above remark, Lemma 5.1 implies that

d

dt
log vol B2(μt , kφ) = Nk

∫
X

fβ(μt ,φ).
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We thus get

log
vol B2(ν, kφ)

vol B2(μ, kφ)
= Nk

∫ 1

t=0
dt

∫
X

fβ(μt , kφ)

and the result follows by dominated convergence since for each t we have
β(μt , kφ) → μeq(X,φ) by Theorem 3.1. �

7.2 Adelic heights

Following the discussion in the introduction, let X be a smooth (irreducible)
projective variety over Q and L be a big line bundle on X/Q. Suppose given
once and for all a collection (φp) of continuous weights on LCp

over X(Cp)

for every prime p such that all but finitely of them are induced by a model of
X over Z. If φ is a continuous weight on LC, recall that

LA

k (φ) = 1

kNk

log volk BA(kφ)

where BA denotes the adelic unit-ball defined by (1.12)
By the adelic version of Minkowski’s theorem (cf. Appendix A of [21]),

for every ε > 0 there exists a non-zero s ∈ H 0(L)Q such that

log‖s‖L∞(φ) ≤ −LA

1 (φ) + log 2 + ε

and log‖s‖L∞(φp) ≤ 0 for all p.

On the other hand, recall that the height of a point x ∈ X(Q) is defined by

hA
φ (x) := − 1

deg(x)

∑
y∈Gx

(
log |s(y)|φ +

∑
p

log |s(y)|φp

)
(7.4)

where G denotes the absolute Galois group, Gx is the (finite) Galois orbit
of x and s is a rational section of L defined over Q such that x is neither a
pole nor a zero of s. The right-hand side of (7.4) is indeed independent of the
choice of s by the product formula, and the sum

∑
p only involves finitely

many terms. Note that hA

kφ(x) = khA
φ (x).

If we use sections s ∈ H 0(kL)Q provided by Minkowski’s theorem to com-
pute heights, we see by (7.4) that

hA
φ (x) ≥ LA

k (φ) − log 2

k

for any x ∈ X(Q) not in the zero divisor of s, where the adelic L-functionals
LA

k are defined by (1.13). As a consequence, if xj ∈ X(Q) is a generic se-
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quence, i.e. a sequence converging to the generic point of X in the Zariski
topology, then for each k we get

lim inf
j

hA
φ (xj ) ≥ LA

k (φ) − log 2

k
,

and we infer

lim inf
j→∞ hA

φ (xj ) ≥ E A
eq(φ). (7.5)

Note that we have

E A
eq(φ) = v̂ol(L)

(n + 1)vol(L)

in the notations of [30], p. 15, and (7.5) is thus equivalent to Lemma 5.1 of
the same [30].

The main point in the proof of Theorem D is the following result.

Lemma 7.4 The function E A
eq(·) is differentiable at any continuous weight

φ such that E A
eq(φ) ∈ R. Its directional derivatives are given by integration

against the equilibrium measure μeq(X(C), φ).

Proof Since the Haar measure on

H 0(kL)A ⊂ H 0(kL)R × �pH 0(kL)Qp

is induced by a product measure, we see that variations of adelic L-functionals
are given by

LA

k (ψ) − LA

k (φ) = 1

kNk

log
volRk B∞

R
(kψ)

volRk B∞
R

(kφ)

where

B∞
R

(·) := B∞(·) ∩ H 0(kL)R

denotes the unit-ball of the sup-norm on the R-vector space H 0(kL)R of
R-sections, and volRk denotes Lebesgue measure on the latter space. By
Lemma 7.5 below, we get

lim
k→∞

1

kNk

log
volRk B∞

R
(kψ)

volRk B∞
R

(kφ)
= lim

k→∞
1

2kNk

log
volk B∞(kψ)

volk B∞(kφ)
,

where B∞ denotes as before the unit-ball of the sup-norm in the complex
vector space H 0(kL)C of C-sections and volk is Lebesgue measure on that
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space. We now conclude by Theorems A and B, using the trivial relation

lim sup
k→∞

ak − lim sup
k→∞

bk = lim
k→∞(ak − bk)

provided the right-hand limit exists (and is finite). �

Lemma 7.5 Let X be a smooth projective variety defined over R, and let L

be a big line bundle on X/R. Let φ be a continuous weight over X(C), and
denote by B∞

R
(φ) the unit-ball of the sup-norm in H 0(L)R. Then

log
volRk (B∞

R
(kφ))2

vol B∞(kφ)
= o(kNk).

Proof Let μ be a smooth positive volume form on X(C), so that (μ,φ) has
the Bernstein-Markov property. The scaling argument used in the proof of
Lemma 3.5 immediately yields

log
volRk (B2

R
(kφ))2

volk B2(kφ)
= log

volRk (B∞
R

(kφ))2

volk B∞(kφ)
+ o(kNk).

But we can further assume that μ is invariant by complex conjugation, so that
the L2(μ, kφ)-scalar product is defined over R, and it is then easy to see that
the left-hand side is equal to its value in the Euclidean space situation, that is

volRk (B2
R
(kφ))2

volk B2(kφ)
= Nk!

((Nk/2)!)2

by expressing it in terms of Gram determinants of orthonormal basis of
H 0(L)R. Now both Nk and Nk/2 are O(kn), and this implies by Stirling’s
formula that both logNk! and log(Nk/2)! are O(kn log k) = o(kn+1). The re-
sult follows. �

7.3 Proof of Theorem D

If x ∈ X(Q) is an algebraic point, let μx denote the averaging measure on
X(C) along the Galois orbit Gx. By (7.4) it is immediate to see that

hA
φ+v(x) = hA

φ (x) + 〈μx, v〉 (7.6)

for any continuous function v on X(C).
Now let (xj ) be a generic sequence such that limj→∞ hφ(xj ) = E A

eq(φ) ∈
R. If v is a continuous function on X(C), we are to show that

lim
j→∞〈μxj

, v〉 = 〈μeq(X(C), φ), v〉.
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By Lemma 7.4 the right-hand side is equal to the derivative at t = 0 of the
function g(t) := E A

eq(φ + tu). On the other hand by (7.6) the left-hand side is
equal to the derivative at t = 0 of the affine function fj (t) := hφ+tu(xj ). The
asymptotic lower bound (7.5) implies that

lim inf
j→∞ fj (t) ≥ g(t)

for all t , and the following elementary lemma yields the result.

Lemma 7.6 Let fj be a sequence of concave functions on R and let g be a
function on R such that

• lim infj→∞ fj ≥ g.
• limj→∞ fj (0) = g(0).

If the fj and g are differentiable at 0, then

lim
j→∞f ′

j (0) = g′(0).

Proof Since fj is concave, we have

fj (0) + f ′
j (0)t ≥ fj (t)

and it follows that

lim inf
j→∞ tf ′

j (0) ≥ g(t) − g(0).

The result now follows by first letting t > 0 and then t < 0 tend to 0. �

In other words this lemma states that if gj (t) = fj (t) − g(t) is asymptoti-
cally minimized at t = 0 when j → ∞ in the sense that

gj (t) ≥ gj (0) + o(1)

then the derivative at 0 is asymptotically 0, i.e. g′
j (0) = o(1). This lemma is

inspired by the variational principle in the original proof by Szpiro-Ullmo-
Zhang [56]. The case of concave functions fk pertains to the situation con-
sidered in [14].
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