SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER
HENK, GILLET AND SOULE)

S.BOUCKSOM

ABSTRACT. The goal of this note is to present a remarkably simple proof, due
to Henk, of a result previously obtained by Gillet-Soulé, relating the number
of lattice points in a symmetric convex body to its successive minima.

INTRODUCTION

Let || - || be a norm on R¥, and denote by B its closed unit ball (which can
thus be any symmetric convex body). Let also

M(B):=# (Bnz")

be the number of lattice points in B. Recall that the successive minima of the
lattice A := Z" with respect to the norm || - || are defined as

ri=ri(A,B) =inf{r >0|rk(rBNA)>i}.
The main result we aim at is:

Theorem A. With the above notation we have

1

N
mgM(B)]'[r,-gﬁ :

r;<l

As we shall see, the lower bound is a straightforward consequence of a well-
known variant, due to Van der Corput, of Minkowski’s first theorem. The upper
bound is basically [Hen02, Theorem 1.5].

A result of this kind is stated (in a less explicit way) in [GS91, Proposition 6].
Among other things, the proof provided there uses Minkowski’s second theorem
and the difficult Bourgain-Milman theorem.

We note that in the applications to the study of the arithmetic volume given
in [BC11], only the coarser estimate

logM(B) =Y —logr; + O (NlogN)

r;<l

is actually used.
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1. MINKOWSKI’S FIRST THEOREM
The following variant of Minkowski’s first theorem is due to Van der Corput.
Proposition 1.1. We have M(B) > 27" vol(B).

Taking || - || to (1 + ¢) times the />°-norm shows that the constant 2~ cannot
be improved.

Lemma 1.2 (Blichtfeld’s principle). Let A C RY be a measurable set with finite
volume. Then some translate of A contains at least [vol(A)] lattice points.

Proof. Set m := [vol(A)] — 1. Let P be a fundamental domain for A, so that
vol(P) = 1. For each v € A set

Ay = (AN(P+v)) —w,

f= zgz:lAv‘

veEA

and consider

Since each A, is contained in P, we have

sup f(z) > /P fla)dz =" vol(A,)

zeP

vEA
= Y vol (AN (P +v)) = vol(4) > m.
veZN
It follows that there exists x € P belonging to at least m + 1 A,’s, hence the
result. O

Proof of Proposition 1.1. Set m = [27Nvol(B)] — 1 and A := 27!B. Since
vol (A) > m, Lemma 1.2 shows that A contains m + 1 distinct points v, ..., v,
such that v; —v; € A for all ¢, 5. It follows that v1 — vy, ..., vy, — vo are m distinct
and non-zero lattice points in B, and we get as desired M (B) > m + 1. (]
2. HENK’S THEOREM
The following result will immediately imply the upper bound in Theorem A.

Theorem 2.1. [Hen02, Theorem 1.5] We have
N
M(B) <2V l2ri" +1].
i=1

We start with two easy lemmas.
Lemma 2.2. There exists a Z-basis (e;) of A such that
AN né C Zei+ ...+ Ze;j_1
foreachi=1,....N.
We then say that (e;) is an adapted basis of A (with respect to B).
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Proof. By compactness, we may find linearly independent vectors ui,...,uy € A
such that ||u;|| = r;. It is then easy to check that
ri =min{||ul| |u € A\ (Ru; + ... + Ru;—1)}. (2.1)
We then choose a Z-basis (ey, ...,en) of A such that
u; € Zey + ... + Ze;,

and the result follows easily. U

Lemma 2.3. Given a non-increasing sequence a1 > ... > an of positive integers,
there exists positive integers by, ...,bx such that

(i) a; < b; < 2a; for all i;
(iii) bj41 divides b; for all i.

Proof. Set b; := 2™iay with m; := min{m € N | 2May > a;}. O
Proof of Theorem 2.1. For each i set
a; = L2ri_1J +1,

so that a; is the smallest positive integer with 2ai_1 < r;. Pick by,...,by as in

Lemma 2.3, let (e;) be an adapted basis of A as in Lemma 2.2, and consider the
sublattice of finite index
A/ = Z Zbiei.
i

We claim that A’ N 2B = {0}. Indeed, let u € A’ with [Ju| < 2, and write
u =Y. mbe; with m; € Z. If u is non zero, set

k:=max{i | m; # 0}.
Since by, divides by, ..., b;_1, we then have b,:lu € A, and
Hb;luH < 2b,;1 < 2a,;1 <7k

By definition of an adapted basis, we should thus have b,;lu € Zer+ ...+ Zep_1,
a contradiction.

As a consequence of the claim, the projection map 7 : RY — RN /A is injective
on B, so that M(B) = #n(BNA). But 7(BNA) is contained in A/A’, and hence

M(B) =#r(BNA) < [A:N]=]]bi <2 ]

3. PrRoOOF OF THEOREM A

Let 11 < ... <7, < 1,1 <n < N, be those successive minima that are less
than 1. To prove the lower bound, pick linearly independent vectors w1, ..., u, € A
such that ||u;|| = r;, and introduce the hypercube

P .= Conv{:tr;lui |1 <i<r}
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and the discrete abelian group A’ := Zuj + ... + Zu,,. Since P is contained in B,
we then have by Proposition 1.1

M(B) > #(PnA) > 2 "voly (P),

where voly denotes the Haar measure on Ruq + ...+ Ru,, normalized by its lattice
A’. Since
2" 1
volp/(P) = ol (ri...mn)
the lower bound in Theorem A follows.
We now turn to the upper bound. We have LQT-_

. 1—|—1J < 37“1-_1 fori=1,...,n,
and L2r;1 + 1J < 3 for ¢ > n. We thus get

N
[Tl +1) <3N I it
=1 ri<l

and the upper bound in Theorem A is now a consequence of Theorem 2.1.

4. MINKOWSKI’'S SECOND THEOREM

As a direct consequence of Theorem 2.1, we get the following version of Minkowski’s
second theorem:

2N
~_ < vol(B Hrz <4V, (4.1)

Indeed, the upper bound follows directly from Theorem 2.1, replacing B with tB
and letting ¢ — 400, using the obvious scaling property

Ti(A, tB) = tilTi(A, B)

for t > 0. As to the lower bound, it is obtained as in the proof of Theorem A:
the polytope P is contained in B, and hence
2N -1 -1
vol(B) > vol(P) = N |det (ry M, oyt un) |

which yields the lower bound follows since det (uq, ..., ux) is a non-zero integer.
For comparison, the classical statement of Minkowski’s second theorem is as
follows:

Theorem 4.1. We have

2N
— < vol(B Hn < 2N,

It thus improves on the upper bound in (4.1) by a factor 2. We now present
Esterman’s proof of Theorem 4.1, following [GL87, pp.58-61].

Proof of Theorem 4.1. We have already recalled the standard argument proving
the lower bound. To get the upper bound, let (e, ...,en) be an adapted basis of
A as in Lemma 2.2, and set Ag := {0} and

N, =Zey + ... + Ze;
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fori =1,...N. Let p; := V/Aj—1 — V/A; and m; : V. — V/A; be the natural
projections, and for each measurable subset S of V' let

v;(S) = vol; (m;(9)),
where vol; denotes the normalized Haar measure on V/A;.

By (2.1), if u is a lattice point such that ||u|| < r; then v € A;—1. It follows

o

that p; is injective on 7;_1 (%B), so that

T o T o
w(58) = (35)

for i = 1,..., N, where we have set vy := vol and 7y := 1. By Lemma 4.2 below

this implies
- p O\ Noitl Py
(@)= () ()
Vi < 2 = \r Vi—1 2 )

N e N T N=itl 1. rn...rny
1 Z UN (73) 2 H ] Vo §B = TVO](B)

which concludes the proof. O

hence

Lemma 4.2. Let C C V be a convex subset. Then
Ui(tC) Z tN_iUi(C)
for allt > 1.

Proof. By translation invariance of the Haar measure on V/A;, we may assume
that 0 € C. If we let V; C V be the vector space generated by A;, then each fiber
F of ; : V/A; — V;/A; is canonically isomorphic to V/V;, and vol(tC' N F) =
tN=ivol(C'N F). Since tC contains C, we have on the other hand

vol(7;(tC)) > vol(7;(C)),

and the result follows by Fubini’s theorem. O
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