
FINITE GENERATION FOR GROMOV-HAUSDORFF LIMITS

S.BOUCKSOM

Abstract. We survey some aspects of the recent work [DS12] by Donaldson
and Sun proving that Gromov-Hausdorff limits of projective manifolds with
uniformly bounded Ricci curvature are normal projective varieties.

1. Introduction

As a matter of terminology, a polarized manifold will mean a pair (X,L) con-
sisting of a complex manifold X together with a Hermitian holomorphic line
bundle L with positive curvature form ω, which we use to view X as a Kähler
manifold. By the Kodaira embedding theorem, a compact polarized manifold is
automatically projective algebraic, with L ample.

In their recent work [DS12], Donaldson and Sun study the Gromov-Hausdorff
limit of a sequence of compact polarized manifolds (Xj , Lj) of fixed complex
dimension n and with uniformly bounded Ricci curvature. Since n! vol(Xj) =
c1(Lj)

n is a positive integer and diam(Xj) is bounded by convergence, the lower
bound on the Ricci curvature implies that the limit is automatically ”non-collapsed”
thanks the Bishop-Gromov comparison theorem, and it follows from the Cheeger-
Colding theory that the limit compact metric space X∞ has Hausdorff dimension
2n, and that its 2n-dimensional Hausdorff measure satisfies

C−1r2n ≤ H2n(Br) ≤ Cr2n

for all balls Br ⊂ X∞. By results of Cheeger-Colding-Tian, the upper bound
on the Ricci curvature of Xj further guarantees the existence of a polarized
manifold (X,L) of complex dimension n such that X embeds isometrically as
an open subset of X∞, and that (Xj , Lj) converges in C1,α topology to (X,L)
(see Definition 5.1 below). Finally, the closed subset X∞ \ X has Hausdorff
codimension at least 4, which is more than enough to ensure that X is parabolic
as a Riemannian manifold, cf. §2.1 below.

The purpose of these notes is to study the graded algebra

Rb(X,L) =
⊕
k∈N

H0
b (X, kL)

of bounded holomorphic sections of tensor powers of L. Using only the normality
of X, we first prove that this algebra, which is obviously an integral domain, is
automatically normal, i.e. integrally closed in its fraction field (see Proposition
4.1).
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Following [Mok86], we then show (Theorem 4.2), using only that X is parabolic
and of finite volume, that H0

b (X, kL) is finite dimensional for each k, with

dimH0
b (X, kL) = O(kn).

Finally, in the case of a Gromov-Hausdorff limit as above, we prove that Rb(X,L)
is finitely generated, using the main result of [DS12] (the so-called partial C0-
estimate) and Skoda’s L2 division theorem, expanding a remark from [DS12]
based on an observation of Chi Li.

2. Preliminary facts

2.1. Parabolic Riemannian manifolds. We recall the following standard def-
inition (cf. [Gla83] and references therein), which is precisely the property proved
for the regular part of the Gromov-Hausdorff limit in [DS12, Proposition 3.5].

Definition 2.1. A Riemannian manifold (Mm, g) is said to be parabolic if the
following equivalent conditions hold:

(i) there exists an exhaustion function ψ ∈ C∞(M) with ‖dψ‖L2 < +∞;
(ii) for each compact K ⊂ M and each ε > 0, there exists a smooth cut-off

function θ ∈ C∞c (M) with 0 ≤ θ ≤ 1, θ ≡ 1 on a neighborhood of K and
‖dθ‖L2 ≤ ε;

(iii) every subharmonic function on M that is bounded above is constant.

Note that (M, g) is not required to be complete. By the Hopf-Rinow theorem,
(M, g) is complete iff it admits an exhaustion function ψ ∈ C∞(M) such that
‖dψ‖L∞ < +∞, which shows that a complete Riemannian manifold of finite vol-
ume is parabolic. More generally, it is shown in [CY75] that a complete manifold
with at most quadratic volume growth (i.e. volB(x0, r) = O(r2) when r → ∞
and x0 ∈M is a fixed point) is still parabolic

For m = 2, parabolicity only depends on the conformal structure, and coincides
with the usual notion from the function theory on Riemann surfaces. As a final
side remark, [Gla83] shows that (M, g) is parabolic iff its boundary is negligible
in the L2 Stokes’ theorem, in the sense that every square integrable (m−1)-form
α on M with dα integrable satisfies

∫
M dα = 0.

Suppose that M is an open subset of a compact Riemannian manifold M̄ .
Then characterization (ii) in Definition 2.1 means that M is parabolic iff ∂M has
zero capacity. In that case, one can show that ∂M has Hausdorff codimension
at least 2, compare [EG92, Theorem 4, p.156]. Conversely, if ∂M has finite
(m− 2)-dimensional Hausdorff measure, then M is parabolic. More generally:

Lemma 2.2. Assume that (Mm, g) embeds isometrically as an open set of a
compact metric space (M̄, d) whose m-dimensional Hausdorff measure satisfies
Hm(Br) = O(rm) for all balls Br ⊂ M̄ . If ∂M has finite (m − 2)-dimensional
Hausdorff measure, then (M, g) is parabolic.

Proof. We follow the proof of [EG92, Theorem 3, p.154], which is closely related
to that of [DS12, Proposition 3.5].
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Step 1. We first claim that there exists C > 0 such that for any compact set
K ⊂M , we can find θ ∈ C∞c (M) with 0 ≤ θ ≤ 1, θ = 1 on a neighborhood of K,
and ‖θ‖L2 ≤ C.

Since ∂M is compact and has finite Hm−2-measure, there exists a constant
C > 0 such that ∂M can be covered by finitely many open balls B(xi, ri) of
radius

ri ≤ d(K, ∂M)/4

and such that
∑

i r
m−2
i ≤ C.

Let χ : R → R be the piecewise affine function defined by χ(t) = 0 for t ≤ 1,
χ(t) = t − 1 for 1 ≤ t ≤ 2, and χ(t) = 1 for t ≥ 2, and consider the Lipschitz
continuous function

θi(x) = χ
(
r−1i d(x, xi)

)
.

Then θ := maxi θi is also Lipschitz continuous, it has compact support in M , and
θ = 1 on a neighborhood of K. Further, we have

|dθ| ≤ max
i
|dθi| ≤ max

i
r−1i 1{x|ri≤d(x,xi)≤2ri}

a.e. on M , hence∫
M
|dθ|2dV ≤

∑
i

r−2i Hm(B(xi, 2ri)) ≤ C ′
∑
i

rm−2i ≤ C ′C

with C ′ > 0 independent of K. This proves the claim, after regularizing θ on M .

Step 2. Thanks to the first step, we can construct an exhaustion of M by
compact sets Kj and a sequence θj ∈ C∞c (M) with 0 ≤ θj ≤ 1, θj = 1 on Kj ,
supp θj ⊂ Kj+1, and ‖θj‖L2 ≤ C. Then

ψ :=
∑
j≥1

j−1(1− θj)

is a smooth exhaustion function, since we have ψ ≥ Sk outside Kk+1 with Sk =∑k
j=1 j

−1 → +∞. On the other hand, since the supports of the gradients dθj are
disjoint, we have ∫

M
|dψ|2dV ≤

∑
j≥1

j−2
∫
M
|dθj |2 < +∞,

which shows that (M, g) is parabolic. �

2.2. Mean value inequalities for holomorphic sections. The following re-
sult (and its proof!) corresponds to [DS12, Proposition 2.1].

Proposition 2.3. Let (X,L) be a compact polarized manifold of (complex) di-
mension n, and assume given C > 0 such that

• Ric(ω) ≥ −Cω;
• diam(X,ω) ≤ C.
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Then there exists a constant A > 0 only depending on C, n such that for all k ≥ C
and all holomorphic sections s ∈ H0(X, kL) we have

‖s‖L∞ ≤ Akn/2‖s‖L2

and

‖∇s‖L∞ ≤ Ak(n+1)/2‖s‖L2 .

The proof of the proposition will rely on the following result:

Lemma 2.4. Let (Mm, g) be a compact Riemannian manifold, and assume given
C > 0 such that

• Ric(g) ≥ −Cg;
• vol(M, g) ≥ C−1;
• diam(M, g) ≤ C.

Then there exists a constant A = A(C,m) with the following property: each
function f ≥ 0 on M such that ∆f ≤ λf with λ ≥ 1 (and ∆ = d∗d) satisfies a
mean value inequality

‖f‖L∞ ≤ Aλm/4‖f‖L2 .

Proof. We use the Moser iteration technique. By Croke and Gallot, the operator

norm of the Sobolev injection L2
1 ↪→ L

2m
m−2 is under control, i.e. we have a uniform

Sobolev inequality(∫
|g|

2m
m−2dV

)m−2
m

≤ A
(∫
|g|2dV +

∫
|dg|2dV

)
with A = A(C,m). For each p ≥ 2, g := fp/2 satisfies ∆g ≤ λp

2 g in the sense of
distributions. Injecting∫

|dg|2dV =

∫
(g ·∆g)dV ≤ λp

2

∫
g2

in the Sobolev inequality, we get

‖f‖
L
pm
m−2
≤ A1/p

(
1 +

λp

2

)1/p

‖f‖Lp ≤ A1/p(λp)1/p‖f‖Lp .

since λ ≥ 1 and p ≥ 2. If we set pj := 2
(

m
m−2

)j
then

∑∞
j=0 1/pj = m/4, and we

get

‖f‖L∞ ≤ AmBλm/4‖f‖L2

with B :=
∏
j≥0 p

1/pj
j <∞ only depending on m. �

Proof of Proposition 2.3. Note that n! vol(X) = c1(L)n is a positive integer,
hence bounded below by 1, and we may thus apply Lemma 2.4. We have the
Bochner-Weitzenböck type formulas

∆ = 2∆∂ + k

on smooth sections of kL, and

∆ = ∆∂ − Ric(ω) + k
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on smooth sections of Ω1,0(kL). For a holomorphic section s ∈ H0(X, kL) this
implies that

∇∗∇s = ks

and
〈∇∗∇∂s, ∂s〉 ≤ (k + C)|∂s|2,

from which one easily infers
∆|s| ≤ k|s|

and
∆|∂s| ≤ (k + C)|∂s|

in the sense of distributions. By Lemma 2.4, it follows that

‖s‖L∞ ≤ Akn/2‖s‖L2

and
‖∇s‖L∞ ≤ Akn/2‖∇s‖L2 .

Finally, we use once more

‖∇s‖2L2 = 〈∇∗∇s, s〉 = k‖s‖2L2 ,

to conclude the proof. �

2.3. The Hörmander inequality. The following result is a direct consequence
of Hörmander’s L2-estimates for the ∂-equation, see for instance [BDIP].

Theorem 2.5. Let (X,L) be a compact polarized manifold, and assume that
Ric(ω) ≥ −Cω. For each k > C and each L2 section s of kL with L2 orthogonal
projection P (s) ∈ H0(X, kL) we have

‖P (s)− s‖L2 ≤ (k − C)−1/2‖∂s‖L2 .

3. Quantitative finite generation

Skoda’s division theorem, as stated in [PAG, Theorem 9.6.31], immediately
implies the following algebro-geometric result:

Proposition 3.1. Let X be a smooth projective variety of dimension n and L
an ample line bundle on X. Assume given a, k0 ∈ N such that

(i) aL−KX is ample;
(ii) k0L is base-point free.

Then R(X,L) =
⊕

k∈NH
0(X, kL) is generated in degree < a+ (n+ 1)k0.

Remark 3.2. More generally, the result holds if (X,∆) is a projective klt pair
and (i) is replaced with (i)’ aL− (KX + ∆) is ample.

As observed in [Li, Proposition 7, p.32], this statement admits the following
quantitative version.

Theorem 3.3. Let (X,L) be a compact polarized manifold of dimension n, and
assume given C > 0, 0 < c− < 1 < c+ and k0 ∈ N such that

(i) Ric(ω) ≥ −Cω;
(ii) c− ≤ infX ρk0L ≤ supX ρk0L ≤ c+.
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If (si) denotes an orthonormal basis of
⊕

k≤C+(n+1)k0
H0(X, kL), then any s ∈

H0(X, kL) with k > C + (n + 1)k0 can be expressed as a polynomial in the si
having coefficients bounded above by

(n+ 1)k/2c
−k/2
− c

n/2
+ ‖s‖L2 .

In order to prove this, we recall the version of Skoda’s division theorem given
in [Dem82, Théorème 6.2].

Theorem 3.4. Let (X,H) be a compact polarized manifold of dimension n, and
s1, ..., sp ∈ H0(X,M) global sections of another holomorphic line bundle M on
X. Then any σ ∈ H0(X,KX + kM +H) with k > n satisfying the L2 condition∫

X

|σ|2(∑
j |sj |2

)k < +∞

writes σ =
∑

i hisi with hi ∈ H0(KX + (k − 1)M +H) satisfying∫
X

|hi|2(∑
j |sj |2

)k−1 ≤ (n+ 1)

∫
X

|σ|2(∑
j |sj |2

)k .
Here the integrals are defined without having to specify a volume form, by

viewing hi and s as holomorphic n-forms with values in (k − 1)M + H and
kM +H respectively.

Proof of Theorem 3.3. Set a := bCc + 1, so that Ric(ω) > −aω, and M := k0L,
which is basepoint free by assumption. Let k ≥ a+(n+1)k0, so that k−a = qk0+r
with q > n and 0 ≤ r < k0. We then have kL = KX+qM+H with M := k0L and
H := (aL−KX)+rL. Endow −KX with the metric induced by the volume form
ωn, and H with the corresponding metric, whose curvature aω + Ric(ω) + rω is
positive by assumption. Let also s1, ..., sp be an orthonormal basis of H0(X, k0L).

Applying iteratively Theorem 3.4 shows that any s ∈ H0(X, kL) writes

s =
∑

α∈Np,|α|=q−n

hαs
α1
1 ...s

αp
p

where hα ∈ H0(KX + nM +H) = H0((a+ nk0 + r)L) satisfies∫
|hα|2(∑
j |sj |2

)n ≤ (n+ 1)q−n
∫

|s|2(∑
j |sj |2

)q .
As explained above, the integrals are defined by viewing hα and s as holomorphic
n-forms with values in nk0L+H and qk0L+H respectively. Viewing them instead
as sections of (a+ nk0 + r)L and (a+ qk0 + r)L, the L2 estimate becomes∫

|hα|2

ρnk0L
ωn ≤ (n+ 1)q−n

∫
|σ|2

ρqk0L
ωn.

This implies

‖hα‖L2 ≤ (n+ 1)k/2c
−k/2
− c

n/2
+ ‖s‖L2 ,

and the result follows. �
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4. The algebra of bounded sections: general properties

4.1. Normality. Normality of the graded algebra Rb(X, kL) is a general fact:

Proposition 4.1. Let X be an arbitrary normal complex space and L be a holo-
morphic line bundle on X. Then the graded algebra R(X,L) =

⊕
k∈NH

0(X, kL)
is normal.

If L is endowed with a Hermitian metric and Rb(X,L) ⊂ R(X,L) denotes the
subalgebra of bounded sections, then Rb(X,L) is normal as well.

Proof. Every section s ∈ H0(X, kL) induces a function s̃ on the total space L∗

of the dual bundle, and s 7→ s̃ identifies H0(X, kL) with the weight k eigenspace
O(L∗)k with respect to its natural C∗-action.

If P/Q is integral over R(X,L) for some non-zero P,Q ∈ R(X,L), then the

meromorphic function P̃ /Q̃ on the total space of L∗ is integral over O(L∗), hence

defines a function f ∈ O(L∗) by normality of L∗. Since Q̃ and fQ̃ both belong
to
⊕

k∈NO(L∗)k, it is easy to see that the Taylor expansion of f along the fibers
of L∗ → X involves finitely many terms, i.e. f ∈

⊕
k∈NO(L∗)k. We thus have

P/Q ∈ R(X,L), which proves that R(X,L) is integrally closed.
Assume now that L is endowed with a Hermitian metric. If P/Q is integral

over Rb(X,L) for some P,Q ∈ Rb(X,L), what has just been proved shows that

P̃ = Q̃R̃ with R ∈ R(X,L). Since R satisfies a unit polynomial equation with
coefficients in Rb(X,L), the usual estimate of the solutions of such a unit equation

in terms of the coefficients shows that R̃ is bounded on the unit circle bundle of
L∗. Taking L2 averages on the fibers of the unit circle bundle and using Parseval’s
identity, we see that each homogeneous component Rk of R is bounded as well,
i.e. R ∈ Rb(X,L), which shows Rb(X,L) is normal. �

4.2. Polynomial growth. As a special case of [Mok86], if (X,L) is a polarized
manifold such that the Kähler manifold X is complete and of finite volume, then
the dimension of the space of L2 holomorphic sections of kL growth like kn, with
n = dimX. When X is merely parabolic and of finite volume, we adapt his
arguments to prove:

Theorem 4.2. Let (X,L) be a polarized manifold such that the Kähler manifold
(X,ω) is parabolic and of finite volume. Then we have

dimH0
b (X, kL) = O(kn).

As a consequence, if we denote by Φk : X 99K PH0
b (X, kL) the meromorphic

map defined by sections of kL, then the Zariski closure Yk of the image of Φk

has dimension at most n. This follows from the Hilbert-serre theorem, since the
homogeneous coordinate ring of Yk is by construction the graded subalgebra of
Rb(X,L) generated by H0

b (X, kL).

Proof. As already mentioned, the proof is a direct extension of the arguments
given in [Mok86].

Step 1. We first claim that ∇s is in L2 for each s ∈ H0
b (X, kL). To see this,

let θν be an exhaustive sequence of cut-off functions such that ‖dθν‖L2 → 0. By
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the Bochner-Kodaira-Nakano identity (which is always valid for smooth sections
with compact support), we have for each ν

‖∇(θνs)‖2L2 = 2‖∂(θνs)‖2L2 + k‖θνs‖2L2 .

Now ∂(θνs) = (∂θν)s and ∇(θνs) = (dθν)s + θν∇s, where both (∂θν)s and
(dθν)s tend to 0 in L2 since s in bounded. It follows that ∇s is L2, with

‖∇s‖L2 = k1/2‖s‖L2 .

Step 2. We next show that the zero divisor div(s) of every non-zero section
s ∈ H0

b (X, kL) has finite volume, with a linear estimate∫
X

[div(s)] ∧ ωn−1 ≤ k
∫
X
ωn,

where
∫
X ω

n = n! vol(X) is finite by assumption. For each ε > 0, the smooth

function ϕε := log
(
|s|2 + ε2

)
is kω-psh, i.e. it satisfies

ddcϕε ≥ −kω,

and kω + ddcϕε converges weakly as ε→ 0 to the current of integration [div(s)],
by the Poincaré-Lelong formula. Since the total mass of a positive measure is
lower semicontinuous with respect to weak convergence, it will be enough to show
that ∫

X
(kω + ddcϕε) ∧ ωn−1 = k

∫
X
ωn

for each fixed ε > 0, which boils down to

lim
ν→∞

∫
X
θνdd

cϕε ∧ ωn−1 = 0 (4.1)

for ε > 0 fixed. We have

dϕε ∧ dcϕε = c
|〈s, ∂s〉|2

(|s|2 + ε2)2

for some numerical constant c > 0. Since s is bounded and ∂s is in L2 thanks to
Step 1, it follows that ∫

X
dϕε ∧ dcϕε ∧ ωn−1 < +∞.

On the other hand, integration by parts and the Cauchy-Schwarz inequality yields(∫
X
θνdd

cϕε ∧ ωn−1
)2

=

(∫
X
dθν ∧ dcϕε ∧ ωn−1

)2

≤
(∫

X
dθν ∧ dcθν ∧ ωn−1

)(∫
X
dϕε ∧ dcϕε ∧ ωn−1

)
,

and (4.1) follows.
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Step 3. We prove that dimH0
b (X, kL) = O(kn) using the classical Poincaré-

Siegel argument, which goes as follows. Fix a point x ∈ X. The usual properties
of Lelong numbers show that

ordx(s) ≤ C
∫
X

[div(s)] ∧ ωn−1

for some constant C > 0 only depending on (X,ω). By Step 2, we thus have a lin-
ear bound ordx(s) ≤ Ck for the vanishing orders at x of sections s ∈ H0

b (X, kL).
As a consequence, the evaluation map

H0
b (X, kL)→ Ox(kL)/mCk+1

x

is injective, and hence

dimH0
b (X, kL) ≤

(
n+ Ck

n

)
= O(kn).

�

5. Finite generation on Gromov-Hausdorff limits

5.1. Donaldson-Sun’s result. Following [DS12], we first make precise the no-
tion of convergence we use for polarized manifolds.

Definition 5.1. A sequence (Xj , Lj) of polarized manifolds of fixed complex
dimension n converges in C1,α topology to a polarized manifold (X,L) if, for
each open U b X, there exists C2,α open embeddings

τj : U ↪→ Xj

and bundle isomorphisms τ∗j Lj ' L|U , with respect to which the complex struc-

tures and the Hermitian metrics converge on compact subsets of U in C1,α and
C2,α topology respectively.

We emphasize that, with this definition, (Xj , Lj) converges as well to (U,L|U )
for any open subset U ⊂ X.

As an example, if X∞ is the Gromov-Hausdorff limit of a sequence (Xj , Lj)
of compact polarized manifolds of uniformly bounded Ricci curvature, then the
Cheeger-Colding-Tian theory guarantees the existence of a polarized manifold
(X,L) such that X embeds isometrically as an open subset of X∞, and such that
(Xj , Lj) converges in C1,α topology to (X,L).

As an extra piece of notation, if (X,L) is a polarized manifold with finite
volume, the L2 norm is well defined on H0

b (X, kL) for each k ∈ N, and we define
the distorsion function of H0

b (X, kL) (aka density of states function, aka Bergman
function) as the squared operator norm of the evaluation map, i.e.

ρkL(x) = sup
s∈H0

b (X,kL)\{0}

|s(x)|2

‖s‖2
L2

.

By the mean value inequality for holomorphic functions, ρkL is locally bounded
on X.
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Theorem 5.2. Let (Xj , Lj) be a sequence of compact polarized manifolds such
that

• Ric(ωj) ≥ −Cωj,
• diam(Xj) ≤ C,

for some C > 0 independent of j. Assume also that (Xj , Lj) converges in C1,α

topology to a polarized manifold (X,L) such that X is parabolic as a Riemannian
manifold. Then we have

(i) vol(Xj) = vol(X) for all j � 1;
(ii) for each k ≥ C + 1, we have

dimH0
b (X, kL) = dimH0(Xj , kLj)

for all j � 1.
(iii) If we further assume that

lim sup
j→∞

(
inf
Xj
ρk0Lj

)
> 0

for some k0 ∈ N, then infX ρkL > 0 for all mutiples k of k0, and the
graded algebra Rb(X,L) =

⊕
k∈NH

0
b (X, kL) is finitely generated.

5.2. Remarks and questions. In the context of Gromov-Hausdorff limits, the
convergence of the volume in (i) already follows from the Cheeger-Colding theory.

By the Kodaira embedding theorem, each Xj is a projective variety and Lj
is ample. The uniform lower bound on the Ricci curvature of ωj further implies
that aLj −KXj is ample for a fixed positive integer a, say a = bCc+ 1. By the
effective very ampleness results pioneered in [Dem93], it follows that kLj is very
ample for all k ≥ k0 for some k0 only depending on a and n. In particular, k0Lj
is basepoint free, i.e. infXj ρk0Lj > 0 for each j, but the lower bound depends a
priori on j. The main result in [DS12] guarantees that a uniform lower bound

lim sup
j→∞

(
inf
Xj
ρk0Lj

)
> 0

holds (for a possibly larger k0), if we further impose a uniform upper bound on
Ric(ωj).

Choose k such that the sections of kLj embed Xj as a subvariety of a fixed
projective space. These subvarieties belongs to finitely many components of the
Hilbert scheme, since c1(Lj)

n = n! vol(Xj) is uniformly bounded by the Bishop-
Gromov comparison theorem. In particular, the Xj can only have finitely many
diffeomorphism types. After passing to a subsequence, the Hilbert polynomial
Pj of (Xj , Lj) may be assumed to be independent of j. Since we also have
Pj(k) = dimH0(Xj , kLj) for k ≥ a by Kodaira vanishing, (ii) implies that
Pj(k) = dimH0

b (X, kL) for all k � 1, and hence

dimH0
b (X, kL) = vol(X)kn +O(kn−1).

In the setting of (iii), the Hilbert-Serre theorem therefore shows that ProjRb(X,L)
is a projective variety of dimension n, which is also normal by Proposition 4.1.
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Question 1. Is it true that Rb(X,L) is finitely generated for every polarized
manifold (X,L) which is parabolic, of finite volume and such that infX ρk0L > 0
for some k0 ∈ N?

At least, we can produce an example of a polarized manifold (X,L) of finite
volume, with H0

b (X, kL) is finite dimensional for all k, base-point free for some
k, but such that Rb(X,L) is not finitely generated. Indeed, let (X̄, L) be a
projective manifold and a nef and big line bundle such that R(X̄, L) is not finitely
generated (examples abound starting in every dimension at least 2, see [PAG]).
By [BEGZ10, Theorem 5.1], we can find a singular semipositive metric on L
with minimal singularities whose curvature current ω is such that ωn is a smooth
positive volume form on X̄. If we denote by X ⊂ X̄ the ample locus of L, a Zariski
open subset, then ω is automatically smooth on X, hence a Kähler form, so that
(X,L) defines a polarized manifold (probably parabolic...). Since the metric of L
over X̄ has minimal singularities, it is easy to check that Rb(X,L) = R(X̄, L), so
that Rb(X,L) is not finitely generated. However, the ample locus X is contained
in the complement of the asymptotic base locus of L on X̄, so that H0

b (X, kL)
is base point free on X for some k. However, we do have infX ρkL = 0, since kL
cannot be basepoint free on X̄.

In the next sections, we prove Theorem 3.3.

5.3. Convergence of the volume. It is immediate to check from the definition
of C1,α convergence that

vol(X) ≤ lim inf
j→∞

vol(Xj). (5.1)

Since n! vol(Xj) is an integer for each j, it is thus enough to show that

lim sup
j→∞

vol(Xj) ≤ vol(X).

We will prove this by adapting the usual argument that relies on the Poincaré
inequality to show that sets of zero capacity have measure zero, as in [EG92].
Let ε > 0 and let θ ∈ C∞c (X) be a non-negative function with θ = 1 on a given
compact setK ⊂ X with non-empty interior and ‖dθ‖2L2 < ε. Let τj be a sequence
of open embeddings of a neighborhood of K ′ = supp θ in Xj as in Definition

5.1, and θj ∈ C1,α
c (Xj) the corresponding functions. The uniform bounds on

Xj yields a uniform positive lower bound on the first positive eigenvalue of the
Laplacian [Yau75]. We thus have a uniform Poincaré inequality

‖θj − θ̄j‖2L2 ≤ C‖dθj‖2L2

with θ̄j the mean value of θj . Since θj vanishes outside K ′j = τj(K
′), this implies

vol(Xj \K ′j)θ̄2j ≤ Cε

for j � 1, and hence

vol(Xj) ≤ vol(K ′j) + Cεθ̄−2j .

But

lim
j→∞

vol(K ′j) = vol(K ′) ≤ vol(X) + ε,
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and it is now enough to bound θ̄j from below. Using that θj = 1 on K ′j , we

have θ̄j ≥ vol(Kj)/ vol(Xj), which is uniformly bounded below since vol(Xj) is
bounded above by Bishop-Gromov while vol(Kj)→ vol(K).

5.4. Isomorphism of spaces of sections. The goal of this section is to provide
a detailed proof of [DS12, Lemma 4.5], using only the assumptions of Theorem
3.3. Let us set some notation. Since X is a parabolic Kähler manifold, we may
and do fix an exhaustion of X by open sets Uν and smooth cut-off functions
θν ∈ C∞c (Uν), θν ≡ 1 on a neighborhood of Uν−1, such that ‖dθν‖L2 → 0 as
ν →∞. For each ν, let

τν,j : Uν ↪→ Xj

be a sequence of open embeddings as in Definition 5.1, and set

Uν,j = τν,j(Uν) ⊂ Xj .

Since X is parabolic and has finite volume, we known from Theorem 4.2 that
H0
b (X, kL) is finite dimensional for each k ∈ N. We define linear maps

Qν,j : H0
b (X, kL)→ H0(Xj , kLj) (5.2)

as follows. Given s ∈ H0
b (X, kL), denote by (θνs)j the section of kLj with

compact support in Uν,j induced by transporting θνs via τν,j and the bundle iso-
morphism τ∗ν,jLj ' L|Uν . We then define Qν,j(s) as the L2 orthogonal projection

of (θνs)j to the space of holomorphic sections.
In the other direction, we define an operator Pν,j from H0(Xj , kLj) to C∞c

sections of kL on X by setting

Pν,j(s) := θντ
∗
ν,js.

Lemma 5.3. For each k ≥ C + 1 fixed, the composition Pν,jQν,j is close to the
identity on H0

b (X, kL) for j � ν � 1. More precisely, for each ε > 0, there
exists ν0 and a sequence jν such that

‖s− Pν,jQν,j(s)‖L2 ≤ ε‖s‖L2 .

for all s ∈ H0
b (X, kL), all ν ≥ ν0 and all j ≥ jν .

Proof. Given ε > 0, we choose ν0 such that vol(X \ Uν−1) ≤ ε2 and ‖dθν‖L2 ≤ ε
for all ν ≥ ν0. Pick s ∈ H0

b (X, kL) and ν ≥ ν0. For all j, Pν,jQν,j(s) is supported
in Uν and θν = 1 on Uν−1, hence

‖s− Pν,jQν,j(s)‖L2 ≤ 2‖s‖L2(X\Uν−1) + ‖θνs− Pν,jQν,j(s)‖L2(Uν). (5.3)

Now
‖s‖L2(X\Uν−1) ≤ ε‖s‖L∞ ≤ Ckε‖s‖L2

for some constant Ck > 0, which takes care of the first term in the right-hand
side of (5.3). Here we have used that the equivalence of the L2 and L∞ norms on
H0
b (X, kL), which holds since H0

b (X, kL) is finite dimensional by Theorem 4.2.
Let us now consider the second term in the right-hand side of (5.3). Since τν,j

gets C1,α close to an isometry as j →∞ for each ν fixed, there exists a sequence
jν such that

‖θνs− Pν,jQν,j(s)‖L2(Uν) ≤ 2‖(θνs)j −Qν,j(s)‖L2
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for all ν, j with j ≥ jν . Since k ≥ C + 1 and Ric(ωj) ≥ −Cωj , the Hörmander
inequality (Theorem 2.5) yields

‖(θνs)j −Qν,j(s)‖L2 ≤ ‖∂(θνs)j‖L2 .

After perhaps taking jν even larger, we may ensure that

‖∂(θνs)j‖L2 ≤ 2‖(∂(θνs)‖L2 + ε‖∇(θνs)‖L2

for all j ≥ jν . Now ∂(θνs) = (∂θν)s since s is holomorphic, while ‖dθν‖L2 ≤ ε,
so this is in turn bounded above by Ckε‖s‖L2 for some constant Ck > 0, using
this time the equivalence between the L2 norm, the L∞ norm and the Sobolev
L2
1 norm on H0

b (X, kL). Summing up, we have proved that the second term in
the right-hand side of (5.3) satisfies

‖Pν,jQν,j(s)− θνs‖L2(Uν) ≤ Ckε‖s‖L2 ,

which concludes the proof of Lemma 5.3. �

Lemma 5.4. Pν,j is an almost isometry for j � ν � 1. More precisely, for each
ε > 0, there exist ν0 and a sequence jν such that

(1− ε)‖t‖L2 ≤ ‖Pν,j(t)‖L2 ≤ (1 + ε)‖t‖L2

for all ν, j with ν ≥ ν0, j ≥ jν and all t ∈ H0(Xj , kLj). Furthermore, we can
also require that

‖∂Pν,j(t)‖L∞ ≤ ε‖t‖L2

and
‖∇Pν,j(t)‖L∞ ≤ Ck‖t‖L2 .

Proof. By Proposition 2.3, there exists a constant Ck > 0 independent of j such
that

‖∇t‖L∞ + ‖t‖L∞ ≤ Ck‖t‖L2 (5.4)

for all t ∈ H0(Xj , kLj). For each ν fixed, τν,j is almost an isometry for j � 1,
hence

‖Pν,j(t)‖L2 ≤ (1 + ε)‖t‖L2 ,

‖∂Pν,j(t)‖L∞ ≤ 2‖∂θν‖L2 |t‖L∞ + ε‖∇t‖L∞ ,
and

‖∇Pν,j(t)‖L∞ ≤ 2‖∇((θν)jt)‖L∞ .
Thanks to (5.4), this already proves the right-hand part of the first estimate, as
well as last two ones. To get a lower bound on ‖Pν,j(t)‖L2 , we write

‖t‖2L2 ≤ vol(Xj \ τν,j(Uν−1))‖t‖2L∞ + ‖t‖2L2(\τν,j(Uν−1))
.

Using (5.4) and

lim
ν→∞

lim
j→∞

vol(Xj \ τν,j(Uν−1)) = vol(X)− lim
ν→∞

vol(Uν−1) = 0,

we get
‖t‖L2 ≤ (1 + ε)‖t‖L2(τν,j(Uν−1)),

for j � ν � 1, and the result follows easily. �

We are now in a position to prove:
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Proposition 5.5. For each k ≥ C + 1, Qν,j : H0
b (X, kL) → H0(Xj , kLj) is an

isomorphism for all j � ν � 1.

Proof. Injectivity follows directly from Lemma 5.3. Assume now that for all
ν large enough, there exists jν arbitrarily large such that Qν := Qν,jν is not
surjective, and set for simplicity Pν := Pν,jν and Xν := Xjν . By Lemma 5.4, we
may assume that

(1− εν)‖t‖L2 ≤ ‖Pν(t)‖L2 ≤ (1 + εν)‖t‖L2 ,

‖∂Pν(t)‖L∞ ≤ εν‖t‖L2

and

‖∇Pν(t)‖L∞ ≤ Ck‖t‖L2

for all t ∈ H0(Xν , kLν), with εν → 0.
For each ν, choose tν ∈ H0(Xν , kLν) orthogonal to the image of Qν and such

that ‖tν‖L2 = 1. By the above estimates, we may assume after perhaps passing
to a subsequence of ν that Pν(tν) converges uniformly on compact sets of X to
a non-zero bounded holomorphic section s ∈ H0

b (X, kL). Since tν is holomorphic
and orthogonal to Qν(s), the orthogonal projection of (θνs)jν on holomorphic
sections, we have 〈tν , (θνs)jν 〉 = 0, and hence

〈Pν(tν), θνs〉 → 0.

But since Pν(tν) and θνs are uniformly bounded and both converge to s on com-
pact sets, this implies by dominated convergence that 〈s, s〉 = 0, which contradicts
the fact that s is non-zero. �

5.5. Lower bound for the distorsion function. Let us show that for each
k ≥ C + 1 we have

inf
X
ρkL ≥ lim sup

j→∞

(
inf
Xj
ρkLj

)
.

Pick x ∈ X and choose ν such that x ∈ Uν . We can then find an infinite sequence
sj ∈ H0(Xj , kLj) such that

|sj(τν,j(x))|2 = ρkLj (τν,j(x)) ≥ inf
Xj
ρkLj

and ‖sj‖L2 = 1. We thus have

|Pν,j(sj)(x)|2 ≥ inf
Xj
ρkLj

and ‖Pν,j(sj)‖L2 → 1 for j � ν � 1 by Lemma 5.4. Arguing as in the proof
of Proposition 5.5, we may assume that Pν,j(sj) converges for j � ν � 1 to a
bounded holomorphic section s ∈ H0

b (X, kL) such that ‖s‖L2 = 1, and which
satisfies

ρkL(x) ≥ |s(x)|2 ≥ lim sup
j→∞

(
inf
Xj
ρkLj

)
.
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5.6. Finite generation. Suppose given k0 ∈ N such that

lim sup
j→∞

(
inf
j
ρk0Lj

)
> 0.

After passing to a subsequence, we may assume that infXj ρk0Lj ≥ c > 0 for all j.
On the other hand, by Proposition 2.3 there exists a constant Ck > 0 independent
of j such that supXj ρkLj ≤ Ck for all j, and it follows easily that for each k
multiple of k0 there exists ck > 0 independent of j such that infXj ρkLj ≥ ck > 0
for all j, cf. [DS12, Lemma 3.1].

Since a graded algebra is finitely generated iff it is noetherian, and since
Rb(X,L) is a finite module over Rb(X, kL) for each k, we may replace L with
kL in showing that Rb(X,L) is finitely generated. We may thus assume that
Ric(ωj) ≥ −ωj/2. As a consequence, for each k ≥ 1, we may choose νk and jk
such that Qνk,j : H0

b (X, kL)→ H0(Xj , kLj) is an isomorphism for all j ≥ jk. Let
(sα) be an orthonormal basis of ⊕

k≤(n+1)m

H0
b (X, kL).

Their images (Qνk,j(sα))α under the isomorphism form an almost orthonormal
basis of ⊕

k≤(n+1)m

H0(Xj , kLj)

for j � 1. Pick k ≥ 1 + (n+ 1)m and a section s ∈ H0
b (X, kL). By Theorem 3.3,

there exists a constant Bk > 0 independent of j such that Qνk,j(s) ∈ H0(Xj , kLj)
can be expressed as a polynomial in (Qνk,j(sα))α with coefficients bounded above
by Bk‖Qνk,j(s)‖L2 , hence bounded independently of j � 1. Upon taking a
subsequence, we can assume that the coefficients of these polynomials converge
as j →∞. Since τ∗νk,jQνk,j(s)→ s and τ∗νk,jQνk,j(sα)→ sα for each α, we easily

get in the limit that s can be expressed as a polynomial in (sα)α, which shows as
desired that Rb(X,L) is finitely generated.
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