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Abstract. The goal of this note is to present a remarkably simple proof, due
to Henk, of a result previously obtained by Gillet-Soulé, relating the number
of lattice points in a symmetric convex body to its successive minima.

Introduction

Let ‖ · ‖ be a norm on RN , and denote by B its closed unit ball (which can
thus be any symmetric convex body). Let also

M(B) := #
(
B ∩ ZN

)
be the number of lattice points in B. Recall that the successive minima of the
lattice Λ := ZN with respect to the norm ‖ · ‖ are defined as

ri = ri(Λ, B) = inf {r > 0 | rk (rB ∩ Λ) ≥ i} .

The main result we aim at is:

Theorem A. With the above notation we have

1

N !
≤M(B)

∏
ri<1

ri ≤ 6N .

As we shall see, the lower bound is a straightforward consequence of a well-
known variant, due to Van der Corput, of Minkowski’s first theorem. The upper
bound is basically [Hen02, Theorem 1.5].

A result of this kind is stated (in a less explicit way) in [GS91, Proposition 6].
Among other things, the proof provided there uses Minkowski’s second theorem
and the difficult Bourgain-Milman theorem.

We note that in the applications to the study of the arithmetic volume given
in [BC11], only the coarser estimate

logM(B) =
∑
ri<1

− log ri +O (N logN)

is actually used.
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1. Minkowski’s first theorem

The following variant of Minkowski’s first theorem is due to Van der Corput.

Proposition 1.1. We have M(B) ≥ 2−N vol(B).

Taking ‖ · ‖ to (1 + ε) times the `∞-norm shows that the constant 2−N cannot
be improved.

Lemma 1.2 (Blichtfeld’s principle). Let A ⊂ RN be a measurable set with finite
volume. Then some translate of A contains at least dvol(A)e lattice points.

Proof. Set m := dvol(A)e − 1. Let P be a fundamental domain for Λ, so that
vol(P ) = 1. For each v ∈ Λ set

Av := (A ∩ (P + v))− v,

and consider

f :=
∑
v∈Λ

1Av .

Since each Av is contained in P , we have

sup
x∈P

f(x) ≥
∫
P
f(x)dx =

∑
v∈Λ

vol(Av)

=
∑
v∈ZN

vol (A ∩ (P + v)) = vol(A) > m.

It follows that there exists x ∈ P belonging to at least m + 1 Av’s, hence the
result. �

Proof of Proposition 1.1. Set m := d2−N vol(B)e − 1 and A := 2−1B. Since
vol (A) > m, Lemma 1.2 shows that A contains m + 1 distinct points v0, ..., vm
such that vi− vj ∈ Λ for all i, j. It follows that v1− v0, ..., vm− v0 are m distinct
and non-zero lattice points in B, and we get as desired M(B) ≥ m+ 1. �

2. Henk’s theorem

The following result will immediately imply the upper bound in Theorem A.

Theorem 2.1. [Hen02, Theorem 1.5] We have

M(B) ≤ 2N
N∏
i=1

⌊
2r−1

i + 1
⌋
.

We start with two easy lemmas.

Lemma 2.2. There exists a Z-basis (ei) of Λ such that

Λ ∩ riB̊ ⊂ Ze1 + ...+ Zei−1

for each i = 1, ..., N .

We then say that (ei) is an adapted basis of Λ (with respect to B).
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Proof. By compactness, we may find linearly independent vectors u1, ..., uN ∈ Λ
such that ‖ui‖ = ri. It is then easy to check that

ri = min {‖u‖ | u ∈ Λ \ (Ru1 + ...+ Rui−1)} . (2.1)

We then choose a Z-basis (e1, ..., eN ) of Λ such that

ui ∈ Ze1 + ...+ Zei,

and the result follows easily. �

Lemma 2.3. Given a non-increasing sequence a1 ≥ ... ≥ aN of positive integers,
there exists positive integers b1, ..., bN such that

(i) ai ≤ bi < 2ai for all i;
(iii) bi+1 divides bi for all i.

Proof. Set bi := 2miaN with mi := min{m ∈ N | 2maN ≥ ai}. �

Proof of Theorem 2.1. For each i set

ai =
⌊
2r−1

i

⌋
+ 1,

so that ai is the smallest positive integer with 2a−1
i < ri. Pick b1, ..., bN as in

Lemma 2.3, let (ei) be an adapted basis of Λ as in Lemma 2.2, and consider the
sublattice of finite index

Λ′ :=
∑
i

Zbiei.

We claim that Λ′ ∩ 2B = {0}. Indeed, let u ∈ Λ′ with ‖u‖ ≤ 2, and write
u =

∑
imibiei with mi ∈ Z. If u is non zero, set

k := max {i | mi 6= 0} .

Since bk divides b1, ..., bk−1, we then have b−1
k u ∈ Λ, and∥∥b−1

k u
∥∥ ≤ 2b−1

k ≤ 2a−1
k < rk.

By definition of an adapted basis, we should thus have b−1
k u ∈ Ze1 + ...+ Zek−1,

a contradiction.
As a consequence of the claim, the projection map π : RN → RN/Λ′ is injective

on B, so that M(B) = #π(B∩Λ). But π(B∩Λ) is contained in Λ/Λ′, and hence

M(B) = #π(B ∩ Λ) ≤ [Λ : Λ′] =
∏
i

bi ≤ 2N
∏
i

ai.

�

3. Proof of Theorem A

Let r1 ≤ ... ≤ rn < 1, 1 ≤ n ≤ N , be those successive minima that are less
than 1. To prove the lower bound, pick linearly independent vectors u1, ..., un ∈ Λ
such that ‖ui‖ = ri, and introduce the hypercube

P := Conv{±r−1
i ui | 1 ≤ i ≤ r}
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and the discrete abelian group Λ′ := Zu1 + ...+ Zun. Since P is contained in B,
we then have by Proposition 1.1

M(B) ≥ #(P ∩ Λ′) ≥ 2−n volΛ′(P ),

where volΛ′ denotes the Haar measure on Ru1 + ...+Run normalized by its lattice
Λ′. Since

volΛ′(P ) =
2n

n!
(r1 . . . rn)−1 ,

the lower bound in Theorem A follows.
We now turn to the upper bound. We have

⌊
2r−1

i + 1
⌋
≤ 3r−1

i for i = 1, ..., n,

and
⌊
2r−1

i + 1
⌋
≤ 3 for i > n. We thus get

N∏
i=1

⌊
2r−1

i + 1
⌋
≤ 3N

∏
ri<1

r−1
i

and the upper bound in Theorem A is now a consequence of Theorem 2.1.

4. Minkowski’s second theorem

As a direct consequence of Theorem 2.1, we get the following version of Minkowski’s
second theorem:

2N

N !
≤ vol(B)

N∏
i=1

ri ≤ 4N . (4.1)

Indeed, the upper bound follows directly from Theorem 2.1, replacing B with tB
and letting t→ +∞, using the obvious scaling property

ri(Λ, tB) = t−1ri(Λ, B)

for t > 0. As to the lower bound, it is obtained as in the proof of Theorem A:
the polytope P is contained in B, and hence

vol(B) ≥ vol(P ) =
2N

N !

∣∣det
(
r−1

1 u1, ..., r
−1
N uN

)∣∣ ,
which yields the lower bound follows since det (u1, ..., uN ) is a non-zero integer.
For comparison, the classical statement of Minkowski’s second theorem is as
follows:

Theorem 4.1. We have

2N

N !
≤ vol(B)

N∏
i=1

ri ≤ 2N .

It thus improves on the upper bound in (4.1) by a factor 2N . We now present
Esterman’s proof of Theorem 4.1, following [GL87, pp.58-61].

Proof of Theorem 4.1. We have already recalled the standard argument proving
the lower bound. To get the upper bound, let (e1, ..., eN ) be an adapted basis of
Λ as in Lemma 2.2, and set Λ0 := {0} and

Λi := Ze1 + ...+ Zei
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for i = 1, ..., N . Let ρi := V/Λi−1 → V/Λi and πi : V → V/Λi be the natural
projections, and for each measurable subset S of V let

vi(S) := voli (πi(S)) ,

where voli denotes the normalized Haar measure on V/Λi.
By (2.1), if u is a lattice point such that ‖u‖ < ri then u ∈ Λi−1. It follows

that ρi is injective on πi−1

(
ri
2 B̊
)

, so that

vi

(ri
2
B̊
)

= vi−1

(ri
2
B̊
)

for i = 1, ..., N , where we have set v0 := vol and r0 := 1. By Lemma 4.2 below
this implies

vi

(ri
2
B̊
)
≥
(

ri
ri−1

)N−i+1

vi−1

(ri−1

2
B̊
)
,

hence

1 ≥ vN
(rN

2
B̊
)
≥

N∏
i=1

(
ri
ri−1

)N−i+1

v0

(
1

2
B̊

)
=
r1 . . . rN

2N
vol(B)

which concludes the proof. �

Lemma 4.2. Let C ⊂ V be a convex subset. Then

vi(tC) ≥ tN−ivi(C)

for all t ≥ 1.

Proof. By translation invariance of the Haar measure on V/Λi, we may assume
that 0 ∈ C. If we let Vi ⊂ V be the vector space generated by Λi, then each fiber
F of τi : V/Λi → Vi/Λi is canonically isomorphic to V/Vi, and vol(tC ∩ F ) =
tN−i vol(C ∩ F ). Since tC contains C, we have on the other hand

vol(τi(tC)) ≥ vol(τi(C)),

and the result follows by Fubini’s theorem. �
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