Lecture 1: Spaces of norms and GIT

Sébastien Boucksom

CNRS, Sorbonne Université, Institut de Mathématiques de Jussieu

Simons Lectures 2023

うせん 前 ふばやふばやふむやる

Growth of convex functions

- If $f: \mathbb{R}_+ \to \mathbb{R}$ is convex, then either $f(t) \ge \delta t C$ with $\delta, C > 0$, or f is nonincreasing.
- Let (X, d) be a complete metric space. A geodesic $(x_t)_{t \in I}$ of constant speed $c \ge 0$ satisfies $d(x_s, x_t) = c|s - t|$. It is a geodesic segment if I = [a, b], and a geodesic ray if $I = \mathbb{R}_+$.
- Suppose (X, d) is a **geodesic space** (i.e. any two points are connected by a geodesic segment). By Hopf-Rinow, X is locally compact iff each closed ball B is compact.

Theorem

Suppose $f: X \to \mathbb{R} \cup \{+\infty\}$ is convex on geodesics and strongly lsc, i.e. $B \cap \{f \le c\}$ is compact for each closed ball B and $c \in \mathbb{R}$. For any $x_0 \in X$, one of the following holds: (i) either f is coercive, i.e. $f \ge \delta d(\cdot, x_0) - C$ for some $\delta, C > 0$; (ii) or there exists a geodesic ray emanating from $x_0 \in X$ along which f is nonincreasing. Further, (i) implies that f admits a minimizer, and the converse holds if the minimizer is unique.

Proof

- Assume (i) fails, and pick a sequence (x_j) such that $f(x_j) \leq \delta_j d(x_j, x_0) C_j$ with $\delta_j \to 0$ and $C_j \to +\infty$.
- (x_j) unbounded, otherwise $f(x_j) \to -\infty$, while f strongly lsc implies bounded below on balls \implies may assume $T_j := d(x_j, x_0) \to +\infty$.
- Pick a unit-speed geodesic $(x_{j,t})_{t \in [0,T_j]}$ joining x_0 to x_j .
- By convexity, $f(x_{j,t}) f(x_0) \leq \frac{t}{T_j}(f(x_j) f(x_0)) \leq \delta_j t$ $\implies (x_{j,t})_{t \in [0,T]}$ stays in compact set $B(x_0,T) \cap \{f \leq C_T\}$ \implies can assume $(x_{j,t})$ converges on compacts sets to a unit-speed geodesic ray $(x_t)_{t \in [0,+\infty)}$ (Arzelà-Ascoli);
- $f \operatorname{lsc} \Longrightarrow f(x_t) \leq f(x_0)$, hence (ii).
- (i) \implies any minimizing sequence is bounded \implies stays in compact set $B \cap \{f \leq c\} \implies$ limit point is a minimizer.
- If x_0 unique minimizer of f, then (ii) cannot hold, hence (i) does.

Busemann convexity and the asymptotic cone

Assume (X, d) complete geodesic metric space.

- The space (X, d) is **Busemann convex** if d is convex on geodesics, i.e. $t \mapsto d(x_t, y_t)$ is convex for any pair of geodesics (x_t) , (y_t) .
- This is a **nonpositive curvature** condition: suffices to consider geodesic segments with same origin, and convexity is then a sub-Thales' theorem.
- Busemann convexity \implies uniqueness and continuity of geodesics segments with respect to end-points $\implies X$ contractible.
- The asymptotic cone (\hat{X}, \hat{d}) is defined as the set \hat{X} of (constant-speed) geodesic rays $\hat{x} = (x_t)$ modulo parallelism (bounded distance), endowed with the metric

$$\hat{d}(\hat{x}, \hat{y}) := \lim_{t \to +\infty} \frac{1}{t} d(x_t, y_t).$$

• (\hat{X}, \hat{d}) is also geodesic and complete, and \hat{X} is in 1–1 correspondence with rays emanating from any given base point.

Busemann convexity and the asymptotic cone

• Assume $f: X \to \mathbb{R} \cup \{+\infty\}$ is convex and lsc, and pick $x_0 \in X$ with $f(x_0) < \infty$. Then $\hat{f}: \hat{X} \to \mathbb{R} \cup \{+\infty\}$ defined by

$$\hat{f}(\hat{x}) := \lim_{t \to +\infty} \frac{1}{t} f(x_t)$$

is independent of x_0 , convex, lsc.

- If f is strongly lsc, then theorem yields f coercive $\Leftrightarrow \hat{f}$ coercive.
- All of the above holds when geodesics are restricted to a **distinguished class** *G*, closed under affine reparametrization and pointwise limits.

Example

Assume (X, d) is normed vector space. Then:

- (X, d) is Busemann convex with respect to class \mathcal{G} of affine geodesics;
- $(\hat{X}, \hat{d}) = (X, d);$
- \hat{f} is homogenization of f, i.e. smallest convex homogeneous function above f.

The space of norms

Fix a a complex vector space $V \simeq \mathbb{C}^d$.

• Denote by $\mathcal{N} = \mathcal{N}(V)$ the set of all norms $\chi \colon V \to \mathbb{R}_+$. Natural metric

$$d_{\infty}(\chi,\chi') := \log \inf\{C \ge 1 \mid C^{-1}\chi \le \chi' \le C\chi\} = \sup_{V \setminus \{0\}} |\log \chi - \log \chi'|.$$

- $(\mathcal{N}, d_{\infty})$ is complete and locally compact. Topology = pointwise convergence on V.
- Denote by $\mathcal{H} \subset \mathcal{N}$ the subspace of Hermitian norms. It is closed (parallelogram identity), and hence $(\mathcal{H}, d_{\infty})$ complete and locally compact.
- Choice of $\chi \in \mathcal{H}$ yields canonical isomorphisms

$$\mathcal{H} \simeq \operatorname{Herm}^+(V, \chi) \quad \mathcal{H} \simeq \operatorname{GL}(V)/\operatorname{U}(V, \chi).$$

• Any $\chi \in \mathcal{H}$ can be diagonalized in some basis $\mathbf{e} = (e_i)$ of V, i.e.

$$\chi(v)^2 = \sum_i |a_i|^2 \chi(e_i)^2, \quad v = \sum_i a_i e_i.$$

The space of norms

- For any basis e of V, define the apartment A_e ⊂ H as the set of Hermitian norms diagonalized in e.
- It is closed in \mathcal{H} , and $\chi \mapsto (\log \chi(e_i))_i$ yields isometry $(\mathbb{A}_e, d_\infty) \xrightarrow{\sim} (\mathbb{R}^d, \ell^\infty)$.
- Affine paths in apartments form a distinguished class ${\cal G}$ of geodesics in $({\cal H}, d_\infty).$
- Any pair of points in ${\cal H}$ lies in some common apartment ${\Bbb A}_e,$ affine segment between them is independent of e.
- $(\mathcal{H}, d_{\infty})$ is Busemann convex with respect to \mathcal{G} . More generally:

Theorem (Bhatia, Darvas–Lu–Rubinstein, B–Eriksson)

For any $p \in [1, \infty]$, there exists a unique metric d_p on \mathcal{H} inducing $(\mathbb{A}_e, d_p) \simeq (\mathbb{R}^d, \ell^p)$ for all e. Furthermore, (\mathcal{H}, d_p) is Busemann convex with respect to \mathcal{G} .

For p = 2: $(\mathcal{H}, d_2) \simeq GL(V)/U(V)$ as Riemannian symmetric space.

Non-Archimedean norms

- Denote by $|\cdot|_0$ the *trivial absolute value* on \mathbb{C} . Note $|\cdot|_0 = \lim_{\varepsilon \to 0_+} |\cdot|^{\varepsilon}$.
- A non-Archimedean norm is a function $\chi \colon V \to \mathbb{R}_{\geq 0}$ such that
 - $\chi(v+w) \leq \max\{\chi(v), \chi(w)\};$
 - $\blacktriangleright \ \chi(av) = |a|_0 \chi(v);$
 - $\chi(v) = 0$ iff v = 0.

Balls are linear subspaces, and data of χ is equivalent to the filtration $\{\chi \leq R\}_{R\geq 0}$.

- If $\chi = \lim_i \chi_i^{\varepsilon_i}$ pointwise with $\chi_i \in \mathcal{N}(V)$ and $\varepsilon_i \to 0_+$, then χ is a non-Archimedean (semi)norm.
- Denote by \mathcal{N}^{NA} the set of all non-Archimedean norms χ on V. It is a cone with respect to the scaling action $\mathbb{R}_{>0} \times \mathcal{N}^{NA} \to \mathcal{N}^{NA}$ $(\varepsilon, \chi) \mapsto \chi^{\varepsilon}$, with apex the trivial norm.
- Can define d_{∞}^{NA} as before. Then $(\mathcal{N}^{NA}, d_{\infty}^{NA})$ complete, but not locally compact when $d = \dim V > 1$.

Non-Archimedean norms as an asymptotic cone

- any $\chi \in \mathcal{N}^{NA}$ can be **diagonalized** in some basis $\mathbf{e} = (e_i)$ of V, i.e. $\chi(v) = \max_i \chi(a_i e_i) = \max_{a_i \neq 0} \chi(e_i)$ for $v = \sum_i a_i e_i$ (\Leftrightarrow compatible basis for the corresponding filtration).
- apartement $(\mathbb{A}_{\mathbf{e}}^{\mathrm{NA}}, \mathrm{d}_{\infty}^{\mathrm{NA}}) \simeq (\mathbb{R}^d, \ell^{\infty}).$
- for any $p \in [1, \infty]$, there exists a unique metric d_p^{NA} on \mathcal{N}^{NA} such that $(\mathbb{A}_{\mathbf{e}}^{NA}, d_p^{NA}) \simeq (\mathbb{R}^d, \ell^p)$ for all \mathbf{e} .
- p=2, $(\mathcal{N}^{\mathrm{NA}},\mathrm{d}_2)$ Euclidean building.

Theorem

For any affine geodesic ray $\hat{\chi} = (\chi_t)$ in \mathcal{H} , $\chi_{\infty} := \lim_{t \to \infty} \chi_t^{1/t}$ defines a non-Archimedean norm. Further:

- $\hat{\chi}$ is uniquely determined by χ_0 and χ_∞ ;
- $\hat{\chi} \mapsto \chi_{\infty}$ induces $(\hat{\mathcal{H}}, \hat{d}_p) \xrightarrow{\sim} (\mathcal{N}^{\mathrm{NA}}, d_p^{\mathrm{NA}}).$

The Hilbert-Mumford criterion

Consider a finite dimensional representation W of G := GL(V), with maximal compact subgroup K = U(V).

- A (nonzero) $w \in W$ is stable if its G-orbit is closed, with finite stabilizer.
- This holds iff $f: G \to \mathbb{R}$ defined by $f(g) := \log \|g \cdot w\|$ is proper, for any choice of norm $\|\cdot\|$ on W.
- Choose a K-invariant norm \implies induced function $f: G/K = \mathcal{H} \to \mathbb{R}$ is **convex** $\implies w$ stable iff $\hat{f} > 0$ on each nontrivial ray in $\hat{\mathcal{H}} \simeq \mathcal{H}^{NA}$.
- Basis e of $V \Leftrightarrow$ maximal torus $T \simeq (\mathbb{C}^{\times})^d \subset G \Rightarrow$ weight decomposition $W = \bigoplus_{\alpha \in \mathbb{Z}^d} W_{\alpha}.$
- Write $w = \sum_{\alpha} w_{\alpha}$. Then $f(\lambda) = \log \|\sum_{\alpha} e^{\langle \alpha, \lambda \rangle} w_{\alpha}\|$ on $\mathbb{A}_{\mathbf{e}} \simeq \mathbb{R}^d$, hence $\hat{f}(\lambda) = \max_{w_{\alpha} \neq 0} \langle \alpha, \lambda \rangle$ on $\hat{\mathbb{A}}_{\mathbf{e}} \simeq \mathbb{R}^d$.
- Conclusion: w is stable iff $\hat{f} > 0$ on $\hat{\mathbb{A}}_{\mathbf{e}}(\mathbb{Z}) \simeq \mathbb{Z}^d$ for all \mathbf{e} (Hilbert–Mumford criterion).