Lecture 1: Spaces of norms and GIT

Sébastien Boucksom

CNRS, Sorbonne Université, Institut de Mathématiques de Jussieu
Simons Lectures 2023

Growth of convex functions

- If $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is convex, then either $f(t) \geq \delta t-C$ with $\delta, C>0$, or f is nonincreasing.
- Let (X, d) be a complete metric space. A geodesic $\left(x_{t}\right)_{t \in I}$ of constant speed $c \geq 0$ satisfies $d\left(x_{s}, x_{t}\right)=c|s-t|$. It is a geodesic segment if $I=[a, b]$, and a geodesic ray if $I=\mathbb{R}_{+}$.
- Suppose (X, d) is a geodesic space (i.e. any two points are connected by a geodesic segment). By Hopf-Rinow, X is locally compact iff each closed ball B is compact.

Theorem

Suppose $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex on geodesics and strongly Isc, i.e. $B \cap\{f \leq c\}$ is compact for each closed ball B and $c \in \mathbb{R}$. For any $x_{0} \in X$, one of the following holds:
(i) either f is coercive, i.e. $f \geq \delta d\left(\cdot, x_{0}\right)-C$ for some $\delta, C>0$;
(ii) or there exists a geodesic ray emanating from $x_{0} \in X$ along which f is nonincreasing. Further, (i) implies that f admits a minimizer, and the converse holds if the minimizer is unique.

Proof

- Assume (i) fails, and pick a sequence $\left(x_{j}\right)$ such that $f\left(x_{j}\right) \leq \delta_{j} d\left(x_{j}, x_{0}\right)-C_{j}$ with $\delta_{j} \rightarrow 0$ and $C_{j} \rightarrow+\infty$.
- $\left(x_{j}\right)$ unbounded, otherwise $f\left(x_{j}\right) \rightarrow-\infty$, while f strongly Isc implies bounded below on balls \Longrightarrow may assume $T_{j}:=d\left(x_{j}, x_{0}\right) \rightarrow+\infty$.
- Pick a unit-speed geodesic $\left(x_{j, t}\right)_{t \in\left[0, T_{j}\right]}$ joining x_{0} to x_{j}.
- By convexity, $f\left(x_{j, t}\right)-f\left(x_{0}\right) \leq \frac{t}{T_{j}}\left(f\left(x_{j}\right)-f\left(x_{0}\right)\right) \leq \delta_{j} t$
$\Longrightarrow\left(x_{j, t}\right)_{t \in[0, T]}$ stays in compact set $B\left(x_{0}, T\right) \cap\left\{f \leq C_{T}\right\}$
\Longrightarrow can assume ($x_{j, t}$) converges on compacts sets to a unit-speed geodesic ray $\left(x_{t}\right)_{t \in[0,+\infty)}$ (Arzelà-Ascoli);
- f lsc $\Longrightarrow f\left(x_{t}\right) \leq f\left(x_{0}\right)$, hence (ii).
- (i) \Longrightarrow any minimizing sequence is bounded \Longrightarrow stays in compact set $B \cap\{f \leq c\} \Longrightarrow$ limit point is a minimizer.
- If x_{0} unique minimizer of f, then (ii) cannot hold, hence (i) does.

Busemann convexity and the asymptotic cone

Assume (X, d) complete geodesic metric space.

- The space (X, d) is Busemann convex if d is convex on geodesics, i.e. $t \mapsto d\left(x_{t}, y_{t}\right)$ is convex for any pair of geodesics $\left(x_{t}\right),\left(y_{t}\right)$.
- This is a nonpositive curvature condition: suffices to consider geodesic segments with same origin, and convexity is then a sub-Thales' theorem.
- Busemann convexity \Longrightarrow uniqueness and continuity of geodesics segments with respect to end-points $\Longrightarrow X$ contractible.
- The asymptotic cone (\hat{X}, \hat{d}) is defined as the set \hat{X} of (constant-speed) geodesic rays $\hat{x}=\left(x_{t}\right)$ modulo parallelism (bounded distance), endowed with the metric

$$
\hat{d}(\hat{x}, \hat{y}):=\lim _{t \rightarrow+\infty} \frac{1}{t} d\left(x_{t}, y_{t}\right)
$$

- (\hat{X}, \hat{d}) is also geodesic and complete, and \hat{X} is in 1-1 correspondence with rays emanating from any given base point.

Busemann convexity and the asymptotic cone

- Assume $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex and Isc, and pick $x_{0} \in X$ with $f\left(x_{0}\right)<\infty$. Then $\hat{f}: \hat{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\hat{f}(\hat{x}):=\lim _{t \rightarrow+\infty} \frac{1}{t} f\left(x_{t}\right)
$$

is independent of x_{0}, convex, Isc.

- If f is strongly Isc, then theorem yields f coercive $\Leftrightarrow \hat{f}$ coercive.
- All of the above holds when geodesics are restricted to a distinguished class \mathcal{G}, closed under affine reparametrization and pointwise limits.

Example

Assume (X, d) is normed vector space. Then:

- (X, d) is Busemann convex with respect to class \mathcal{G} of affine geodesics;
- $(\hat{X}, \hat{d})=(X, d)$;
- \hat{f} is homogenization of f, i.e. smallest convex homogeneous function above f.

The space of norms

Fix a a complex vector space $V \simeq \mathbb{C}^{d}$.

- Denote by $\mathcal{N}=\mathcal{N}(V)$ the set of all norms $\chi: V \rightarrow \mathbb{R}_{+}$. Natural metric

$$
\mathrm{d}_{\infty}\left(\chi, \chi^{\prime}\right):=\log \inf \left\{C \geq 1 \mid C^{-1} \chi \leq \chi^{\prime} \leq C \chi\right\}=\sup _{V \backslash\{0\}}\left|\log \chi-\log \chi^{\prime}\right|
$$

- $\left(\mathcal{N}, \mathrm{d}_{\infty}\right)$ is complete and locally compact. Topology $=$ pointwise convergence on V.
- Denote by $\mathcal{H} \subset \mathcal{N}$ the subspace of Hermitian norms. It is closed (parallelogram identity), and hence ($\mathcal{H}, \mathrm{d}_{\infty}$) complete and locally compact.
- Choice of $\chi \in \mathcal{H}$ yields canonical isomorphisms

$$
\mathcal{H} \simeq \operatorname{Herm}^{+}(V, \chi) \quad \mathcal{H} \simeq \operatorname{GL}(V) / \mathrm{U}(V, \chi)
$$

- Any $\chi \in \mathcal{H}$ can be diagonalized in some basis $\mathbf{e}=\left(e_{i}\right)$ of V, i.e.

$$
\chi(v)^{2}=\sum_{i}\left|a_{i}\right|^{2} \chi\left(e_{i}\right)^{2}, \quad v=\sum_{i} a_{i} e_{i} .
$$

The space of norms

- For any basis e of V, define the apartment $\mathbb{A}_{\mathbf{e}} \subset \mathcal{H}$ as the set of Hermitian norms diagonalized in e.
- It is closed in \mathcal{H}, and $\chi \mapsto\left(\log \chi\left(e_{i}\right)\right)_{i}$ yields isometry $\left(\mathbb{A}_{\mathbf{e}}, \mathrm{d}_{\infty}\right) \xrightarrow{\sim}\left(\mathbb{R}^{d}, \ell^{\infty}\right)$.
- Affine paths in apartments form a distinguished class \mathcal{G} of geodesics in $\left(\mathcal{H}, \mathrm{d}_{\infty}\right)$.
- Any pair of points in \mathcal{H} lies in some common apartment $\mathbb{A}_{\mathbf{e}}$, affine segment between them is independent of \mathbf{e}.
- $\left(\mathcal{H}, \mathrm{d}_{\infty}\right)$ is Busemann convex with respect to \mathcal{G}. More generally:

Theorem (Bhatia,Darvas-Lu-Rubinstein,B-Eriksson)

For any $p \in[1, \infty]$, there exists a unique metric d_{p} on \mathcal{H} inducing $\left(\mathbb{A}_{\mathbf{e}}, \mathrm{d}_{p}\right) \simeq\left(\mathbb{R}^{d}, \ell^{p}\right)$ for all \mathbf{e}. Furthermore, $\left(\mathcal{H}, \mathrm{d}_{p}\right)$ is Busemann convex with respect to \mathcal{G}.

For $p=2:\left(\mathcal{H}, \mathrm{d}_{2}\right) \simeq \mathrm{GL}(V) / \mathrm{U}(V)$ as Riemannian symmetric space.

Non-Archimedean norms

- Denote by $|\cdot|_{0}$ the trivial absolute value on \mathbb{C}. Note $|\cdot|_{0}=\lim _{\varepsilon \rightarrow 0_{+}}|\cdot|^{\varepsilon}$.
- A non-Archimedean norm is a function $\chi: V \rightarrow \mathbb{R}_{\geq 0}$ such that
- $\chi(v+w) \leq \max \{\chi(v), \chi(w)\}$;
- $\chi(a v)=|a|_{0} \chi(v)$;
- $\chi(v)=0$ iff $v=0$.

Balls are linear subspaces, and data of χ is equivalent to the filtration $\{\chi \leq R\}_{R \geq 0}$.

- If $\chi=\lim _{i} \chi_{i}^{\varepsilon_{i}}$ pointwise with $\chi_{i} \in \mathcal{N}(V)$ and $\varepsilon_{i} \rightarrow 0_{+}$, then χ is a non-Archimedean (semi)norm.
- Denote by $\mathcal{N}^{\text {NA }}$ the set of all non-Archimedean norms χ on V. It is a cone with respect to the scaling action $\mathbb{R}_{>0} \times \mathcal{N}^{\mathrm{NA}} \rightarrow \mathcal{N}^{\mathrm{NA}} \quad(\varepsilon, \chi) \mapsto \chi^{\varepsilon}$, with apex the trivial norm.
- Can define $\mathrm{d}_{\infty}^{\mathrm{NA}}$ as before. Then $\left(\mathcal{N}^{\mathrm{NA}}, \mathrm{d}_{\infty}^{\mathrm{NA}}\right)$ complete, but not locally compact when $d=\operatorname{dim} V>1$.

Non－Archimedean norms as an asymptotic cone

－any $\chi \in \mathcal{N}^{\mathrm{NA}}$ can be diagonalized in some basis $\mathbf{e}=\left(e_{i}\right)$ of V ，i．e． $\chi(v)=\max _{i} \chi\left(a_{i} e_{i}\right)=\max _{a_{i} \neq 0} \chi\left(e_{i}\right)$ for $v=\sum_{i} a_{i} e_{i}(\Leftrightarrow$ compatible basis for the corresponding filtration）．
－apartement $\left(\mathbb{A}_{\mathbf{e}}^{\mathrm{NA}}, \mathrm{d}_{\infty}^{\mathrm{NA}}\right) \simeq\left(\mathbb{R}^{d}, \ell^{\infty}\right)$ ．
－for any $p \in[1, \infty]$ ，there exists a unique metric $\mathrm{d}_{p}^{\mathrm{NA}}$ on $\mathcal{N}^{\mathrm{NA}}$ such that $\left(\mathbb{A}_{\mathbf{e}}^{\mathrm{NA}}, \mathrm{d}_{p}^{\mathrm{NA}}\right) \simeq\left(\mathbb{R}^{d}, \ell^{p}\right)$ for all \mathbf{e}.
－$p=2,\left(\mathcal{N}^{\mathrm{NA}}, \mathrm{d}_{2}\right)$ Euclidean building．

Theorem

For any affine geodesic ray $\hat{\chi}=\left(\chi_{t}\right)$ in $\mathcal{H}, \chi_{\infty}:=\lim _{t \rightarrow \infty} \chi_{t}^{1 / t}$ defines a non－Archimedean norm．Further：
－$\hat{\chi}$ is uniquely determined by χ_{0} and χ_{∞} ；
－$\hat{\chi} \mapsto \chi_{\infty}$ induces $\left(\hat{\mathcal{H}}, \hat{\mathrm{d}}_{p}\right) \xrightarrow{\sim}\left(\mathcal{N}^{\text {NA }}, \mathrm{d}_{p}^{\text {NA }}\right)$ ．

The Hilbert-Mumford criterion

Consider a finite dimensional representation W of $G:=\mathrm{GL}(V)$, with maximal compact subgroup $K=\mathrm{U}(V)$.

- A (nonzero) $w \in W$ is stable if its G-orbit is closed, with finite stabilizer.
- This holds iff $f: G \rightarrow \mathbb{R}$ defined by $f(g):=\log \|g \cdot w\|$ is proper, for any choice of norm $\|\cdot\|$ on W.
- Choose a K-invariant norm \Longrightarrow induced function $f: G / K=\mathcal{H} \rightarrow \mathbb{R}$ is convex $\Longrightarrow w$ stable iff $\hat{f}>0$ on each nontrivial ray in $\hat{\mathcal{H}} \simeq \mathcal{H}^{\mathrm{NA}}$.
- Basis e of $V \Leftrightarrow$ maximal torus $T \simeq\left(\mathbb{C}^{\times}\right)^{d} \subset G \Rightarrow$ weight decomposition $W=\bigoplus_{\alpha \in \mathbb{Z}^{d}} W_{\alpha}$.
- Write $w=\sum_{\alpha} w_{\alpha}$. Then $f(\lambda)=\log \left\|\sum_{\alpha} e^{\langle\alpha, \lambda\rangle} w_{\alpha}\right\|$ on $\mathbb{A}_{\mathbf{e}} \simeq \mathbb{R}^{d}$, hence $\hat{f}(\lambda)=\max _{w_{\alpha} \neq 0}\langle\alpha, \lambda\rangle$ on $\hat{\mathbb{A}}_{\mathbf{e}} \simeq \mathbb{R}^{d}$.
- Conclusion: w is stable iff $\hat{f}>0$ on $\hat{\mathbb{A}}_{\mathbf{e}}(\mathbb{Z}) \simeq \mathbb{Z}^{d}$ for all e (Hilbert-Mumford criterion).

