Lecture 3: Non-Archimedean pluripotential theory and K-stability

Sébastien Boucksom

CNRS, Sorbonne Université, Institut de Mathématiques de Jussieu

Simons Lectures 2023

From psh rays to test configurations

Let (X, ω) be a compact Kähler manifold, $n = \dim X$, $V = [\omega]^n$.

- Psh ray $(\varphi_t)_{t>0}$ in $\mathrm{PSH}(\omega) \leftrightarrow S^1$ -invariant ω -psh function $\Phi(x,\tau) = \varphi_{-\log|\tau|}(x)$ on $X \times \mathbb{D}^{\times}$.
- Assume linear growth $\varphi_t \leq at + b$ (automatic for psh geodesic rays in \mathcal{E}^1) $\Rightarrow \widetilde{\Phi} := \Phi + a \log |\tau| \leq b$ (uniquely) extends to ω -psh function on $X \times \mathbb{D}$.
- Simplest case: analytic singularities along $X \times \{0\}$, i.e. $\widetilde{\Phi} =_{\text{loc}} \frac{1}{m} \log \sum_i |f_i| + O(1)$ with $m \in \mathbb{Z}_{>0}$ and $(f_i) \subset \mathcal{O}_{X \times \mathbb{D}}$ trivial outside $X \times \{0\}$.
- Ideal sheaf $\mathfrak{a}:=\{f\in\mathcal{O}_{X\times\mathbb{D}}\mid \log|f|\leq m\widetilde{\Phi}+O(1)\}$ coherent and S^1 -invariant \Rightarrow flag ideal on $X\times\mathbb{P}^1$, i.e. $\mathfrak{a}=\sum_{i=0}^N\mathfrak{a}_i\tau^i$ for an increasing sequence of (coherent sheaves of) ideals $\mathfrak{a}_0\subset\mathfrak{a}_1\subset\cdots\subset\mathfrak{a}_N=\mathcal{O}_X$.
- Blowup $\mathcal{X} \to X \times \mathbb{P}^1$ along \mathfrak{a} is a **test configuration** for X, i.e. \mathbb{C}^{\times} -equivariant compactification of $X \times (\mathbb{P}^1 \setminus \{0\})$, with fiber \mathcal{X}_0 over $0 \in \mathbb{P}^1$.
- Write $\mathfrak{a} \cdot \mathcal{O}_{\mathcal{X}} = \mathcal{O}_{\mathcal{X}}(-E) \leadsto \text{singularities of } \Phi \text{ encoded in } D := -\frac{1}{m}E + a\mathcal{X}_0.$ Lies in $\mathrm{Div}_0(\mathcal{X}) = \{D \in \mathrm{Div}(\mathcal{X}) \mid \mathrm{supp}\, D \subset \mathcal{X}_0\}$ (vertical divisors).

The Berkovich space

• Berkovich space $X^{\sqsupset}:=$ space of (normalized) tropical characters of semiring $\mathcal I$ of flag ideals $\mathfrak a$ on $X\times \mathbb P^1$, i.e. functions $v\colon \mathcal I\to \mathbb R_{\geq 0}$ such that

$$v(\mathfrak{a} \cdot \mathfrak{a}') = v(\mathfrak{a}) + v(\mathfrak{a}'), \quad v(\mathfrak{a} + \mathfrak{a}') = \min\{v(\mathfrak{a}), v(\mathfrak{a}')\}, \quad v(\tau) = 1.$$

Space X^{\beth} is compact Hausdorff for topology of pointwise convergence.

- X projective (algebraic) $\Rightarrow X^{\beth} = \mathbf{Berkovich}$ analytification of X with respect to the trivial absolute value on $\mathbb{C} = \mathbf{natural}$ compactification of the space of valuations $v \colon \mathbb{C}(X)^{\times} \to \mathbb{R}$.
- Space of **piecewise linear (PL)** functions $PL(X^{\beth}) := \mathbb{Q}$ -vector space generated by image of evaluation map $\mathcal{I} \to C^0(X^{\beth})$. Stable under max and min, separates points $\Rightarrow PL(X^{\beth})$ dense in $C^0(X^{\beth})$ (Stone–Weierstrass).
- Space X^{\square} for n=1:

The non-Archimedean Monge-Ampère operator

- \mathcal{X} test configuration, $\mathcal{X}_0 = \sum_F b_F F \leadsto v_F \in X^\square$ such that $v_F(\mathfrak{a}) := b_F^{-1} \operatorname{ord}_F(\mathfrak{a})$ for $\mathfrak{a} \in \mathcal{I} \leadsto$ dense subset $X^{\operatorname{div}} \subset X^\square$ of **divisorial valuations** (coincides with usual definition when X projective).
- $\mathcal X$ test configuration \leadsto unique linear map $\operatorname{Div}_0(\mathcal X) \to \operatorname{PL}(X^{\beth})$ $D \mapsto \varphi_D$ such that $\varphi_D(v) = v(\mathfrak a)$ for $\mathfrak a \in \mathcal I$ and $D \in \operatorname{Div}_0(\mathcal X)$ such that $\mathfrak a \cdot \mathcal O_{\mathcal X} = \mathcal O_{\mathcal X}(-D)$.
- Induces $\varinjlim_{\mathcal{X}} \mathrm{Div}_0(\mathcal{X}) \overset{\sim}{\to} \mathrm{PL}(X^{\beth})$. Define space of **closed** (p,p)-forms $\mathcal{Z}^{p,p}(X^{\beth}) := \varinjlim_{\mathcal{X}} \mathrm{H}^{p,p}(\mathcal{X},\mathbb{R})$.
- $\bullet \ \ \text{Intersection pairing} \ \operatorname{PL}(X^{\beth}) \times \mathcal{Z}^{n,n}(X^{\beth}) \to \mathbb{R} \leadsto \text{linear map} \ \mathcal{Z}^{n,n}(X^{\beth}) \to \operatorname{C}^0(X^{\beth})^{\vee}.$
- $\varphi \in \mathrm{PL}(X^{\beth}) \leadsto [\omega]_{\varphi} \in \mathcal{Z}^{1,1}(X^{\beth})$, represented by $[\omega]_{\mathcal{X}} + [D] \in \mathrm{H}^{1,1}(\mathcal{X})$ if $\varphi = \varphi_D$ with $D \in \mathrm{Div}_0(\mathcal{X})$ and $[\omega]_{\mathcal{X}}$ pullback of $[\omega]$.
- $V^{-1}[\omega]^n_{\omega} \in \mathcal{Z}^{n,n}(X^{\beth}) \leadsto \mathsf{NA}$ Monge-Ampère measure

$$\mathrm{MA}^{\beth}(\varphi) = \mathrm{MA}^{\beth}_{[\omega]}(\varphi) = \sum_{F \subset \mathcal{X}_0} c_F \, \delta_{v_F}, \quad c_F := b_F F \cdot ([\omega]_{\mathcal{X}} + [D])^n.$$

NA functionals and K-stability

• NA MA operator admits a primitive $E^{\beth} = E^{\beth}_{[\omega]} \colon \operatorname{PL}(X^{\beth}) \to \mathbb{R}$, the **NA MA energy**.

For
$$\varphi = \varphi_D$$
 with $D \in \operatorname{Div}_0(\mathcal{X})$, $\operatorname{E}^{\beth}(\varphi_D) = \frac{([\omega]_{\mathcal{X}} + [D])^{n+1}}{(n+1)V}$.

- For any $[\theta] \in \mathrm{H}^{1,1}(X,\mathbb{R})$ set $\nabla_{[\theta]} \mathrm{E}^{\beth} := \frac{d}{ds} \big|_{s=0} \mathrm{E}^{\beth}_{[\omega]+s[\theta]}$.
- Log discrepancy function $A_X \colon X^{\text{div}} \to \mathbb{Q}_+$ defined by $A_X(v_F) := b_F^{-1} A_{(X \times \mathbb{P}^1, X \times \{0\})}(F)$ (coincides with usual definition in projective case).
- NA entropy of $\varphi \in PL(X^{\beth})$ defined as $H^{\beth}(\varphi) := \int A_X \ MA^{\beth}(\varphi)$, and NA Mabuchi K-energy as

$$\mathbf{M}^{\beth}(\varphi) := \mathbf{H}^{\beth}(\varphi) + \nabla_{[-\operatorname{Ric}(\omega)]} \mathbf{E}^{\beth}(\varphi) = \mathbf{H}^{\beth}(\varphi) + \nabla_{K_X} \mathbf{E}^{\beth}(\varphi).$$

- Set of NA Kähler potentials $\mathcal{K}^{\beth} := \{ \varphi_D \in \operatorname{PL}(X^{\beth}) \mid [\omega]_{\mathcal{X}} + [D] > 0 \text{ on } \mathcal{X}_0 \}.$
- For $\varphi \in \mathcal{K}^{\beth}$, $M^{\beth}(\varphi)$ essentially coincides with the **Donaldson–Futaki invariant**.

Definition

 $(X, [\omega])$ is uniformly K-stable if $M^{\square} \geq \delta \nabla_{[\omega]} E^{\square}$ on \mathcal{K}^{\square} for some $\delta > 0$.

Slopes of functionals

Recall $(\varphi_t)_{t\geq 0}$ psh ray with analytic singularities $\leadsto D \in \mathrm{Div}_0(\mathcal{X}) \leadsto \varphi_\infty := \varphi_D \in \mathrm{PL}(X^{\beth}).$

Theorem (Phong-Ross-Sturm, B-Hisamoto-Jonsson, Sjöström-Dyrefelt)

For each $\varphi \in \mathcal{K}^{\beth}$, the following holds:

- (i) there exists a unique psh geodesic ray (φ_t) in \mathcal{E}^1 with analytic singularities such that $\varphi_0 = 0$ and $\varphi_\infty = \varphi$;
- (ii) each of the functionals $F = E, \nabla_{\theta} E, H, M$ satisfies $\lim_{t \to +\infty} \frac{1}{t} F(\varphi_t) = F^{\beth}(\varphi_{\infty})$.

Corollary

 $(X, [\omega])$ uniquely $\operatorname{csc} K \Longrightarrow \operatorname{uniformly} K\text{-stable}.$

Proof.

Uniquely cscK \Longrightarrow $M \ge \delta \nabla_{\omega} \to C$ on \mathcal{E}^1 for some $\delta, C > 0$. Pick (φ_t) as in (i). Then $M(\varphi_t) \ge \delta \nabla_{\omega} \to (\varphi_t) - C \Longrightarrow M^{\square}(\varphi_{\infty}) \ge \delta \nabla_{[\omega]} \to \mathbb{E}^{\square}(\varphi_{\infty})$.

NA potentials of finite energy

- Denote by $\mathrm{PSH}^{\beth} = \mathrm{PSH}^{\beth}([\omega])$ the space of $[\omega]$ -psh functions $\varphi \colon X^{\beth} \to \mathbb{R} \cup \{-\infty\}$, i.e. $\varphi = \lim_i \downarrow \varphi_i \in \mathcal{K}^{\beth}$. Then φ is uniquely determined by restriction to X^{div} , which is finite valued \leadsto (weak) topology of $\mathrm{PSH}^{\beth} = \mathrm{pointwise}$ convergence on X^{div} .
- E^{\beth} : $\mathcal{K}^{\beth} \to \mathbb{R}$ nondecreasing \leadsto uniquely extends to a nondecreasing, usc functional E^{\beth} : $PSH^{\beth} \to \mathbb{R} \cup \{-\infty\}$, with $E^{\beth}(\varphi) = \lim_i \downarrow E^{\beth}(\varphi_i)$.
- Space of NA finite energy potentials $\mathcal{E}^{1,\beth} := \{ \varphi \in \mathrm{PSH}^{\beth} \mid \mathrm{E}^{\beth}(\varphi) > -\infty \}$. Strong topology of $\mathcal{E}^{1,\beth} := \text{coarsest}$ refinement of weak topology such that $\mathrm{E}^{\beth} \colon \mathcal{E}^{1,\beth} \to \mathbb{R}$ continuous.
- NA MA operator and $\nabla_{[\theta]} E^{\square}$ continuously extend to $\mathcal{E}^{1,\square}$ (B–Favre–Jonsson).
- Denote by $A_X \colon X^{\beth} \to [0, +\infty]$ maximal lsc extension of log discrepancy function. Define $H^{\beth} \colon \mathcal{E}^{1, \beth} \to [0, +\infty], M^{\beth} \colon \mathcal{E}^{1, \beth} \to \mathbb{R} \cup \{+\infty\}$ by

$$\mathrm{H}^{\beth}(\varphi) := \int_{X^{\beth}} \mathrm{A}_X \, \mathrm{MA}(\varphi), \quad \mathrm{M}^{\beth}(\varphi) := \mathrm{H}^{\beth}(\varphi) + \nabla_{K_X} \, \mathrm{E}^{\beth}(\varphi).$$

Maximal geodesic rays

- Each psh ray (φ_t) in PSH of linear growth determines an $[\omega]$ -psh function $\varphi_\infty \in \mathrm{PSH}^\square$. Restriction to X^{div} encodes **Lelong numbers** of the corresponding ω -psh function Φ on $X \times \mathbb{D}^\times$ (Berman–B–Jonsson).
- If (φ_t) psh geodesic ray in \mathcal{E}^1 , then $\varphi_\infty \in \mathcal{E}^{1,\square}$ and $E^{\square}(\varphi_\infty) \ge \lim_{t \to +\infty} \frac{1}{t} E(\varphi_t)$. Say (φ_t) maximal ray if equality holds. Then (φ_t) uniquely determined by φ_0 and φ_∞ .
- Conversely, any $\varphi \in \mathcal{E}^{1,\beth}$ determines a unique maximal ray emanating from any given $\varphi_0 \in \mathcal{E}^1 \Longrightarrow \mathcal{E}^{1,\beth} \simeq \{ \text{maximal geodesic rays in } \widehat{\mathcal{E}}^1 \}.$
- It is a strict closed subset: assume n=1, pick $V\in \mathrm{PSH}(\omega)$ such that $\omega+i\partial\overline{\partial}V$ is polar measure with no atom. Then $\max\{V,-t\}\leadsto$ nontrival psh geodesic ray (φ_t) with $\varphi_0=0$, $\varphi_\infty=0$ (Darvas).

Theorem (Berman-B-Jonsson, C. Li)

Assume (φ_t) maximal geodesic ray on \mathcal{E}^1 . Then:

- (i) $\lim_{t\to+\infty} \frac{1}{t} \nabla_{\theta} E(\varphi_t) = \nabla_{[\theta]} E(\varphi_{\infty});$
- (ii) $\lim_{t\to+\infty} \frac{1}{t} H(\varphi_t) \geq H^{\square}(\varphi_{\infty}).$

Slope of entropy and YTD conjecture

Theorem (C. Li)

Any psh geodesic ray (φ_t) in \mathcal{E}^1 such that $H(\varphi_t) \leq Ct$ is maximal.

Corollary

Consider the following properties:

- (i) $(X, [\omega])$ strongly K-stable, i.e. $M^{\square} \geq \delta \nabla_{[\omega]} E^{\square}$ on $\mathcal{E}^{1,\square}$ for some $\delta > 0$;
- (ii) $(X, [\omega])$ uniquely cscK;
- (iii) $(X, [\omega])$ uniformly K-stable, i.e. $M^{\square} \geq \delta \nabla_{[\omega]} E^{\square}$ on \mathcal{K}^{\square} for some $\delta > 0$.

Then $(i)\Rightarrow(ii)\Rightarrow(iii)$.

Conjecture (Entropy approximation conjecture)

Each $\varphi \in \mathcal{E}^{1, \square}$ can be written as $\varphi = \lim_i \varphi_i \in \mathcal{K}^{\square}$ such that $H^{\square}(\varphi_i) \to H^{\square}(\varphi) \Leftrightarrow M^{\square} \colon \mathcal{E}^{1, \square} \to \mathbb{R} \cup \{+\infty\}$ maximal lsc extension from \mathcal{K}^{\square} .

Conjecture implies $(X, [\omega])$ uniquely cscK \Leftrightarrow uniformly K-stable (YTD-conjecture).

Sketch of proof of Theorem

- Assume (φ_t) geodesic ray in \mathcal{E}^1 with $H(\varphi_t) \leq Ct \rightsquigarrow \varphi_\infty \in \mathcal{E}^{1,\beth}$.
- Let (ψ_t) be maximal geodesic ray with $\psi_0 = \varphi_0$ and $\psi_\infty = \varphi_\infty$. Then $\psi_t \ge \varphi_t$ and $\mathrm{E}(\psi_t) \mathrm{E}(\varphi_t) = at$ with $a \ge 0$. Need to show a = 0.
- Induced ω -psh functions $\Psi \geq \Phi$ on $X \times \mathbb{D}^{\times}$ same Lelong numbers. For each p > 0, Demailly's multiplier ideal techniques $\Rightarrow \int_{X \times \mathbb{D}^{\times}} e^{p(\Psi \Phi)} dV |d\tau|^2 < \infty \Leftrightarrow \int_0^\infty e^{-2t} dt \int_X e^{p(\psi_t \varphi_t)} dV < \infty.$
- Jensen's inequality ⇒

$$H(\varphi_t) = \int_X \log\left(\frac{MA(\varphi_t)}{dV}\right) MA(\varphi_t) \ge \int_X p(\psi_t - \varphi_t) MA(\varphi_t) - \log \int_X e^{p(\psi_t - \varphi_t)} dV.$$

- $\int_X (\psi_t \varphi_t) \operatorname{MA}(\varphi_t) \ge \operatorname{E}(\psi_t) \operatorname{E}(\varphi_t) = at$.
- Since $H(\varphi_t) \leq Ct$ get $\int_0^\infty e^{(pa-(C+2))t} dt < \infty$ for all $p > 0 \Rightarrow a = 0$.

